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Controllability of Processes with Large Singular Values
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The singular-value decomposition has been used to analyze the robustness of closed-loop systems
and to determine whether any controllability problems can be expected. Past controllability
conditions have been derived in terms of the condition number and the minimum singular value
of the process and the condition number of the controller transfer function matrix, in terms of
potential sensitivities of the closed-loop system to model uncertainties or problems with saturation
of the manipulated variables. This paper considers processes with a large maximum singular
value. It is shown that the closed-loop control of such processes can result in poor transient
performance as a result of valve accuracy considerations, even if the condition number is small
and the minimum singular value is large, which would indicate no performance limitations
according to existing controllability criteria. Further, processes with large singular values can
be prone to sensor saturation. This indicates that the magnitude of all of the singular values
should be considered when assessing the controllability of a process. A new interaction tool based
on output correlation is introduced to help select measurements and manipulated variables that
have a good range of singular values for practical application. The approach proposed is
illustrated on two simple examples and on the Tennessee Eastman process.

Introduction

In overcoming the effects of process disturbances or
in achieving desired setpoints, a process control system
implicitly or explicitly solves an algebraic problem that
depends on the process gain matrix. The control system
determines the required manipulated inputs to bring
the controlled measurements to their desired steady
states. Singular-value decomposition (SVD)! can be used
to assess just how well this process control algebraic
problem is posed and whether any sensitivity problems
can be expected when it is solved. In this paper the use
of SVD to analyze a process gain matrix is discussed.
Without loss in generality, it is assumed that the desired
final control system is square, with the number of
manipulated and controlled variables being equal, and
that integral action is used on all measurements. To use
SVD for analyzing a process gain matrix, the matrix
must be scaled so that it reflects the actual measure-
ment devices and valves that are used in the plant
under study. The particular focus of this paper involves
the case where the process gain matrix has a large
maximum singular value, with its minimum singular
value being either large or small.

Early application of SVD to process control systems
was carried out by researchers at the University of
Tennessee.?? Lau et al.# used SVD to design multivari-
able control systems. Grosdidier et al.5> established a
guantitative relationship between the condition number
of a process gain matrix and its relative gain,® and this
relationship was extended by Nett and Manousiouthakis.”
Skogestad and Morari® derived conditions for robust
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stability that involved the condition number. A number
of useful results on applying SVD to process control
problems are collected by Skogestad and Postlethwaite.®
This includes the result that saturation of the manipu-
lated variable is a potential problem if the minimum
singular value of the process gain matrix is less than 1.
They also show that the multivariable effects of input
uncertainties are small for processes with small condi-
tion numbers. Skogestad and Postlethwaite® do present
an example of a process with a large condition number
where the minimum singular value is greater than 1,
but their discussion in this case is more speculative
compared to the case where the minimum singular
value is less than 1.

There are many common confusions that exist in the
literature involving the use of the condition number to
analyze processes. For example, it is widely believed
that a large condition number of the process always
indicates sensitivity to model uncertainties, but this is
not true in general, as discussed in detail by Skogestad
and Postlethwaite.® Another common belief is that a
large condition number indicates problems with actua-
tor saturation, but this is not true if the condition
number is large and the minimum singular value is
large. A much more direct requirement concerning
actuator saturation is written in terms of the minimum
singular value being small. Hence, it is much more
appropriate, and accurate, to use the minimum singular
value as the metric for ill-conditioning in terms of
actuator saturation®1! rather than the commonly used
condition number. Using the condition number for
processes with a large maximum singular value can
confuse the fact that the underlying performance limi-
tation is more directly described in terms of the singular
values. For example, a single-input single-output pro-
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cess with a very large gain has a condition number of 1
but has a very large singular value (which is equal to
its gain), indicating that the control system may be very
sensitive to valve inaccuracies.'? Rios-Patron and Braatz!?
point out that the large gain is the cause of oscillations
commonly observed in pH processes. Hence, the mag-
nitude of singular values is the most accurate and direct
way of analyzing a process, and the condition number
is an indirect and imprecise way of doing so.

The approach focuses on steady-state conditions, but
it is straightforward to extend to the frequency domain.
A Kkey result is that processes with large maximum
singular values either are prone to sensor saturation
or can exhibit transient oscillations because of valve
accuracy problems. This motivates the idea that a limit
on the maximum singular value should be employed in
developing control architectures. A correlation measure
is proposed for selecting actuators and sensors so that
the process gain matrix has a maximum singular value
less than this limit and also a minimum singular value
greater than 1. The methods discussed are first applied
to two small examples and then to the Tennessee
Eastman process.® After an introduction to the algebra
of process control problems and to SVD, its application
in process control is discussed.

Preliminary Considerations: Algebra and
Process Control

The goals of the process control system are to sup-
press disturbances and follow changes in the setpoints.
It is assumed that the process control system under
consideration is square, that it has n manipulated
variables and n measurements to control, and that
integral control is used on all measurements. To reject
a step disturbance d, this control system will implicitly
or explicitly solve the following algebraic problem:

y=Ku+d=0 Q)

In eq 1, the measurements, y, and manipulated vari-
ables, u, are deviation variables. The setpoint for y is
the origin. Assume that the variables u and y are scaled
to the range +1. One approach to scaling is to use the
instrument and valve ranges. For example, a temper-
ature device, y1, with a span of 100 °C could be scaled
(YT — YT1ss)/100, where yrs is the steady-state reading.
A valve that ranges from full open (100%) to closed (0%)
would be scaled as (U — uss)/100. An alternative ap-
proach to scaling involves specifying a desired range for
a measurement, e.g., temperature within +10 °C, and
a desired range in which a valve can move, e.g., £30%.
If there is an asymmetric difference in how far an
actuator can move before saturation, e.g., the actuator
is 95% open, then the smaller of the two differences can
be used in scaling. The instrument and valve ranges
are used for scaling in the following, but the results
apply equally well to the approach where the desired
range is used. For scaling that involves actual valve and
measurement ranges, once a high or low limit is reached
(£1), the valve or measurement device no longer func-
tions and control is lost. For scaling that involves a
desired range, reaching a limit means that this range
has been violated. If integral control is used, the gain
matrix K is invertible, and the valve constraints are not
active, then there exists a controller that brings the
measured variables back to the origin. The control
system implicitly or explicitly solves eq 1 to determine

the inputs that eliminate the effect of the disturbance
d as

u=-Kid 2)

For changing setpoints, the control system solves the
following algebraic problem:

y* =Ku (3)
with u given by
u= K—l ySP (4)

Equations 2 and 4 demonstrate that the control system
inverts the process gain matrix in bringing the process
to the desired steady state. Thus, the control system
solves an algebraic problem during its operation. If the
problem is not well posed, i.e., K~1 cannot be accurately
determined, then problems can result with the operation
of the control system in the field. It is important to note
that process control systems ultimately rely on analogue
devices such as transducers and valves and these
devices have limited accuracy. As a result, implement-
ing the inverse of K in a practical control system can
be more difficult than calculating K1 on a computer.
SVD can be used to determine if problems may arise
when either eq 2 or eq 4 is solved.

SVD of a matrix, K, is given by?

K=uUzV' (5)

where U and V are unitary matrices and X is a matrix
whose diagonal elements are the singular values, o,
which are all greater than or equal to 0 and are
arranged in decreasing magnitude. In process control
applications, singular values of zero typically arise from
integrating variables such as liquid levels. [See ref 18
for an example of a process where a zero singular value
does not arise from integrating variables.] For these
variables, their rate of change can be used in the gain
matrix, as discussed below in the Tennessee Eastman
application. The off-diagonal elements of X are zero. The
condition number, CN, of K is given as the ratio of g, to
On as

CN = o,/0, (6)

Processes with large CNs are considered in the following
section.

Control Systems with Large CNs

A large CN can result from a small oy, a large o1, or
both.

Case 1. Small on. This case is discussed extensively
by Skogestad and Postlethwaite,® and their results are
paraphrased below. Assume that a step change in ySP
occurs and the control system determines the manipu-
lated variables u as in eq 4. In controllability analysis,
it is common to measure the magnitude of the manipu-
lated variables u and the outputs y in terms of the
Euclidean norm. [See ref 19 for results where other
norms are used.] Further assume that setpoint ySP
changes can cover the entire span of outputs y. For this
second assumption, ySF is scaled to have a norm of less
than 1. The inverse of K is given by

Kt=vz'Uu' (7)
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Figure 1. Range of measured variables with the norm of the manipulated variables bounded by 1 and the range of manipulated variables

with the norm of the measured variables bounded by 1.

The setpoint change that causes the largest change
in u is parallel to uy, the last column of U. This setpoint
acts through the inverse of the smallest singular value,
1/on. For a setpoint change of unity magnitude, ySP =
Un, the change in u can be calculated by substituting eq
7 into eq 4 to give

u = (1lo,)v, 8)

where vy, is the last column of V. For a unitary matrix,
each of its column vectors has a magnitude of 1. Thus,
[val2 = 1, and u, constitutes the unity magnitude
setpoint change that requires the largest change in u.
A sufficient condition to avoid actuator saturation (Jul;
>1) is®

o,>1 (9)

n
If eq 9 is satisfied, then actuator saturation is not a
problem. It should be noted that eq 9 involves g, and
not CN. Also, eq 9 can be conservative because it is
calculated based on a worst-case unity magnitude
setpoint change. Having a process with o, > 1 is
desirable because then actuator saturation is not a
problem at steady state whenever a unity magnitude
setpoint change is made. Whether actuator saturation
actually occurs when o, < 1 depends on the actual
setpoint changes encountered. A similar analysis can
be used for disturbances. In the case of disturbances,
they need to be scaled using the same scaling factors
as those for the measurements. If a control system only
has to reject disturbances and setpoint changes are not
made, then depending on the nature of the disturbances,
it may be possible to have a workable control system
for which oy < 1.

Case 2: Large g;. Another question concerns whether
any controllability problems can be anticipated when
o1 is large. Consider a process whose desired outputs
satisfy the constraint |y|, < 1. An orthonormal basis for
the space of input u vectors can be chosen as the

columns of V. Then the maximum allowable magnitude
of u along each of the basis directions, «aj, can be
calculated to keep |yl < 1 by using eq 5 to give

Iyl, = IKogvil, = oja|ujl, (10)

Because |uij|2 = 1, the maximum value of a; occurs when
lyl2 =1, and it is given by aimax = 1/oi. If 01 is large and
o, = 1, then the magnitude of u in some directions,
particularly vq, will be severely limited. To illustrate this
result, the following scaled gain matrix is considered:

_[11 o
K_[100 11] (11)

For this plant, o, = 101.2 and o, = 1.196, indicating
that actuator saturation is not a problem. However, this
process will have a problem with large output values if
the full range of u is used. Figure 1a shows a plot of y,
versus Yy, for the case where u takes on values from a
unitcircle, i.e., Jul = 1. As Figure 1a shows, the values
of y1 and y, are much larger than +1, and the norm of
y is much greater than 1. If the outputs are to be kept
within their spans, then u; and u,; must be limited. To
keep |y|2 < 1, u; and u, must remain within the ellipse
shown in Figure 1b. Values for u; must be restricted to
a small fraction of its range, namely, within £0.091,
when u, = 0. Valve accuracy is typically specified as a
percent of full span, e.g., £0.5%. If a valve is restricted
to operate in a smaller range, then its relative accuracy
decreases. Thus, a span of +£0.091 would correspond to
a 10-fold decrease in valve accuracy.

Limiting a control valve to a fraction of its range can
result in poor control in practice. Consider an analogy
from driving an automobile. With an extremely sensitive
steering wheel, a small turn on the steering wheel would
result in a sharp turn in the automobile. Driving such
an automobile would require very cautious manipula-
tions of the steering wheel because it would be very easy
to turn the vehicle too far in one direction and then have
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Figure 2. Closed-loop responses with perfect valves (solid lines) and inaccurate valves (dashed lines).

to turn back for compensation. No doubt such an
automobile could only be driven at a slow speed, or a
continual back and forth motion of the steering wheel
would occur. The same type of problem arises for the
process described by eq 11. To illustrate this point, a
particular first order with dead time process with the
following dynamic characteristics is simulated:

11e7°
216) _|10s +1 u,(s)
Ya(S) 100e™°  11e° [[u.(s)

10s+1 10s+ 1

(12)

Two proportional—integral feedback controllers with the
following characteristics are used:

[U1(5)]= ’Km[l + 1/(Tgy8)] 0 ][61(5)
U,(s) 0 Keoll + 1(Trp8)] f[€2(5)
(13)

where ¢ is y;" — yi. Identical values of K¢; = 0.154 and
Tgri = 7.7 are used in each loop. If a step change of 0.23
is introduced in the setpoint of y;, the results shown in
Figure 2 are obtained. The size of the setpoint change
was chosen so that the output constraint would be
satisfied. The solid curves give the responses of y; and
y2 when valves with perfect resolution are used. These
results are typical of control systems simulated using
computers that carry a large number of significant
figures. In practice, valve friction and hysteresis would
limit the accuracy with which a valve signal could be
manipulated.

To illustrate what can happen when o3 is large and
on = 1, the following simple approach is taken to
simulate valve accuracy. It is assumed that a valve
signal can only be resolved to a value of +0.005, or
+0.25% of the range of each valve, which is equal to 2
(—1 to +1). Once values of y; and y, are measured and
values of u; and u, are calculated, they are rounded up

or down to the nearest value of 0.005. The dotted lines
in Figure 2 show the results of simulating valve inac-
curacies. An oscillation develops in the y, response
because of the finite resolution of the valves. The
oscillation is also similar to what occurs in practice as
a result of valve hysteresis. This oscillation has a peak-
to-peak value of 0.09 (4.5% of the range of y;), and it
does not die out with time. The oscillation is similar to
the type of oscillation one would get in trying to drive
an automobile with a very sensitive steering wheel. The
oscillation in y, is not dependent on the size of the step
change in y;. Even if a small step in the setpoint of y;
is introduced, oscillations of approximately the same
magnitude in y, result. Figure 2 also shows that the y;
response is not that much different from that which one
would calculate using a computer. There is a small
sustained oscillation in y; between 0.22 and 0.23. This
small oscillation is transmitted to y, through the large
K21 gain of 100, and this transmission results in the
large y, oscillations. If g; were much smaller, then the
small oscillation would not present a problem. If the
resolution of the valves in this example were poorer
than +0.005, then the magnitude of the oscillations in
both variables would increase. For both measurements,
the magnitude doubles if the resolution doubles to
+0.01.

The oscillations shown in Figure 2 can be decreased
if the controller for y; is detuned. Figure 3 gives results
for the case where Kc; is reduced to 0.0513 while Kcz
remains the same. The dotted curves give the response
for the detuned system, while the solid curves are the
same as those in Figure 2. As can be seen, the detuned
responses do not exhibit severe oscillations. However,
the performance of the y; control system has become
much slower because of the detuning, and the time it
takes for y; to get to its new setpoint is more than twice
that for the original tuning. If it were important that
y1 be tightly controlled, then this detuning presents a
problem that cannot be avoided if real-world valves are
used and oscillation in y, cannot be tolerated. In general,
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Figure 3. Closed-loop responses with inaccurate valves and initial tuning (solid lines) and inaccurate valves with Kc¢; reduced to 0.0513

(dashed lines).

detuning controllers for systems with large o1 should
reduce oscillations but with the penalty that the tran-
sient performance also will be reduced.

This discussion suggests that it would be reasonable
to impose an upper limit on o7 for systems with o, > 1
when a square controller with integral action is used.
Either having sustained oscillations with a significant
magnitude in the controlled variables or detuning
controllers is not desirable. Because essentially all
control systems are eventually implemented with ana-
logue devices, which typically have an accuracy on the
order of 0.5% of full scale, a reasonable limit on o; would
be 50. One could argue with the exact value of the limit
proposed and say for example that it should be 100.
However, there should be an upper limit because a
system with a o1 of 1000 would not work in practice if
a square controller with integral action in all channels
is used. For such a system, one would not be able to get
the fine manipulation of the control valves that would
be required for control because the valves would be
limited to move in an extremely small region within
their range. In the sections below, an approach to
selecting measurements and manipulated variables to
avoid both actuator and measurement saturation is
presented. Before the approach to avoiding both actua-
tor and sensor saturation is pressented, an approach
to analyzing measurement correlation is considered
first.

Analysis of Correlation among Measured
Variables

To analyze measurement correlation in process sys-
tems, a new interaction tool is proposed. It can be noted
that this tool is general and it can be applied to
processes with any singular values and also to non-
square processes. To use the approach, it is assumed
that each of the manipulated variables, u;, is forced with
an independent, zero-mean, unit variance signal. This
forcing results in stochastic variations in each of the

process outputs, y;. Depending on K, the y; responses
may be correlated with one another. The coefficient of
determination,'* r;,2, measures the proportion of the
variation in y; that is explained by yx. The coefficient of
determination is the square of the correlation coefficient,
and it ranges between 0 and 1. Clearly, if two outputs
are tightly correlated, then it will be extremely difficult
to control each output independently. Further, a dis-
turbance in one output could be transferred to the other
through the control system. These points are illustrated
in Figure 4, where two variables, y; and y,, that are
correlated with different ry,? values are plotted. To
generate this plot, independent random values of y; are
calculated and then the correlation coefficient was used
to calculate y,. As r1,%2 — 1, the behavior of y, follows
the behavior of y; more and more closely. In the
employment of r; ,? to decide on the feasibility of control
system architectures, it is necessary to choose a thresh-
old. In this paper, a value of 0.8 is used for this
threshold, although its exact value is a judgment call.

It is interesting that the r;? values depend only on
the ¥ and U matrices of SVD of K. Under the stated
assumptions on u,

cov(y) = cov(Ku) = K cov(u) K" = KK' =
uzv'vz'uT =uzs'UT = BB (14)

where B = UX. Hence, the expression for the coefficient
of determination, rix?, in ref 14:

(3 KigKi)?
J

O Kif® > Kif))
J J

remains correct, with the elements of K replaced by the

2
Fik
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Figure 4. Correlations between two measured variables for various values for the correlation coefficient.

corresponding elements of B:

(3 b by
J

(zbi,jzzbk,jz)
] ]

where b;; are the elements of B and j is summed from
1 to the number of manipulated variables. To evaluate
control system feasibility, the r; 2 elements are arranged
into a matrix, R. Processes with large CN can give rise
to rix? values that are close to 1. To configure square
control systems, r; 2 can be used to eliminate measure-
ments and improve the CN for the process. Before an
illustration of how this elimination can be carried out
is given, three cases are considered first.

Case 1: g; = 1. The system in this case has the best
possible CN, and the b;; elements are equal to u;j.
Because U is a unitary matrix and its columns are
orthogonal,

2

Ik (15)

R=1I (16)

That is, there is no measurement correlation in this
case.

Case 2: Large o, or Small o, and U = I. In this
case, B is a diagonal matrix. Substitution into eq 15
again results in eq 16, and there is no measurement
interaction. An example for this case is

_[100 0
K—[ 0 1] 17)

for which o1 is 100. The gain of 100 should be questioned

if this were a real system. Such a gain means that u;
has an extremely large effect on y;. The large gain could
arise if too large a valve or too small a transmitter for
y1 is used, and the instrumentation could be changed
and no doubt a better control performance would result.
If neither of these cases holds, then the system given
by eq 17 would be somewhat unusual. It would have
valves and transmitters with reasonably installed spans,
yet u; would have an extremely large effect on y;.

Case 3: Large o1 and U Is Significantly Different
from an Identity Matrix. If o1 is very large relative
to the other og; and none of the elements of u; are zero,
then the first column of B will dominate the calculation
of R. As a result, R will approach

R = (18)

and all measurements will be nearly perfectly cor-
related. Equation 11 gives an example of a system that
falls into case 3. The U and X matrices for this system
are

_ [0.1081 —0.9941

v= [0.9941 0.1081] (19)
_[101.20 o0

E_[ 0 1.196] (20)

Substitution into eq 15 gives



R = [1.000 0.988] (21)

0.988 1.000
indicating that the two outputs are closely correlated.

Generating Control System Architectures with
Good Singular Values

In this section it is assumed that control systems with
oi in the range

1 <0, <50 (22)

are desired. Two simple systems are treated first, and
then the approach is applied to the Tennessee Eastman
process.® If eq 22 is satisfied, then actuator saturation
will be avoided. However, it is possible that the resulting
control system might not be the best possible design. If
an effective override scheme can be found when one or
more actuators approach saturation, then it may be that
the corresponding scheme could exhibit a superior
dynamic performance. An advantage of developing
plantwide schemes using eq 22 is that they will not
require overrides and therefore they will be simple. The
issue of overrides will be addressed again when the
Tennessee Eastman process!? is considered.

To select measurements and manipulated variables,
the scaled process gain matrix will be split, as shown
in Figure 5. The vector of manipulated variables, u, is
first rotated using VT to produce g as

u=V'u (23)

The rotated manipulated variables, uj, and X can be
used to eliminate weak manipulated variables. For an
n x n system, un will act through the smallest singular
value, and therefore it will have the smallest effect on
the measured variables. In general, the u; with the
largest coefficient in the last row of VT would be
eliminated because it would have the largest contribu-
tion to u,. However, one also has to look at the upper
rows to make sure that no large values occur there. With
the approach discussed below, one can use VT to suggest
manipulated variables to be eliminated and then check
SVD for the reduced gain matrix to make sure that the
minimum singular value is greater than 1. Thus, the
approach discussed here gives guidelines as to how to
choose variables so that a reduced dimension process
with acceptable singular values results. The number of
manipulated variables eliminated would be equal to the
number of singular values that are less than 1. Next,
the u;j values are used to calculate y as

y=Uspn (24)

Correlation analysis is used to eliminate outputs with
rix?> = 0.8 to produce a final system with the o; values
in the desired range of 1—50. After considering two
simple examples, the methodology is applied to the
Tennessee Eastman process.

Example 1. Consider a process with the following
scaled gain matrix and assume that a square control
system is desired:

0.6141 0.8927 —0.0049
K =10.6658 0.9421 0.0092 (25)
1.1961 —0.9661 0.0124
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Figure 5. Splitting the process gain matrix using SVD.

PROCESS

SVD can be used to determine how many control loops
can be closed for this system, and if variables must be
eliminated, the VT and R matrices can be used to
determine the final control system architecture. It is
obvious from the gain matrix that uz has a very small
effect on any of the three measured variables. SVD of
K'is

0.5713 0.3767 0.7292
U=| 0.6035 0.4094 —0.6843 (26)

—0.5563 0.8310 0.0066
1.6183 0 0
r=| 0 15000 O 27)
0 0  0.0098

0.0539 0.9985 —0.0026
vT =0.9985 —0.0539 0.0081 (28)
0.0080 —0.0030 —1.0000

Examination of the X matrix shows that o3 is much
smaller than 1 and actuator saturation is a potential
problem if three manipulated variables are used. The
fact that one singular value is less than 1 indicates that
one manipulated variable needs to be eliminated to
guarantee that actuator saturation does not occur. The
weakest manipulated variable is uz because it acts
through o3. The VT equation shows that us is essentially
—usz in this case, and thus us is eliminated. The
coefficients for usz in the first and second rows of VT are
small, so uz does not contribute much through o, and
2. Once ug is eliminated, SVD of the resulting 2 x 3
matrix can be calculated. The resulting two singular
values are almost identical to o1 and o2 in eq 27. The
fact that both of these singular values are greater than
1 and neither is greater than 50 indicates that two loops
can be closed and normal controller tuning can be used.
However, because the singular values can change when
variables are eliminated, one needs to check SVD for
the reduced process to verify that both singular values
satisfy eq 22. Next the r; 2 matrix can be calculated from
the 2 x 3 matrix by using eq 15 to give

1.0000 0.9998 0.0059
R =10.9998 1.0000 0.0041 (29)
0.0059 0.0041 1.0000

The R matrix indicates that outputs y; and y, are very
tightly correlated. In the original gain matrix, row 2 is
almost a constant multiple of row 1, and this fact results
in the high correlation between outputs y; and y,. Thus,
to produce a square process gain matrix that has
singular values between 1 and 50, one needs to elimi-
nate either y; or y, and then check SVD of the resulting
gain matrix. If y; and y; are controlled with u; and u;
or y, and ys are controlled with u; and u,, then the
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Figure 6. Tennessee Eastman process with inner cascade loops closed.

values for oj are acceptable. Control of y; and y, with
u; and u, gives a CN of 158 because in this case o, =
0.01.

Example 2. Consider a system with the following
scaled gain matrix:

—0.7963 —0.7982 —0.8052
K =|-1.0774 —0.0821 —0.0719 (30)
—-0.9078 0.7976 0.7915

SVD can be used to determine how many control loops
can be closed for this system, and if variables must be
eliminated, the VT and R matrices can be used to decide
on a final control system architecture. If SVD of K is
calculated, the X matrix given by eq 27 results, except
with o, = 1.6000. The U and VT matrices are given by

—0.4931 —-0.7079 0.5057
U =]-0.6658 —0.0671 —0.7431 (31)
—0.5599 0.7031 0.4383

To eliminate a manipulated variable in this case, one

1.0000 0.0010 0.0011
vT =|-0.0015 0.7071 0.7071 (32)
0.0000 0.7071 —0.7071

has two choices. Both u, and usz have coefficients with
a magnitude of 0.707 in row 3 of VT. One of these
manipulated variables can be eliminated and the other
retained. The VT matrix shows that it is the difference
U, — uz that acts through the smallest singular value.
If us is eliminated, the R matrix that results for the 3
x 2 system is

1.0000 0.5746 0.0040
R =(0.5746 1.0000 0.4885 (33)
0.0040 0.4885 1.0000

Equation 33 indicates that any of the three measure-
ments can be used because they are not highly cor-
related. Eliminating y, is preferred because then both
singular values are between 1 and 2 (also R ~ I).
Eliminating either of the other two manipulated vari-
ables results in a singular value of less than 1. Next,
the methodology is applied to the Tennessee Eastman
process.

Application to the Tennessee Eastman Process

The SVD approach can be applied to the Tennessee
Eastman testbed process,’® with a schematic diagram
of the plant shown in Figure 6. The case considered is
the base case.l® There are 10 inner cascade loops that
can be closed in the Eastman plant. These involve 8 flow
controllers and 2 cooling water temperature controllers.
In the gain calculations below, these controllers are
assumed to be operational. A nonlinear state-space
model of the form

x = f(x,u) (34)
y =g(x,u) (35)

where x are the process states, u is the vector of
manipulated variables, and y is the vector of measured
variables is made available by the authors. The non-
linear functions f and g in eqs 34 and 35 can be
linearized around the steady-state operating point using
numerical differentiation to give

X =Ax+ Bu (36)
y=Cx+ Du (37)

where A, B, C, and D are constant matrices. Because
the model contains pure integrating elements associated
with the separator and stripper levels, calculation of a
steady-state gain matrix is not straightforward. Arkun



Table 1. Measured and Manipulated Variables

process measurements manipulated variables

E feed setpoint (ESP)
compressor recycle valve (CRV)
purge setpoint (PusP)

recycle flow (RecF)
reactor feed (ReaF)
reactor pressure (ReaP)
reactor level (Real) separator exit flow setpoint (SesP)
reactor temperature (ReaT)  product-flow setpoint (PrsP)
separator temperature (SepT) steam-flow setpoint (StsP)
separator level (SepL) reactor cooling water
temperature
setpoint (RCT®P)
condenser cooling water
temperature
setpoint (CCT®P)
agitator (Ag)

separator pressure (SepP)

stripper level (StrL)
stripper pressure (StrP)
stripper temperature (StrT)
compressor power (CP)

Table 2. Scale Factors

variable type scale factor comments
flows 2(steady-state flow)
pressures 600 kPa
temperatures 50 °C
compressor power 2 x steady state

reactor level 50% not integrating

other levels 50%/h integrating

manipulated variables 2(steady-state value) steady state < 50%

manipulated variables 2(100|% §teady—state steady state > 50%
value

and Downs®® proposed an approach to overcome this
problem. Their method results in a gain matrix that
involves the rate of change of the two integrating levels
together with the normal gains of the remaining 39
measurements.

To illustrate the use of SVD and correlation analysis
to determine a plantwide architecture, a control system
for the noncomposition variables is examined. After the
10 inner cascade controllers are closed, there are 12
noncomposition measurements that potentially can be
controlled, and these are shown in Table 1. In the
statement of the Tennessee Eastman problem,’3 three
flows (A, D, and C feeds) have constraints on how fast
they can be manipulated. Because the noncomposition
variables involve some fast loops, these three setpoints
are eliminated from the analysis. As a result, there are
nine potential manipulated variables, and these are also
shown in Table 1.

After the process gain matrix is calculated, it has to
be scaled to be used in an SVD analysis. Scaling of the
manipulated variables is carried using information
provided in the reference.’® All of the manipulated
variables are specified in units of percent of full scale.
If the steady state percent value is less than 50%, a scale
factor of twice the steady-state value is used. If the
steady state percent value is greater than 50%, then a
scale factor of twice the difference between 100 and the
steady-state value is used. This scaling allows for a
manipulated variable to move in a range such that it
will just saturate either open or closed. Scaling the
process measurements is more difficult because scale
factors for these variables are not provided in the
reference.’® In the calculations, measurements were
scaled using the scale factors given in Table 2. Flows
and compressor power are scaled by twice their steady-
state values. The steady-state reactor pressure is 2705
kPa, and the plant shuts down if this pressure reaches
3000 kPa. The scale factor for the three pressure
measurements is set at 600 kPa, which is approximately
twice the shutdown range [2(3000 — 2705)]. Tempera-
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Chart 1

vi=
EP CRV Pu® Se® P S RCT® CCT® Ag

0.9347 0.0660 0.0297 0.3202 0.0720 0.0015 -0.0296 0.1110 0.0115

-0.1795  0.0490 -0.0035 0.6466 -0.7338 -0.0005 -0.0432 0.0815 0.0167
0.2957 -0.0667 -0.0050 -0.6477 -0.6692 0.0145 0.1654 -0.0954 -0.0640
-0.0237 -0.0936 0.2648 0.1821 0.0856 0.0084 0.8663 -0.1310 -0.3353

0.0566 -0.1972 0.4047 0.1024 -0.0137 -0.1540 -0.2501 -0.8294 0.0968
-0.0157 0.9532 -0.0564 -0.0388 -0.0028 -0.0173 0.0745 -0.2826 -0.0288
0.0371 -0.1293 -0.7024 0.0759 0.0184 -0.6396 0.1353 -0.2285 -0.0524
-0.0354 0.1262 0.5183 -0.0947 -0.0240 -0.7527 -0.0527 0.3673 0.0204

0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.3609 -0.0000 -0.9326

tures are scaled for a 50 °C range. The reactor level is
nonintegrating, and it is scaled for a range of 50%. The
other two levels are integrating, and the gain matrix
gives their rate of change. These levels are scaled using
50%/h as a scale factor.

After the process gain matrix is scaled, its SVD is
calculated as UXVT. First, consider X, which has the
following elements:

T = diag[75.33 26.09 8.545 4.819 1.475 0.379 0.327
0.198 4.59 x 10~ *%] (38)

Only five of the singular values are greater than 1.0,
which indicates that roughly five variables could be
controlled without potential actuator saturation. The
reason that the indication is rough is that the singular
values can change when variables are eliminated. Thus,
there may be more, or possibly less, singular values that
are greater than 1 after manipulated and measured
variables are eliminated. Whether such an increase
occurs can be checked by applying SVD to the reduced
matrix. The large o; indicates that valve accuracy could
be a problem, and some controller detuning may be
required. Thus, the X matrix gives a preliminary indica-
tion that 5 loops can be closed but detuning may be
necessary because of the singular value of 75.33. The
VT matrix can be used to eliminate manipulated vari-
ables that have most of their effect through the singular
values that are less than 1.0. It can also be used to
determine which manipulated variable acts through the
largest singular value. The VT matrix, where the first
and last four rows are shown in boldface, is given in
Chart 1. The first row involves the linear combination
that acts through o3. The last four rows involve the
linear combinations of manipulated variables that act
through the four smallest gi. In each of the boldface
rows, the element with the largest coefficient is shown
in underlined italics. Considering the last row of VT, it
can be seen that the agitator, manipulated variable 9,
has a coefficient of 0.9326. Although the agitator does
have a nonzero coefficient in the fourth row, it is a weak
manipulated variable and can be eliminated. The next
to last row shows that manipulated variable 6, the
steam-flow setpoint, has the largest coefficient and can
be eliminated. It can be noted that when Ricker carried
out a steady-state optimization on the Tennessee East-
man plant,® he concluded that the steam should be shut
off. The sixth and seventh rows indicate that manipu-
lated variables 2 and 3, the compressor recycle valve
and the purge flow, contribute the most through gs and
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Chart 2

RecF
1.0000
0.9970
0.9281
0.8659
0.6226
0.9683
0.4173
0.9281
0.2564
0.9278
0.9528

0.6444

Ind. Eng. Chem. Res., Vol.

42, No.

ReaF  ReaP

0.9970  0.9281
1.0000 0.9526
0.9526 1.0000
0.8994  0.9890
0.5862 0.3874
0.9794  0.9466
0.4370 0.4849
0.9527 1.0000
0.2671 0.2905
0.9524  1.0000
09713 0.9723

0.5918 0.3790

24, 2003

Real
0.8659
0.8994
0.9890
1.0000
0.2971
0.9014
0.5160
0.9889
0.3055
0.9891
0.9417

0.2835

ReaT
0.6226
0.5862
0.3874
0.2971
1.0000
0.6075
0.1228
0.3875
0.0848
0.3871
0.5295

0.8135

SepT
0.9683
0.9794
0.9466
0.9014
0.6075
1.0000
0.4444
0.9466
0.2714
0.9465
0.9937

0.5186

SepL
0.4173
0.4370
0.4849
0.5160
0.1228
0.4444
1.0000
0.4849
0.5597
0.4851
0.4695

0.1272

SepP
0.9281
0.9527
1.0000
0.9889
0.3875
0.9466
0.4849
1.0000
0.2905
1.0000
0.9723

0.3792

StrL
0.2564
0.2671
0.2905
0.3055
0.0848
0.2714
0.5597
0.2905
1.0000
0.2906
0.2843

0.0864

StrP
0.9278
0.9524
1.0000
0.9891
0.3871
0.9465
0.4851
1.0000
0.2906
1.0000
0.9723

0.3784

StrT
0.9528
0.9713
0.9723
0.9417
0.5295
0.9937
0.4695
0.9723
0.2843
0.9723
1.0000

0.4490

CP
0.6444
0.5918
0.3790
0.2835
0.8135
0.5186
0.1272
0.3792
0.0864
0.3784
0.4490

1.0000

o7 and can be eliminated. It should be noted that
Rickerl” has presented a very effective plantwide control
scheme for the Tennessee Eastman process that used
the purge for reactor pressure control. However, his
scheme required an override approach when the purge
stream approached saturation. Eliminating the purge
ensures that actuator saturation is not a problem at
steady state, but it may be that using an override
approach might give rise to a better dynamic plantwide
control system.

Now consider the first row, which gives the linear
combination of manipulated variables that acts through
the largest singular value. By far the largest contributor
to this row is manipulated variable 1, the E feed
setpoint. If a single-input single-output plantwide con-
trol scheme is used, then the loop that involves the E
feed may need to be detuned because of valve accuracy
considerations. The manipulated variables that remain
after elimination of weak manipulated variables are the
E feed setpoint, separator exit, and product-flow set-
points and the condenser and reactor cooling water
temperature setpoints. The singular values calculated
for this 12 x 5 matrix are

¥ = diag[75.13 26.06 8.51 4.33 1.29] (40)
Note that these singular values are very close to the
first five singular values in eq 38. To check whether
addition of one of the manipulated variables that was
eliminated can result in a sixth singular value greater
than 1, each manipulated variable can be added one at
a time, but this addition does not yield a sixth singular
value greater than 1. If the purge is added, then the
first five singular values are close to those in eq 40 and
the sixth singular value is 0.283. It should be empha-
sized again that eq 9 involves the worst-case setpoint
change or disturbance and the actual disturbances
encountered may not cause actuator saturation.

Next the R matrix is calculated using eq 15 on the
12 x 5 process gain and is given in Chart 2. Once the
number of loops is determined to be 5, then the pos-
sibilities for controlling the available 12 measured
variables are limited. In most cases, it is desirable to

control the liquid levels in a process to avoid a spill or
to have the level run dry. In the Tennessee Eastman
process, controlling the reactor pressure and tempera-
ture is also desirable because the reactor is open-loop
unstable. At this point, there are five potential mea-
sured variables to control, and because five manipulated
variables are available, the remaining measured vari-
ables are not considered. Elements greater than 0.8 in
the columns for the three levels and two reactor
measurements are shown in boldface in Chart 2. The
following observations can be made about the five
measurements. First, the separator level, stripper level,
and reactor temperature are only weakly correlated
with the remaining two measured variables. The reactor
level and pressure are tightly correlated with one
another, and they are correlated with the recycle flow,
reactor feed, and separator and stripper temperatures
and pressures. Thus, one can expect some difficulty in
attempting to control these two measured variables
simultaneously, and loops involving them may need to
be detuned.

RGA for the 5 x 5 system that results from applying
the methodology discussed in this paper is

CCT®
3.6328
-2.5234
-0.1163
0.0069
-0.0000

RCT®
0.0521
0.0213

SeSP PrSP
-1.3002 -0.0000
1.7178 0.0000
0.0813 -0.0000 0.9291
0.5011 -0.0000 -0.0025
-0.0000 1.0000 0.0000

ESP
-1.3846
1.7842
0.1059
0.4945
0.0000

ReaP
Real
ReaT
SepL
StrL

The first two rows indicate that the reactor pressure
and level loops will exhibit interaction. Rows 3 and 5
indicate that the reactor temperature and stripper level
are essentially decoupled from the other loops. The RGA
analysis of these four rows agrees with the results
predicted by the correlation matrix. Row 4 of RGA
indicates that the separator level will also exhibit
interaction, but the correlation matrix indicates that the
separator level is weakly correlated with the other four
measurements. At present, there are no insightful
mathematical relationships between the correlation



matrix and RGA. The correlation approach is scale-
dependent and RGA is scale-independent, so there may
not be a simple insightful relationship. Indeed, SVD can
give different implications and insights than the RGA,
and there is no one-to-one mapping between the SVD
and RGA. If a process has large off-diagonal RGA
elements, then it will be poorly conditioned, but the
converse is not true.® A process can be poorly condi-
tioned even though it has small off-diagonal RGA
elements.

Summary and Conclusions

This paper has presented an analysis of systems with
large singular values, including processes with large
CNs where the minimum singular value is greater than
1 so that manipulated variable saturation is not an
issue. It has been shown that such systems can be prone
to sensor saturation, unless the range of manipulated
variable movement is severely limited. It is further
shown that limiting manipulated variable movement
can lead to poor transient performance because of valve
accuracy considerations. This result suggested that
practical control systems should have a limit on their
maximum singular value. This paper has proposed a
value of 50 for the maximum, but the exact value of the
maximum is a judgment call. Correlation analysis has
been introduced as a tool to help select measured and
manipulated variables that have acceptable singular
values. The proposed approach has been illustrated on
two simple examples and on the Tennessee Eastman
process.

It is important to consider several alternatives when
using the approach discussed in this paper. Because the
gain analysis involves only steady-state information
calculated from a linearized model, it may not result in
the best overall control architecture when dynamics and
nonlinearities are taken into account. It is straightfor-
ward to extend the approach presented to the frequency
domain in order to take dynamics into account, using
the general norms in ref 19. Further, it is straightfor-
ward to replace the notion of singular values with the
more general notions in refs 11 and 19, e.g., to explicitly
consider other norms on the manipulated and measured
variables. The methodology discussed in this paper does
allow one to narrow in on potential architectures based
on the process gain matrix that do not require overrides.
However, it may be that a control system that uses
overrides can perform better than one that does not.
Dynamic simulation can be used to compare alternative
control systems. Last, one could easily incorporate
engineering judgment in the proposed methodology and
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select measurements and/or manipulated variables
based on experience and process insights.
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