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( )Transient enhanced diffusion TED of boron limits the formation of ultrashallow
junctions needed in next-generation microelectronic de®ices. A comprehensi®e TED
model needs many parameters go®erning the physical and chemical processes. Prior
estimates of the most likely ®alues for the parameters as well as their accuracies are
determined from maximum likelihood estimation applied to estimates from focused in-
di®idual experiments and density functional theory calculations. Here a systematic ap-
proach to model-parameter identification using maximum a posteriori estimation is em-
ployed combining the maximum likelihood parameter estimates and their uncertainties
in conjunction with after-anneal boron SIMS profiles to obtain accurate TED energet-
ics. Guidance on future experimental and ab initio efforts are gi®en based on the agree-

( )ment and disagreement between the prior and posterior distributions.

Introduction

Technological advances in packing an ever-increasing
number of transistors into a single chip drive the evolution in
the microelectronics industry. Because future Si-based CMOS
requires formation of junction depths between 13 and 25 nm
in the source and drain extension regions by the year 2005
according to the 2001 International Technology Roadmap for
Semiconductors, problems accompanying ultrashallow junc-
tion processing have become increasingly important. The cur-
rent technology for forming ultrashallow junctions relies on
using ion implantation to introduce dopant into the wafer.
However, ion implantation causes lattice damage, producing
junctions with high sheet resistance, which motivates postim-
plant annealing to remove the implant damage. Transient en-

Ž .hanced diffusion TED occurs during annealing of ion-im-
planted Si in which dopant, especially boron, diffuses excep-
tionally fast, resulting in an undesirable increase of junction
depth. TED is often attributed rather generically to the su-
persaturation of Si interstitials produced during ion implan-
tation of dopant and during thermal annealing. However, ob-
taining a detailed kinetic understanding of how the Si inter-
stitials mediate dopant diffusion is more challenging. Fur-
thermore, as thermal annealing advances toward rapid ther-

Ž .mal annealing RTA , it becomes crucial to implement more
precise kinetic expressions to capture the transient behavior.

Correspondence concerning this article should be addressed to R. D. Braatz.

For this reason, modeling of TED has generated a great deal
Ž Ž ..of interest see, for example, Agarwal et al. 2000 .

Here, a comprehensive TED model is developed combin-
Žing elementary physicochemical processes such as diffusion

.of interstitials and boron activation reaction and Poisson’s
equation. The model includes continuity equations describing
Fickian diffusion and electric drift motion, and formation and

Žannihilation rates due to chemical reactions such as dopant
.activation, dopant-defect clustering . Poisson’s equation de-

scribes the electric field due to spatial imbalance of the charge
density. The TED model consists of 20 coupled stiff nonlin-
ear partial and ordinary differential equations.

An accurate TED model requires knowledge of many ki-
netic parameters describing various physics. These parame-
ters include diffusivities and kinetic rate constants whose
thermal behavior is typically assumed to follow the Arrhenius

Žlaw. The values of the Arrhenius parameters that is, the acti-
.vation energies reported in the literature, which have been

obtained through either carefully designed focused experi-
ments or from density functional theory calculations, can vary
by an order-of-magnitude. To resolve the disagreement in the

Ž . Žliterature, maximum likelihood ML estimation Beck and
.Arnold, 1977 was employed using published values of activa-

tion energies giving rationally defensible estimates for most
Ž .of the parameters Gunawan et al., 2002a . ML estimation

gave the most likely parameter values as well as their accu-
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racy estimates. The parameters and their corresponding ac-
curacies provide prior distributions for further parameter es-
timation studies, for example, using Bayesian estimation
Ž .Beck and Arnold, 1977 .

Ž . ŽMaximum a posteriori MAP estimation Beck and Arnold,
.1977 has been extensively applied in many field of studies,

Ž .for example, in imaging Xiao et al., 2002 , signal processing
Ž . ŽZarnich et al., 2001 , pattern recognition Chang and Park,

. Ž .2001 , and spectral estimation Lamberg et al., 2001 . MAP
estimation builds upon Bayes’ theorem, which describes a
posteriori distribution of the parameter estimates as a func-
tion of a priori distribution function and experimental obser-
vations. The general idea behind MAP estimation is to opti-
mally combine prior information of the most likely parameter
values with additional experimental data to obtain better es-
timates.

In this work, we employ a systematic approach to model-
parameter identification using MAP estimation that com-
bines prior parameter information from published parameter
values and experimental data from after-anneal boron sec-

Ž .ondary ion mass spectroscopy SIMS profiles to give accu-
rate estimates of TED parameters. MAP estimation is formu-
lated as a minimization problem that is numerically solved
using the sequential quadratic programming package CFSQP
Ž .Lawrence et al., 1997 . The TED model is implemented us-

Ž .ing the process simulator FLOOPS 2000 Law and Cea, 1998 .
Comparison of the a posteriori and a priori distributions pro-
vides information for evaluating the quality of the prior pa-
rameter estimates obtained by focused experiments and den-
sity functional theory calculations. Guidance on future exper-
imental and ab initio efforts are given based on the agree-

Ž .ment and disagreement between the prior and posterior
distributions.

Transient Enhanced Diffusion Model
Transient enhanced diffusion arises from coupled physical

Ž .processes such as diffusion and electric drift motion and
Žchemical reactions such as boron activation and cluster for-

.mation and dissolution . The model consists of continuity
equations describing Fickian diffusion and electric drift mo-
tion for mobile species, and formation and annihilation rates
due to chemical reactions. The mass balancesrcontinuity
equations are

� N � Ji isy qG 1Ž .i� t � x

where N denotes the concentration, J denotes the flux, andi i
G denotes the net generation rate of species i. The flux Ji i
describes the motion of species due to Fickian diffusion and

Ž .electrical drift see Appendix for details . Here, the mobile
Ž .species consist of boron and silicon interstitials B and S ,i i

whereas the immobile species include substitutional boron
Ž . Ž . ŽB , boron�silicon complex B �Si , and the clusters pures s i

.boron, pure silicon, and mixed boron�silicon clusters . The
generation rate G includes chemical reactions associated withi

Žthe boron activation and dopant-defect clustering see Ap-
.pendix for further details .

The spatial dependence of species concentrations and
species charge distributions create an imbalance in the spa-
tial charge density, which induces an electric field according
to Poisson’s equation

� 2� Q xŽ .
s 2Ž .2 k� x d

where � denotes the potential and k denotes the dielectricd
Ž .constant. The charge density Q x describes the net charge

concentration according to

Q x s pynq � N 3Ž . Ž .Ý i i
i

where p and n denote the hole and electron concentrations,
Žrespectively, and � denotes the net charge of species i seei

. ŽAppendix for definition . The carrier concentrations that is,
.p and n are assumed to be in thermal equilibrium at all

times.
The proposed TED model is the most comprehensive to

date. Other models often lump the electric field effects
andror the dependence on the supersaturation of Si in ani

Ženhancement scaling factor of the dopant diffusivity Law et
.al., 1991; Lerch et al., 1999 , while some models completely

Žignore the electric drift motion of dopants Bennett and Price,
.1994; Cowern et al., 1990 . In addition, the treatment of clus-

ters in existing TED models typically use a simplified ap-
proach where the dynamic of clusters was described using a
single fictitious cluster concentration variable, ignoring the

Žsize-dependent cluster dissociation energies Bennett and
.Price, 1994; Law et al., 1991 . In addition, the clustering of

dopant and defects is completely ignored in many models
Ž .Cowern et al., 1990; Lerch et al., 1999 .

Problem Formulation
The TED model requires a set of preexponential factors

and activation energies associated with the diffusivities and
kinetic rate constants for the boron activation reaction and
cluster dissociation dynamics. Theoretical and experimental
works of TED have paid little attention to the preexponential
factors, focusing instead on the activation energies. In fact,
prefactors are notoriously difficult to estimate a priori. Sim-
ple kinetic models for elementary reactions view prefactors
as modified attempt frequencies. Solids have a distribution of
vibrational frequencies, however, so that a single aggregate
attempt frequency is difficult to define. One commonly used
estimate is the Debye frequency, which for Si is about 6�1012

sy1. However, it is well known from other branches of kinet-
ics that such a simple picture is often inadequate. For exam-

Ž .ple, a survey Wang and Seebauer, 2001 of prefactors for gas
desorption from semiconductor surfaces shows that, while the
average value indeed lies near 1013 sy1, only 10% of individ-
ual cases fall within an order of magnitude of this range. The
story is roughly similar for hopping diffusion on semiconduc-

Ž .tors Seebauer and Jung, 2001 . Although the Si Debye fre-
quency will be employed in the present work, clearly the use
of a priori estimates of prefactors requires caution.

Designing experiments in which highly accurate values for
the activation energies can be directly measured is challeng-
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Table 1. Maximum Likelihood Estimates of Transient
Enhanced Diffusion Energetics

TED Parameters ML Est. Std. Dev.
Ž .qE boron diffusivity 0.37 0.04diff,B i Ž .q2E Si diffusivity 0.72 0.03diff,Si iŽ .E kick-inrkick-out 0.5 0.07k o

Ž .E kick-inrkick-out 0.51 0.1k i
Ž .E kick-inrkick-out 0.59 0.06dis
Ž .E cluster dissociation�pure boron 1.7 0.072,B

Ž .E cluster dissociation�pure Si 1.4 0.032 �Ž .E cluster dissociation�size 3 2.2 nra3 �Ž .E cluster dissociation�size 4 2.9 nra4
Ž .E cluster dissociation�large Si 3.7 0.1large ��Ž .E cluster dissociation�large mixed 3.5 nralarge,mix

�Parameter estimate came from linear interpolations of ML estimates.
In the MAP estimation, a large number is used in place of the stan-
dard deviation.

��ML estimation utilized only a single published value.

ing. Experimental and ab initio density functional theory
Ž .DFT estimates of the activation energies are scattered
throughout the literature. For most of the activation ener-
gies, the published values show significant variation. For ex-
ample, the reported experimental values for diffusivities for
the Si self-interstitial vary by more than ten orders of magni-

Ž .tude Eaglesham, 1995 . The reliability of the experimental
results is questionable because the mobile species including
many point and extended defects are difficult to observe, as
they exist at low concentration. Ab initio calculations based
on DFT have also proven problematic for several reasons.
First, most of the DFT calculations are valid only at 0 K, but
the assumed mechanism may be invalid at high temperatures.
For example, Si self-interstitial diffusion may be governed by
collective atomic motions, which do not occur at lower tem-

Ž .peratures Van Vechten, 1988 . Moreover, DFT calculations
typically disregard the effect of entropy, which can change

Žthe preexponential factor by orders of magnitude Van
.Vechten and Thurmond, 1976 .

Maximum likelihood estimation provides a rationally de-
fensible mechanism in choosing the activation energies based
on literature values. Based on the literature values, ML esti-

Žmation gave the most likely estimates of TED parameters see
.Table 1 , which provided good experimental agreement with

no fitting parameters, as shown in Figure 1. In addition, the
ML estimation provided estimates of the accuracy of the pa-
rameters, giving a set of a priori distributions for MAP esti-
mation.

Parameter sensitivity analysis relates process behavior to
parameters, which elucidates the most important dynamics
governing a process. Sensitivity analysis of the junction depth

Žand percent of boron activation that is, fraction of boron
.that actively contribute to conductivity suggests that the most

important activation energies are those associated with boron
Ždiffusion and boron activation reaction that is, E , E ,diff,B k oi

. Ž .E , and E Gunawan et al., 2002a . In addition, the ki-ki dis
netic parameters that have moderate sensitivities include the
dissociation parameters for pure boron clusters and interme-

Ž .diate-sized clusters that is, E , E , and E . A preliminary2,B 3 4
investigation using different sets of parameters shows that
combinations of the most and moderately sensitive parame-

Žters are needed to accurately simulate TED see ‘‘Results

Figure 1. After-anneal SIMS and simulation profiles us-
ing ML estimates for various annealing pro-
grams.

.and Discussion’’ section . Hence, the current study will focus
on these parameters.

In the present MAP estimation, the parameter estimates
and the experimental observations consist of the activation
energies and the postannealing SIMS profiles, respectively.
The MAP estimation can be equivalently posed as a mini-

Ž .mization problem see Appendix for derivation

T Ty1 y1min YyP V YyP q �y� V �y� 4Ž . Ž . Ž . Ž . Ž .� 4� �
�

where � denotes the parameter estimates, Y is the experi-
mental observations, P is the model prediction, � denotes
the a priori parameter estimates, and V and V are the vari-� �

ances of the experimental data and prior parameter esti-
mates, respectively. Since each SIMS profile contains hun-
dreds of correlated data points describing the spatial distri-

Žbution of total boron concentration compared to only seven
.for the a priori parameters , its inclusion in the likelihood

function should avoid undermining the a priori information
Ž .such as using weighting factors . A similar problem arises in
the field of speech recognition, where the acoustic and lan-

Žguage model information representing the observations and
.the a priori information need balancing through incorpora-

tion of a language weight factor in the corresponding MAP
objective function. The weight factor corrects the probability
estimate to account for the correlation between the neighbor-

Ž .ing acoustic frames Bahl et al., 1980 . Following the same
approach, reformulation of the objective function of MAP es-
timation S givesMAP

d 1 T y1Y yP X ,� V Y yP X ,�w x w xŽ . Ž .Ý i i � i iiwiis1

T y1q �y� V �y� 5Ž . Ž . Ž .�

where w denotes the weighting factor for the ith profile, Yi i
Ž .denotes the ith SIMS profile, P X ,� denotes the simulatedi

boron profile for the ith thermal annealing conditions X andi
the parameter estimates � , and d is the total number of SIMS
profiles. The TED model is coupled into the minimization
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Ž .problem through P X , � , and simulated at each objectivei
function evaluation. Here, the weighting factor is selected to
equal the total number of data points in the corresponding
SIMS profile. The covariance V is estimated by�

2n Y yP X ,�Ž .Ž .ii
V s I 6Ž .Ý� ž /ny1is1

where � is fit to experimental data Y.
In addition, several constraints must be included in the

MAP estimation to arrive at physically meaningful estimates.
Ž .One of the constraints is Ostwald ripening Stolk et al., 1997 ,

where clusters of smaller sizes dissociate to favor formation
of larger clusters. This constrains clusters of larger sizes to
have progressively higher dissolution activation energies. Fur-
thermore, all activation energies are constrained to be posi-
tive due to the existence of energy barriers for these rate
processes. Hence, the final form for the MAP estimation
problem for the TED energetics is

d 1 T y1min Y yP X ,� V Y yP X ,�w x w xŽ . Ž .Ý i i � i i½ in� iis1
� G 0i

E F E2 3
E F E3 4

E F E4 l a r g e

T y1q �y� V �y� 7Ž . Ž . Ž .� 5
where n is the number of data points in the ith SIMS pro-i
file.

Numerical Implementation
The constrained MAP estimation problem was numerically

solved using the popular sequential simulation-optimization
method, where the optimization algorithm calls the simula-
tion algorithm, which is treated like any subroutine that pro-

Figure 2. Typical rapid thermal anneal temperature pro-
gram consisting of a stabilization step and a

(spike-anneal that is, a fast linear heating step
)followed by a natural cooldown step .

Figure 3. As-implanted and after-anneal boron SIMS
profiles showing the profile spreading from
transient enhanced diffusion corresponding to
an RTA employing 150	Crrrrrs heating rate to an
annealing temperature of 1,050	C.

Žduces an output in this case, the MAP objective in Eq. 7
.given inputs, that is, the parameters to be estimated . The

Ž .CFSQP Lawrence et al., 1997 optimization algorithm was
used, which implements a modified sequential quadratic pro-
gramming algorithm such that the constraints are satisfied at
each iterate. CFSQP solves constrained minimization prob-
lems with possibly sequential objectives and sequential in-
equality andror equality constraints, which include the MAP
estimation problem. The optimization algorithm combines
quadratic programming and Armijo-type line search to

Ž .achieve superlinear convergence Lawrence et al., 1997 .
The TED model was simulated using Alagator scripts run-

Žning on the public domain software FLOOPS 2000 Law and
.Cea, 1998 . FLOOPS spatially discretizes the continuity

equations to give an implicit system of ordinary differential
Ž .equations ODEs . The resulting ODEs are solved using the
Ž .TRrBDF2 Law and Cea, 1998 composite method for time

integration, which combines the one-step trapezoidal rule
Ž .TR and the multistep backward differentiation formula
Ž .BDF . The TRrBDF2 method has second-order accuracy
and satisfies a numerical stability condition that is desirable

Ž .for stiff differential equations Bank et al., 1985 . The
FLOOPS simulations comprised essentially all of the compu-
tational cost in solving the MAP estimation for TED parame-
ters.

The initial boron profile was the experimental as-im-
planted SIMS profile provided by International Sematech.
The total boron was assumed to contain 20% substitutional
boron and 80% interstitial boron, as suggested by experimen-

Ž .tal observations Caturla et al., 1998; Kobayashi et al., 2001 .
The initial conditions for silicon interstitials presupposed with
the ‘‘q1’’ model, wherein Si interstitial concentrations track
the total boron concentration. Boundary conditions at the

Ž � .surface for all species assumed no flux that is, J s0surfi
Žwith no surface Fermi level pinning Jung and Seebauer,

.2000 . A typical thermal annealing temperature trajectory is
shown in Figure 2, with a ramp rate ranging from 100	C to
400	Crs to a maximum temperature around 1,000	 to 1,200	C,
followed by a natural cooling step. Figure 3 shows the as-im-
planted SIMS profile with a typical after-anneal profile show-
ing the well-known transient enhanced diffusion of the boron
profile with its increased junction depth.
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Table 2. MAP Estimation for Different Parameter Sets
� �� †TED Parameters A B C

qE 0.363 0.342 0.342diff, B i †† ††
q2E 0.720diff, Si i

E 0.500 0.458 0.458k o
E 0.510 0.508 0.508k i
E 0.581 0.551 0.551dis ††E 1.808 1.8082,B †† ††E 1.402 ††E 2.198 2.1983 ††E 2.995 2.9954 †† ††E 3.70large †† ††E 3.50large,mix

�Most sensitive parameters.
��Most and moderately sensitive parameters.

†All parameters.
††Parameter value is fixed to be equal to the ML estimate.

Results and Discussion
A preliminary study using one SIMS profile elucidated the

dependence of the MAP estimates on different combinations
of TED parameters. Here, the MAP estimation utilized the
SIMS profile employing RTA with a heating rate of 150	Crs
and a maximum temperature of 1,050	C. Table 2 presents the
MAP estimates for three sets of activation energies that were

Ž . Ž .estimated: A the most sensitive, B the most to moderately
Ž .sensitive, and C all activation energies in the TED model.

Figure 4 shows the simulation profiles associated with the
MAP and the prior estimates determined using ML. Negligi-
ble improvement in the profile fitting resulted from using the
MAP estimates in set A as opposed to the ML parameters.
This was expected from the closeness of the set A MAP pa-
rameters to the ML estimates, which suggests a lack of infor-
mativeness of the SIMS profile on these parameters. How-
ever, the simulation profiles for the set B and set C MAP
parameters provide an improved fit over the set A and ML
parameters. This improvement indicates the importance of
boron and silicon clustering as interstitial sinks and sources

Žduring the annealing process the difference between sets B
and C compared to set A are the parameters for boron and

.silicon clustering, as shown in Table 2 . The inclusion of the
additional insensitive parameters in set C in MAP estimation
provided no improvement over set B, in agreement with pa-

Ž .rameter sensitivity results Gunawan et al., 2002a . None of

Figure 4. Experimental and simulation profiles using ML
and MAP parameter estimates in Tables 1 and
2.
The SIMS profile corresponds to a spike-annealing at tem-
perature 1,050	C with a ramp-up rate of 150	Crs.

Figure 5. After-anneal SIMS and simulation profiles us-
(ing MAP estimates of TED energetics see

)Table 3 for various heating rates and anneal-
ing temperatures.

Žthe parameter sets match the profile close to the surface �15
.nm . The lack of fit in this region did not arise from inaccu-

rate parameter estimates, but from the inadequacy of the
no-flux surface boundary condition in capturing dose loss
during annealing. This suggests the importance of undergo-
ing research on surface effects, such as dose-loss kinetics and
Fermi-level pinning, to improve the TED model.

The preliminary study just discussed suggested that the full
MAP estimation should focus on the parameters in set B,
because of the lack of informativeness of the SIMS profiles
for parameter combinations in sets A and C. The complete
MAP estimation used three sets of SIMS profiles correspond-
ing to RTAs with different ramp rates and maximum temper-

Žatures 150	Crs to 1,050	C, 350	Crs to 1,050	C, and 150	Crs
.to 950	C provided by International Sematech. Table 3 pre-

sents the MAP estimates along with the confidence intervals
and standard deviations. Figure 5 compares the simulation
profiles using the MAP estimates with the SIMS profiles,
which demonstrates the ability of the TED model to match
experimental observations. Again, there was lack of profile fit
close to the surface due to the aforementioned reasons. These
differences are more pronounced for the profile with a maxi-
mum temperature of 950	C, because little TED occurred, and,
thus, surface effects had a greater effect. Furthermore, com-
parison of the simulation profiles using the MAP and ML

Ž .estimates see Figures 1 and 5 showed the improvement in
the profile fitting of MAP parameter estimates compared to
ML a priori parameter estimates, especially for the profile
with a ramp rate of 350	Crs.

Figure 6 shows good agreement between simulations of the
TED model using MAP estimates and published experimen-

Ž .tal sheet resistance�junction depth pairs Agarwal et al., 1999
employing various spike annealing programs, implant ener-
gies, and dopant doses. Figure 6 also shows the ‘‘Sematech

Ž .curve’’ Murto, 1999 , which is the phenomenological locus of
points commonly used to map the ‘‘best’’ pairs of junction
depth and sheet resistance typically obtained by conventional
spike annealing. The simulations employed ranges of heating
rates between 50 and 400	Crs, cooling rates between 50 and
150	C, and maximum temperatures between 950 and 1,200	C.
To our knowledge, Figure 6 represents the first published
agreement between model simulations of TED and non-SIMS
experimental results. The agreement indicates that the TED
model and MAP estimates provide a good predictive capabil-
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Table 3. Maximum A Posteriori Estimates of Transient
Enhanced Diffusion Energetics

�Ž .TED Parameters MAP Est. 95% Conf. Int. Std. Dev. Est.
Ž .qE 0.359 0.008 0.004diff, B i Ž .E 0.408 0.015 0.008k o
Ž .E 0.458 0.015 0.008k i
Ž .E 0.575 0.004 0.002dis
Ž .E 1.788 0.024 0.0122,B
Ž .E 2.192 0.023 0.0123
Ž .E 3.055 0.004 0.0024

�The standard deviation is computed from the confidence interval using
Ž .z statistics Mann, 1995 .

ity for designing optimal annealing programs to achieve the
desired junction depth and sheet resistance.

The estimated covariance of the a posteriori parameters
Ž .see Eq. A18 in the Appendix was

qE E E E E E Edi f f ,B k o k i di s 3 4 2 , Bi

y5 y4 y5 y5 y5 y6 y54.42�10 y1.33�10 y9.64�10 1.66�10 y3.00�10 3.34�10 5.13�10
y4 y4 y4 y5 y4 y6 y4y1.33�10 4.50�10 3.35�10 y4.73�10 1.34�10 y4.19�10 y2.12�10
y5 y4 y4 y5 y4 y6 y4y9.64�10 3.35�10 2.52�10 y3.44�10 1.03�10 y1.67�10 y1.62�10

�V s 8Ž .� y5 y5 y5 y6 y6 y6 y51.66�10 y4.73�10 y3.44�10 7.35�10 y5.10�10 1.44�10 1.28�10
y5 y4 y4 y6 y5 y7 y43.00�10 1.34�10 1.03�10 y5.10�10 8.94�10 4.86�10 y1.11�10
y6 y6 y6 y6 y7 y6 y73.34�10 y4.19�10 y1.67�10 1.44�10 4.86�10 1.43�10 y7.44�10
y5 y4 y4 y5 y4 y7 y45.13�10 y2.12�10 y1.62�10 1.28�10 y1.11�10 y7.44�10 1.49�10

The estimated covariance shows strong collinearity among
many of the parameters and indicates that the confidence
interval estimates in Table 3 may not be accurate representa-
tions of the confidence region for the parameter estimates. A
linear correlation matrix r measures the degree of linear de-
pendence between a pair of parameters where a magnitude
of 1 describes perfect correlation and a value of 0 suggests no
correlation. The correlation matrix consists of correlation co-

Ž .efficients whose values are given by Beck and Arnold, 1977

y1r2
r sV V V 9Ž .Ž .i j i j ii j j

Computation of the correlation matrix for V � gave�

1 y0.95 y0.91 0.92 y0.48 0.42 0.63
y0.95 1 0.99 y0.82 0.67 y0.17 y0.82
y0.91 0.99 1 y0.80 0.69 y0.09 y0.84

rs 10Ž .0.92 y0.82 y0.80 1 y0.20 0.44 0.39
y0.48 0.67 0.69 y0.20 1 0.04 y0.96

0.42 y0.17 y0.09 0.44 0.04 1 y0.05
0.63 y0.82 y0.84 0.39 y0.96 y0.05 1

Figure 6. Junction depth–sheet resistance pairs: pub-
lished experimental works vs. TED simula-
tions employing various heating and cooling
rates, and annealing temperatures.
Sematech curve summarized the sheet resistance and junc-
tion depth data in experimental studies performed by Inter-
national Sematech.

which more clearly indicates the strong collinearity among
the parameters. The most apparent collinearities are those
associated with boron diffusion and activation parameters.
Another strong collinearity arises between pure boron and
size 3 cluster dissolution energetics. The strong collinearity is
caused by the lack of information in the SIMS profiles to
simultaneously identify these parameters due to poor experi-

Žmental design and lack of dynamical data SIMS profiles col-
.lected at different times during the annealing process . More-

Ž .over, parameter sensitivity analysis Gunawan et al., 2002a
showed that the perturbations in these parameters exert simi-
lar changes in the profile shape, which makes independent
identification of each parameter challenging. This result mo-
tivates the application of the optimal model-based experi-

Ž .mental design Beck and Arnold, 1977; Gunawan et al., 2002b
to maximize the informativeness of the data, and to carry out
model selection among competing hypothetical mechanisms.
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Despite the strong collinearity, it is useful to compare the
MAP and ML parameter estimates and their standard devia-
tions to elucidate the informativeness of the SIMS data with
respect to each parameter, and the quality of the ML esti-
mates. The standard deviations of MAP parameters were

Žsmaller than those of ML estimates as expected from Eq.
.A18 in the Appendix . In particular, there was a significant

reduction in the standard deviation associated with the acti-
Ž .vation energy of B �Si dissociation into substitutionals i

Žboron E in correlation with k of Eq. A8 in the Ap-dis dis
.pendix . This indicates that the SIMS profiles contain more

information about this parameter than the others. Although
the standard deviation for the size-3 cluster dissolution en-
ergy E is of similar magnitude to E , lack of prior informa-3 dis
tion on its uncertainty prohibited such a conclusion. Most of
the MAP and ML intervals overlap each other with the ex-
ception of the dissociation energy of pure boron cluster E ,2,B
which indicates that the a priori information for this parame-
ter may be inaccurate. This motivates further experimental
andror density functional theory calculations for estimating
this parameter, to provide an independent confirmation of
the MAP parameter estimate determined here.

Conclusions
Although the number of parameters associated with TED

energetics is large and the information content from after-
anneal SIMS boron profiles is limited, MAP estimation is able
to combine a priori information with the SIMS profiles to
give a nonsingular and well-posed estimation of the parame-
ters and their accuracies. The results also suggest that MAP
estimation provides estimates of the TED parameters with
greater accuracy than ML estimates obtained from individual
focused experimental studies and density functional theory
calculations. The strong collinearity in the a posteriori param-
eter covariance matrix suggests poor experimental design and
the need to employ optimal model-based experimental design
Ž .Beck and Arnold, 1977 . Comparison of MAP and ML simu-
lations confirms the importance of surface effects, especially
dose loss, during TED.
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Appendix
Supplemental TED Model

The flux J includes a Fickian diffusion term and a drifti
motion term from the electric field effect on the charged
species

� 2Ni
J syD q� � N E x A1Ž . Ž .i i i i i2� x

Ž .where D denotes the diffusivity and E x is the electric field.i
The mobility � follows the Einstein relationi

qDi
� s A2Ž .i kT

where q is the electron charge, k is the Boltzmann constant,
and T is the temperature. The term � describes the neti
charge according to

� s z � A3Ž .Ýi j i , z j

j

Žwhere the z are the charge states that is, q2, 0, y1, and soj
.on and � is the fraction of species i with charge z ac-i, z jj

Ž .cording to the Fermi Dirac statistics Yariv, 1982 . For exam-
ple, a species C that possesses a charge distribution of 30%
Cq2 and 70% Cy has a net charge of y0.1. Rewriting the
electric field as a function of the potential �

��
E x sy A4Ž . Ž .

� x

and assuming that the diffusivity D is invariant of the speciei
charges, the continuity equation for mobile species during
TED can be written as

2 2� N � N q � � �� �i isD q N � q N � qGŽ .i i i i i i2 2ž /� t kT � x � x� x � x

A5Ž .

For immobile species, the first term in the righthand side of
Ž .the continuity equation drops out D s0 , leaving only G .i i

The clusters that form during ion implantation and ther-
Ž .mal annealing Collart et al., 2000; Stolk et al., 1997 act as
Ž .interstitial traps at a lower temperature as well as sources

Ž .at a higher temperature . Evidence exists to support the for-
Ž . Žmation of pure boron Collart et al., 2000 , pure silicon Stolk

. Žet al., 1997 , and mixed boron�silicon clusters Haynes et al.,
.1996 during TED. The formation and dissolution of the pure

interstitial clusters follow the reactions

f R

RIq I I2
d

g R

RI q I Imy1 m
d

Ž .where I denotes the interstitial boron and silicon and the
indices m denote the size of the cluster. The reaction rates
for the formation, growth, and dissociation of pure clusters
follow

2w xr s8
 aD If I

w x w xr s4
 aD I Ig I my1

w xr sk I A6Ž .d m m

˚Ž .where a is the capture radius as2.7 A and k is the disso-m
ciation rate constant for size m clusters. The cluster forma-
tion rate is assumed to be diffusion limited by the reactant, in

Žagreement with much of the literature see, for example, Lai-
.dler, 1987 . The dissolution rate assumes the existence of an

energy barrier as the rate-limiting step such that the rate
constant follows the Arrhenius law.

The mixed boron�silicon cluster formation and dissolution
are given by

ĝ R

RB Si qB B Sipy1 q i p q
d̂

ĝ R

RB Si qSi B Sip qy1 i p q
d̂

where p, q are integers greater than or equal to 1. The reac-
tion rates of mixed clustering follows similar rate equations

Ž .as in pure interstitial clusters see Eq. A6 , in accord to simi-
lar arguments above

w xr s4
 a D B B Si orŽ .g B i py1 qˆ i

w x4
 a D Si B SiŽ .Si i p qy1i

r sk B Si A7Ž .d̂ pqq p q

Due to the limitation in the number of the differential equa-
tions that can be solved by FLOOPS, the sizes of interstitial
clusters are limited to two for pure boron and five for pure
silicon and mixed boron�silicon clusters. This should not im-
pose a severe limitation on the TED model, as there is no
evidence for the formation of large clusters in sub-keV im-

Ž .plants Zhang et al., 1995 .
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The boron activation reaction plays a very important role
in TED as a medium of transformation between immobile
substitutional boron and mobile interstitial boron. The inter-
mediate species B �Si also act as nucleation centers for thes i
mixed boron�silicon cluster. The activation occurs according
to

Kick-out 6

assoc koR

R

R

RB qSi B ySi B qSiŽ .s i s i i s
dis ki

6
Kick-in

The reaction rates are given by

w x w xr sk B S iassoc assoc s i

w xr sk B ySidis dis s i

w x w xr sk B Siki ki i i

w xr sk B ySi A8Ž .ko ko s i

Žwhere the reaction rate constants that is, k , k , k ,ko ki assoc
.and k are again assumed to follow the Arrhenius law.dis

Maximum A Posteriori estimation
Ž . Ž � .Let f � denote the probability density function and f A B

denote the conditional probability function of the event A
given the event B. A vector of random variables xg� m fol-
lows a normal distribution with mean �g� m and variance

m�m Ž .V g� , denoted by x� N �,V , if

1ymr2 Ty1r2 y1� �f x s 2
 V exp y xy� V xy�Ž . Ž . Ž . Ž .
2

A9Ž .

� �where A denotes the determinant of matrix A. Bayes’ theo-
rem describes the a posteriori distribution as a function of the

Ža priori distribution and experimental data Beck and Arnold,
.1977

�f Y � f �Ž .Ž .
�f � Y s A10Ž .Ž .

f YŽ .

The variables � and Y denote the vectors of parameter esti-
mates and experimental observations, respectively, and
Ž � .f � Y denotes the a posteriori distribution for the parame-

ter estimates given the data Y. The MAP parameters � � are
Ž � .the modes of f � Y

�� f � YŽ .
��� f � Y s0 or s0 forŽ . �� �� �j �

js1, 2, 3, . . . , p A11Ž .

where p is the number of parameters.
Experimental errors are assumed to be additive with a nor-

mal distribution of zero mean and variance V�

YsP X ,� q� A12Ž . Ž .

Ž .where P X ,� describes the process model, X denote the
Ž .independent variables, and the error � � N 0,V . Under this�

Ž � .condition and assuming no error in X , the function f Y �
describes the probability of obtaining the experimental data
Y given the parameters �

1ynr2 Ty1r2 y1� � �f Y � s 2
 V exp y YyP V YyPŽ . Ž . Ž .Ž . � �2

A13Ž .

where n is the total number of measurements. The a priori
distribution for the parameters � is assumed to follow a nor-
mal distribution with mean � and covariance V�

1y pr2 Ty1r2 -1� �f � s 2
 V exp y �y� V �y�Ž . Ž . Ž . Ž .� �2

A14Ž .

The parameters and measurements are assumed to be uncor-
Ž .related that is cov � ,� s0.

Using the fact that the maximizer of a function also maxi-
mizes its logarithm, reformulation of the MAP estimation
problem in Eq. A11 gives

�� ln f Y � q� ln f � s0 A15�Ž . Ž .Ž .� � �

Under the aforementioned assumptions, substitution of Eqs.
A13 and A14 into Eq. A15 transforms the MAP estimation
into the minimization problem

T y1� � � �min S smin ln V qln V q YyP V YyPŽ . Ž .�MAP � � �
� �

T y1q �y� V �y� A16Ž . Ž . Ž .4�

If V and V are independent of � , the MAP estimation� �

problem further reduces to

T Ty1 y1min YyP V YyP q �y� V �y�Ž . Ž . Ž . Ž .� 4� �
�

A17Ž .

The first term of the objective function just given is also
known as the likelihood function, and the MAP estimation
reduces to ML estimation in the absence of a priori informa-

Ž y1 .tion that is, V s0 . Using linearization of the model, an�

Ž � . Žestimate of the covariance of � y� is given by Becktrue
.and Arnold, 1977

y1� T y1 y1
�cov � y� sV f S V SqV A18Ž .Ž . Ž .true � � �
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where � denotes the true parameters and S denotes thetrue
sensitivity of the model P with respect to the parameters � .
Since computation of the sensitivities for the TED model or
complex systems is expensive, the finite difference method
Ž .Varma et al., 1999 was used to estimate the sensitivities. If
additional experimental data become available, then the MAP

� Ž � .estimator � and the covariance estimate cov � y�true
would provide the a priori distribution for further MAP esti-
mation to improve parameter estimates.

A hyperellipsoidal confidence region that quantifies the ac-
curacy of the parameters is given by

T y1 2
�E s � : �y� V �y� F
 p A19Ž . Ž .Ž . Ž .� 4� true � true �

2Ž .where � denotes the confidence level and 
 p denotes the�

chi-squared distribution with p degrees of freedom. The con-

fidence intervals associated with the aforementioned confi-
dence region are

1r2 1r2
�2 2

� �y 
 p V F � y� F 
 p VŽ . Ž .Ž .Ž . Ž .� � , i i i true,i � � , i i

A20Ž .

where V � denotes the ith diagonal element the covariance� , i i
matrix V � The confidence intervals are an accurate repre-� .
sentation for the hyperellipsoidal confidence region only when
the off-diagonal elements are much smaller than the diagonal
elements.
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