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Abstrad-Screening tools for control structure selection in 
the presence of model/plant mismatch are developed in the 
context of the Structured Singular Value (p) Theory. The 
developed screening tools are designed to aid engineers in 
the elimination of undesirable control structure candidates 
for which a robustly performing controller does not exist. 
The screening tools are examined on a multi-component 
distillation column control problem and compared with 
previously published methods such as the Condition Number 
Criterion. 

1. Introduction 
Practical control problems often involve more actuators and 
sensors than are needed for designing effective, economically 
viable control systems. On a distillation column, for example, 
there are at least four actuators and there can be as many 
temperature measurements as there are trays, possibly 
hundreds, that can be utilized for composition control. In 
practice, one does not use all the available actuators and 
sensors for composition control since two of the four 
actuators must be used for inventory control and the use of 
all temperature measurements leads to an unnecessarily 
complex and expensive control system. An appropriate set of 
actuators and sensors must be selected from the available 
candidates, and subsequently, partitioned and paired for 
decentralized control. Control structure selection refers to 
both actuator/sensor selection and partitioning/pairing. The 
partitioning/pairing problem for decentralized control has 
been studied extensively and many practical tools such as the 
Relative Gain Array and other interaction measures have 
been proposed (Bristol, 1%; Niederlinski, 1971; Grosdidier 
and Morari, 1986). In this paper, we will concentrate on the 
problem of actuator/sensor selection. 

The main question arising in control structure selection is 
as follows: ‘What makes one control structure more desirable 
than another?’ The closed-loop performance achievable for 
the plant model (the achievable nominal performance) is 
clearly an important criterion. It is determined by factors 
such as right-half plane (RHP) zeros, delays, and 
signal-to-noise ratios of the measurements. When expressed 
through quantitative measures like the H2 or H, norms, it 
can be easily computed through standard optimization 
techniques (Doyle et al., 1989). Besides these well-known 
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factors, another outstanding issue contributing to the overall 
closed-loop performance is model/plant mismatch. Some 
control structures are inherently more sensitive than others 
to the mismatch between the model and the real plant. 
Hence, any practical control structure selection criterion 
should address not only the achievable nominal performance, 
but also the achievable robust performance, that is, the 
achievable worst-case performance in the presence of a 
prespecified level of model/plant mismatch. 

Owing to the combinatorial nature of the problem, the 
number of potential control structures to be examined 
(referred to as conrrol structure candidates from this point 
on) can be very large. Naturally, a method which can reduce 
the number of candidates before applying detailed analysis is 
of significant practical value. The first step to this should be 
to eliminate the candidates for which a controller achieving a 
desired level of robust performance does not exist regardless 
of the controller design method. The criteria that can be used 
to accomplish this screening will be referred to as 
design-independent screening tools. This screening leaves 
candidates for which a control system with satisfactory 
performance potentially exists. After the design-independent 
screening, an additional screening may be carried out in the 
context of a particular design method. The criteria that 
assume a specific controller design approach will be called 
design-dependent screening tools. 

Traditionally, most research on control structure selection 
was carried out in the stochastic optimal control setting. 
Therefore, all the developed criteria were based on the 
achievable nominal performance (Kumar and Seinfeld, 
1978a, b; Harris et al., 1980). Model/plant mismatch was 
taken into account in ad hoc ways, for example, mimicking it 
through arbitrarily chosen state-excitation noise. In the late 
197Os, there were some efforts to bring rigorous descriptions 
of model uncertainty into the control structure selection 
problem. In the context of secondary measurement selection, 
Brosilow and co-workers (Weber and Brosilow. 1972: Joseoh 
and Brosilow, 1978) suggested what is known as ihe 
Condition Number Criterion, which is valid for a specific type 
of norm-bounded uncertainty on the model. This criterion 
will be examined further in this article. More recently, 
Skogestad et al. (1988) showed that the Relative Gain Array 
(RGA) can be used as a measure of the sensitivity of a 
control structure to diagonal input uncertainty. The latest 
contribution to the control structure selection problem came 
from Lee and Morari (1991) who suggested a criterion in the 
context of the Structured Singular Value Theory. The 
strengths of this criterion were that a more general model 
uncertainty description (known as structured uncertainty) 
could be used and that the system dynamics could be 
incorporated. However, all the published criteria either 
assume a specific design approach or a specific uncertainty 
description and, therefore, cannot be used as general 
design-independent screening tools. The achievable nominal 
performance (obtained through H2 or H, optimization) 
qualifies as a design-independent screening tool since 
achieving a desired performance level in the absence of 
model uncertainty is clearly required for achieving the same 
level of performance in the presence of model uncertainty. 
However, its practicality is limited since it fails to address 
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one of the most important issues in control-mode] 
uncertainty. 

The purpose of this article is to introduce a set of 
design-independent screening tools that can be used to 
reduce the number of control structure candidates. The 
approach is based on the Structured Singular Value Theory, 
therefore allowing a general structured norm-bounded 
uncertainty description. 

2. General framework 
2.1. Structured Singular Value. The Structured Singular 

Value (CL : TZ ” xn X A + q:, , ) is defined as follows: 

Definition 1. Structured Singular Value (p). Let M E 9”“” 
and define the set A as follows: 

A= 
1 

diag[6,I,,, . a,,,/, ,,,, A,, , A,]; 

m 
4tW,A,eGI.fXP;Crl+~~,=n}. (I) 

,=I ,-I 

Then pcLa(M) (CL of M with respect to the uncertainty 
structure A) is defined as 

PA(M) = 

1 

[ 
m,‘n {cT(A):det (I + MA) = 0, A t A} 

I ’ (2) 

0 if 3 no A t A such that det (I + MA) = 0. 

The structured singular value has the following lower and 
upper bounds: 

za;p(QM) = pa(M) 5 (-) oin\_ cT(DMD ‘). (3) 
t 

where 

@= {Q t A:Q*Q = I,} (4) 

6Z = {diag [D,. , D,,. d,l,,,. , d&l]: 

D, E WxQ. D, = D,* rO;d, E YT+}. (5) 

(T(.) denotes the maximum singular value, and p(.) denotes 
the spectral radius. 

The maximum spectral radius is always equal to p, but the 
maximization is nonconvex and computing the global 
optimum of such functions is in general difficult. In contrast, 
the upper bound can be formulated as a convex optimization. 
Though the upper bound is not necessarily equal to F except 
when the number of blocks in A is three or less (Packard, 
1988), the upper bound is almost always very close to or 
(within 98-99% for most problems). For this reason the 
upper bound is used in most tests requiring numerical 
calculations of *. 

2.2. Representation of uncertain systems. We will use the 
following notations for Linear Fractional Transformations 
(LIT): 

FU(X, Y) =X2* + X2, Y(I - X,, Y))iX,* (6) 

4(X, Y) =x,, +x,*Y(I-X**Y) 2x2,. (7) 

where X is partitioned in such a way that X,, has the same 
dimension as UT for the upper LFT (pU) and Xzz has the 
same dimension as Yr for the lower LFI (4). X and Y can 
be either transfer functions or complex matrices. 

Figure 1 represents the general block diagram for linear 
systems with model uncertainty. The uncertain system is 
represented as the Linear Fractional Transformation (LET) 
of G(s) and the L,-norm-bounded block A,,. More 
specifically, the true system can be any system PA(s) 
satisfying the following conditions: (1) The frequency 
response matrix of the system f,,,I,_,,, for each frequency w 
belongs to the set P,,(o). where 

C,(w) = I(E(G(jw), A,,) :A,, E BAJ (8) 

EA,={AeA,:(T(A)%l} (9) 

A, = diag(6,I,,, , S,l,m, A,, , A, 1): 
1 

A, E ceP~xp~, 6, E +Z, 2 p, + c r, = dim {uiJ = dim Iv,}, 
I 

15j5m,15isI-l (10) 

I 

Fig. I. General block diagram of an uncertain system and a 
feedback controller. 

(2) P>,,(s) has the same number of right-half plane (RHP) 
poles as the nominal model P,,(s). 

We will refer to the set of systems satisfying the above 
conditions as pr,, The above uncertainty type is said to be 
structured since A,, carried a specific block structure as 
opposed to being a single unstructured block. We assumed 
that each A, is square without loss of generality since a 
nonsquare block can always be expressed in terms of a 
square block through the use of weighting matrices. 

2.3. Robust performance. The closed-loop system is said 
to achieve robust performance if and only if .??$(PAU, K) is 
stable VP,,, E pii and satisfies the worst-case H, performance 
condition 

It can be shown (Doyle, 1984) that robust performance is 
achieved if and only if the closed-loop system is nominally 
stable (%(P,,. K) is stable) and 

where 
?“,$,I 

(M(jw)) < 1 VW. (12) 

(13) 

Ap zz {A, :A, E @dd’#ddV;)} (14) 

and W,, IV,, are the frequency dependent weights at the plant 
input and output, respectively. 

Again, without loss of generality, we assume that Ap is a 
square block (i.e. dim {y:} = dim Id’}). 

In this article, we will approximate p by its upper bound. 
This is justified not only because the upper bound is very 
close to p for most cases, but since it is used in most tests 
involving the numerical calculation of CL. Hence, expression 
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(12) is replaced with 

inf o(DM(jo)D-‘) < 1 Vo, 
DE+ (15) 

where 

d. ,E +. t B .D.EV+~,D~=D,F>O}. (16) 

3. Design-independent screening tools 
In this section, we develop screening tools that can be used 

to eliminate control structure candidates for which no LTI 
controller exists meeting the robust performance require- 
ments. First, we derive a necessary and sufficient (but 
untestable) condition for the existence of a controller 
achieving robust performance. Then, by relaxing the 
causality requirement of the controller, we show that we can 
derive necessary conditions for the existence of a controller 
achieving robust performance. These necessary conditions 
are formulated as convex optimizations and are proposed as 
screening tools. 

3.1. Test condition for existence of a causal controller 
achieving robust performance. Our goal is to test whether or 
not there exists a controller meeting the robust performance 
requirement for a given set of actuators and measurements. 
Mathematically, we test if the following condition is satisfied: 

inf sup 
KEX$ 0 o$& +W( [I W+(G4, W 

xIW [ I)! D-‘(o) ~1, (17) 
d s=jw 1 

where Gu denotes the plant model G with the ith set of 
actuators and the jth set of measurements. For simplicity of 
notation, we will drop the superscript {.)” from this point on. 
& represents the set of all stabilizing causal controllers. The 
causality of the controller implies that the controller’s 
current/future inputs do not affect its past outputs; hence 
causality is required for the controller to be physically 
realizable. Mathematically, sir, is expressed as 

(I - G,,K)-’ 
K(I_G&K)-1 

G,(Z - KG&’ E 9x 

(I - KG,,)-’ 1 I ’ 
(18) 

where Sg represents the set of all proper rational transfer 
functions (of size dim{u}x dim{y,}) and SW& represents 
the set of all proper rational transfer functions (of 
appropriate size) that are analytic in the closed RHP. Note 
that K has nonlinear constraints and also enters M in a 
nonlinear fashion. The following parametrization of XS 
(Youla et al., 1976a, b) yields an affine parametrization of M 
without any nonlinear constraints: 

X*={K:K=(Y-TQ)(X-SQ)-,,QEWC,,} (19) 

={K:K=(z-Qs)-‘(?-Q~),QE%‘&}, (20) 

where (S, T) and (3, T) are right and left coprime factors of 
G33, respectively (i.e. Gss = ST-’ = t-,3), and (X, Y, _?, Y) 
is a solution to the following Bezout identity: 

Note t_hat for openIloop stable systems we can choose 
T=-T=-1, S=-S=-Gss, X=-X=Iand Y=Y=O; 
the parametrization (19) simply becomes 

XS = {K: K = Q(I + G,,Q)-‘, Q E %W_,}. 

Using the parametrization (19) and (20), (17) becomes 

inf sup inf W(O)(N~, +N,,QN,,)I,=j,D-‘(o)l 
Pea% o D@,E%~ 

<L (22) 

where 

(23) 

(24) 

&I = TIC,, GA 
1 

[ 1 wd ’ (25) 

Hence, the Youla parametrization leads to a closed-loop 
expression which is affine in the parameter Q. The only 
restriction on Q is that it should be analytic in the closed 
RHP. However, the coupling of the parameters Q and D 
makes the optimization required in expression (22) 
nonconvex. There is currently no method of checking 
condition (22). 

It is worthwhile to mention that various methods are 
available enabling us to test whether nominal performance 
(i.e. when G,,, G,2, G2,, G2s, G,s = 0) can be achieved. 
According to the latest method by Doyle et al. (1989), testing 
this essentially amounts to checking if positive semidefinite 
solutions to two Riccati equations exist and the spectral 
radius of the product of the two solutions is less than a 
certain constant. These conditions can be used for 
design-independent screening, but their practical value is 
limited since they do not address one of the most important 
issues in control structure selection, namely model 
uncertainty. 

3.2. Test condition for existence of an acausal controller 
achieving robust perfdrmance. At this point, let us consider 
dropping the causality requirement on Q. Hence, we allow 
the controller parameter Q to be acausal, meaning the 
current/future inputs of parameter Q can affect its past 
outputs. Clearly the set of all acausal controllers includes all 
causal controllers. 

Mathematically, the relaxation of causality of Q is 
equivalent to replacing the requirement of Q E Rx with 
Q E s. The condition (22) with Q E ss is equivalent to the 
following frequency-by-frequency condition: 

inf inf C(D(N,, + N,2QN2,)1,=j_, D-‘) < 1 VW. 
Q=‘BK DE&~ (26) 

The superscript (.}K in gK indicates that it is the set of 
complex matrices of size dim(u) X dim {y,,,}. Another 
interpretation of replacing Q E BZ& with Q E %& in the 
context of a causal controller is that we relax the internal 
stability requirement. 

Relaxation of the causality or stability requirement 
introduces conservativeness to the condition (i.e. satisfying 
condition (26) does not imply the existence of a causal K 
achieving robust performance), but the conservativeness is 
expected to be significant only around crossover. For 
example, condition (26) restricted to o = 0 is a necessary and 
sufficient condition for the existence of a controller gain 
matrix meeting the specified worst-case steady state 
requirement. For most chemical processes, such a condition 
can be a very useful screening tool since steady state error is 
often of primary importance. 

Defining D = TQF + fl and noting that 

{a:e E +?}={TQt + ti(,=j,:Q E UK} 

since T(jo) is nonsingular for all o, we arrive at the 
following necessary and sufficient condition for the existence 
of an acausal Q satisfying condition (22). 

Theorem 1. Let N,,, N,, and N2, be defined as in (23)-(25). 
Then 

inf inf C(D(N,, + N,ZQN2,)ls=jo D-‘) < 1 Vo (27) 
Q=% DE+ 

if and only if 

QiziK ok$f+ C(D(fi,, + fi,2~fi2,)(S=j, D-‘) < 1 Vo, (28) 
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where By multiplying and then dividing the expression by dZ (36) 
becomes 

N?, = [G,, (31) 

Note that with the above reparametrization there is no need 
for finding the double coprime factor of Gzz and solving the 
Bezout identity (21) since the expression for N involves only 
G and frequency-dependent weighting matrices. 

3.3. Formulation of lest conditions into screening rook So 
far, we have shown that (28) is a necessary condition for the 
existence of a controller achieving robust performance. In 
this section, we show that condition (28) can be transformed 
into two separate conditions which can be addressed via 
convex optimization. 

We first reparametrize Q such that the matrices pre- and 
post-multiplying Q in condition (28) are both unitary. Note 
that Q E VK is equivalent to 

where (.}* denotes the adjoint operator (i.e. N*(s) = 
NT(-s)). The notation {.}* will also be used to represent the 
complex conjugate transpose for the case of a constant 
matrix. The condition (28) can be now transformed into 

^ __- 

where N,> = N,,(N&N,,) I” and kZ, = (&,i%&) ‘IzRZ1 arc 
unitary matrices for all o. The following theorem shows that 
the condition (32) can be checked through two conditions 
each of which is a convex optimization problem. 

Theorem 2. Let a E d, , R E YG’“~“. Ii E exr and V E d’““. 
Suppose U*ZJ= I,. VV* = I, and U, E Vx(n-‘) and V, E 
(ecfl-‘)x” are chosen such that [U U, ] E Vx” and 

are unitary. Then 

inf inf 5(D(R + UQV)D ‘) c u (33) 
VI (‘“1 I)< ti,,, 

if and only if 3X E a,,, such that 

A,&‘, (R*XR - a’X)VT] < 0 

and 

(34) 

h,,,,(UT(RX ‘R* - cy*X ‘)U,] <O. 

Proof: See Appendix. 

Comments. 

(35) 

(1) 

(2) 

Conditions (34) and (35) are convex with respect to X 
and X-‘, respectively. Each of the two conditions is a 
necessary condition for the existence of a controller 
achieving robust performance and can be checked 
through standard algorithms (Boyd and Barratt, 1991). 
Checking the conditions (34) and (35) together is more 
difficult and is not resolved at the moment except for the 
following special cases: 

l Full control case. If Li has a full row rank, condition (35) 
drops out and (34) is necessary nnd sufficient for (33). 
l Full information case. If V has a full column rank, 
condition (34) drops out and (35) is necessary and sufficient 
for (33). 
l 2 full-block case. For the case of 2 full-block A, (33) is 

(36) 

inf inf 17 <a, (37) 
QrM’” drd, 

where d = d,/d,. Hence, for 2 full-block cases. conditions 
(34) and (35) can be expressed as follows: 

g(d) = 4n.n [V,(R*[“’ ,]R -&Ld’ ,])V+O (38) 

h(l/d)-h,,,[l/:(R[i’d’ ]JR*+“d’ ,])+ 

(39) 

.ir,,.={~~%,:g(s)<O} and Tp,={t~%+:h(l/t)<O} are 
open intervals (since g(s) and h(t) are convex with respect to 
.Y and t), so it can easily be checked if they intersect. 

Using the results from Theorem 2 with a = 1, we now 
propose the following screening tools: 
Design-independenf screening tool #l. Elimination control 
structure candidates for which 

where 

.Y!,.(w) n Tfi,(w) = 0 for some w. (40) 

for any combination of two of the given P blocks. 
Design-independent screening tool #2. Eliminate control 
structures for which 

for some w. (43) 

Design independent screening tool #3. Eliminate control 
structures for which 

for some w. (44) 

We note that the above screening tools, although 
manageable, are numerically more complex than conven- 
tional tools like the RGA or the condition number. 
However, these other tools do not address the issue of 
uncertainty in a general rigorous way like the tools above. 
Examples illustrating the importance of considering uncer- 
tainty (and the structure of the uncertainty) when selecting 
actuators and sensors are given, for example, by Skogestad et 
al. (1988) and Lee and Morari (1991). 

4. Comparison with other screening tools: multicomponent 
distillation 

We apply the screening tools to a multi-component 
distillation column control problem studied by Weber and 
Brosilow (1972). We compare the proposed tools with 
Brosilow’s criteria because these are well-known to many 
process control researchers, and the papers describing these 
tools are widely referenced and are considered by many to be 
classics in the field. We will discuss how Brosilow’s criteria 
(and a generalized version useful for comparison with our 
criteria) leads to a counter-intuitive result. On the other 
hand, the new screening tools lead to physically consistent 
results and are helpful in analyzing the sensitivity of various 
control structures to uncertainty. 
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4.1. Problem description. The schematic diagram of the 
column and proposed control configuration is shown in Fig. 
2. It is a 16 stage, five component distillation column with a 
total condenser and a total reboiler. The detailed information 
on the operating conditions and modeling assumptions can 
be found in Brosilow and Tong (1978). The control objective 
is to maintain constant overhead and bottom product 
compositions (yD and xs, respectively) in the presence of 

feed disturbances. The manipulated variables are the reflux 
ratio (L) and the vapor boilup rate (V). The temperature 
measurements are available on the lst, 3rd, 8th, 14th and 
16th trays (T,, Ts, Ts, 7’r4 and Tt6, respectively) of the 
column, where T, is located at the bottom of the column. The 
model for the input-output relationships between 
disturbances/manipulated variables and controlled/measured 
variables are as follows: 

YD 

d, 4 4 4 4 

-0.188 -0.163 0.0199 0.0043 0.002 

72s+1 72s+1 7cts+1 8Os+l 85s + 1 

0.0174 0.0259 0.0045 -0.00029 -0.00099 

15s + 1 13s + 1 4s+1 3s + 1 3s + 1 

-7.99 -9.78 -5.28 3.59 6.09 

9s + 1 9s + 1 5s + 1 8S+1 5s + 1 

-11.29 - 15.91 -4.23 3.63 4.75 

12s+1 12s+1 5s + 1 a+1 5s + 1 

-18.28 -16.43 -0.47 3.96 4.60 

5s + 1 1os+1 5s + 1 3s + 1 1.5s + 1 

-42.02 -35.92 4.45 1.10 0.46 

SOS+1 7Os+1 65s + 1 7Os+1 75s + 1 

-5047 -25.26 3.15 0.68 0.32 

25s + 1 75s + 1 7O.s+1 78r+1 8Os+1 

Owing to space constraints, we limit ourselves to the 
following combinations of two temperature measurements: 

y;=(Z) Yk=(;) yL=(,“,) Y;=(;J 

y:=(Z) yk=(gy y;=(Z) y:=(Z) 

y9m= (2) y:= (Z:). 
4.2. Reformulation of Brosilow’s criteria. Without loss of 

generality, we assume that W, is chosen as a scalar-times- 
identity (kl) for the discussion in this section. 

Brosilow and co-workers (Weber and Brosilow, 1972; 
Joseph and Brosilow, 1978) suggested the following two 
sfeady-state criteria for measurement selection: 

(1) Minimization of projection error (nominal estimation 

Fig. 2. Schematic diagram of a multi-component distillation 
column and its control structure. 

L V 

-0.173 0.0305 
7cb+1 75s + 1 

0.015 -0.00768 
l&+1 7s + 1 

7.47 2.70 

8s+1 4s+1 

9.80 3.79 

15s+1 5s+l . (45) 

8.20 2.30 
3Os+1 l&+1 

36.0 6.82 

65s + 1 7Os+1 

30.0 3.46 
67s + 1 7Qs+1 

error). Minimize the projection error E,, where 

E, = C(R), (46) 
where 

R = Gy4 - Gy4G;JGyAG;J’Gy,,,d. 

(47) 

(2) Minimization of condition number (sensitivity to model- 
ing error). Minimize the condition number K of G,,&, 
where 

(48) 

They indicate that (46) tends to decrease and (48) tends to 
increase as the number of the measurements is increased, 
and leave the final tradeoff to engineering judgment. We 
note that the projection error as originally defined by 
Brosilow and coworkers is not that of equation (46), but 

‘* = 
trace {RRT) J ~~ trace {GYdGT&} (4% 

The original definition of the projection error is appropriate 
in the stochastic setting since it can be interpreted as the 
relative ratio between the closed-loop and the open-loop 
variances of the output when the disturbance vector is a 
zero-mean random variable with a scalar-times-identity 
covariance matrix (i.e. E(d) = 0, E{ddq = k21). Note that for 
measurement selection minimizina E, is the same as 
minimizing &ace {RRT) since v/trace {GYpdG$} is indepen- 
dent of measurements. In the worst-case error setting of H, 
control E is an appropriate generalization of the term 
w. trace{RRT) m equation (49), since it is the maximum 
attainable a-norm of y, for all d such that lldl12 < 1. 

Brosilow’s criteria may be justified by deriving the 
expression for the worst-case uncertainty under a particular 
uncertainty structure. Suppose that the model error on GYmd 
can be described as follows: 

{G,,,,&ue = (I+ wA)G,,,+A 
A e A E {A E @&&dim&,) : s(A) 5 I}, (50) 

where w is a real positive scalar indicating the magnitude of 
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the uncertainty. Furthermore, assume that the least-squares 
type controller will be used. More precisely, K is to be 
designed such that 

K(0) = Q,,(I + G,,,,,((VQ,,) ’ (51) 
Q, \ = (G, ,,I, ‘G,;r,G~~,d(G‘\idC;l~~,,l) ’ (52) 

The above choice of K(0) minimizes the steady-state error 
variance of the output v, in the presence of random step 
disturbances d (d is an integrated white noise of a 
scalar-times-identity covariance matrix). Here. we assumed 
that (G,<,,),-‘, a right inverse of G,.,,, exists. When G,<,, does 
not have a full column rank, (G, ,,lr I should be replaced by 

(G;,G,,) ‘G& However. we do not consider this case in 
order to simphfy the derivation. The closed-loop expression 
from d to y,. with the above choice of K is as follows: 

*<d(O) = [G,<,, ~ Gv,dG.~,,d(G,,,,r,G~,,d) ’ C,,,,l 
- w [G‘,; ,,G:,,,cA G,n<,G :,,J ‘G,J (53) 

Hence, the worst possible 2-norm of the output y, for 
ljdllz < 1 is expressed as 

?a; @(*JO)) 
F 

5 r= + w ya,” rr[G,;,,G!_,(G,,,,,,C;:_,) ’ AG,,,,I 
E 

= t‘, + ~alG,,,,,Gll~,d(G,;~,,G:,,,,,) ’ l*lG,,,<,l 

5 r% + walG,,~~lalG:,d(G,,,dGJ,,,,,) ‘l*IG,,“<,I 

= E, + w’K(G,,,~,,) (where IV’ = w(T(G,,,~)). (54) 

Hence, minimizing a weighted sum of the projection error 
and the condition number of G,,,, corresponds to minimizing 
an upper bound of the worst-case closed-loop error. The 
original derivation of the Condition Number Criterion in a 
stochastic optimal control setting by Brosilow and co-workers 
also assumed that the least-squares controller would be used 
(their uncertainty description, however, is somewhat 
different). While Brosilow and co-workers left balancing the 
projection error and condition number to engineering 
judgement, we have derived here a suitable scalar measure 
combining the two quantities. 

4.3. Application to the multi-component column. If we 
assume the same uncertainty description as above, then the 
SSV test for robust performance involves 2-block A (AZXz 
and 4). Therefore, we can apply the Design-Independent 
Screening Tool #l proposed in Section 3.3. To compare with 
Brosilow’s criteria, we will apply the tool at steady state. In 
this case, the screening tool can be viewed as a necessary and 
sufficient condition for the existence of K satisfying a given 
worst-case closed-loop error bound on the output. Instead of 
simply checking if a specific worst-case error bound can be 
satisfied for each measurement set. we calculated its 
achievable worst-case error, that is 

(55) 

This can be easily done by multiplying G,,& with a real 
positive scalar cp and increasing it just enough such that the 
Screening Tool #l is no longer satisfied. The achievable 
worst-case error is the inverse of this particular value of cp. 
The results computed for unstructured output uncertainty 
(50) with w = 0.1 are shown in Table 1. The table also shows 
its upper bound derived from Brosilow’s criteria (i.e. 
E, + w’K(G,+)). In comparison, we observe that the new 
method provtdes nonconservative measures of the achievable 
worst-case error. The conservativeness of the upper bound 
stems not only from the inequalities in the derivation (see 
expression (54)), but also from the fact that it assumes a 
least-squares type controller. 

This conservatism can cause the upper bound criterion to 
select measurement sets which are not physically intuitive. 
This can be seen in Table 1, where the upper bound criterion 
selects yt consisting of r, and Ts as the best set. This is 
counter-intuitive, since the distillate composition estimates 
are expected to be poor with such a measurement set. Lee er 
al. (1993) show that an additional counter-intuitive prediction 
which is shared by both the upper bound and Brosilow’s 
Condition Number Criterion is that adding measurements 
can degrade the predicted achievable closed-loop perfor- 
mance. The main reason for this incorrect prediction is that 
these criteria require that the controller be least-squares 
optimal. Least-squares optimal controllers will always be 
sensitive to model/plant mismatch when sufficiently many 
temperature measurements are taken. 

On the other hand, the new method selects _Yi, consisting 
of T, and T,, as the best measurement set. It is expected that 
tray temperature measurements must be taken at both ends 
of the column for good composition estimates. The above 
uncertainty description (50) was used for comparison 
purposes. Lee et al. (1993) show that applying the new 
method with a more physically meaningful uncertainty 
description selects y”, consisting of 7; and T,4 as the best set, 
which agrees with physical intuition and with the usual 
industrial practice for such a column (see, for example, Lee 
and Morari. 1991). 

5. Conclusions 
A general framework is formulated for selecting actuators 

and sensors for control purposes. We proposed that a large 
number of control structure candidates arising from the 
combinatorial nature of the problem be reduced down to a 
manageable level through two-stage screening: design- 
independent screening that is independent of the controller 
design method and design-dependent screening which is tied 
to a specific type of controller design method. Design- 
independent screening tools are developed which can be 
calculated via convex optimization. The tools can be used to 
eliminate candidates for which no linear time-invariant 
controller exists satisfying a given H, performance 
specification under structured uncertainty. The application of 
the screening tools to a multi-component distillation column 

Table 1. The achievable worst-case steady-state error and its upper bound computed from the 
projection error and condition number of G,,.md for various measurement sets under unstructured 

output uncertainty with w = 0.1 

Measurement 
candidate 

Worst-case error 

i;fTa; @(T,(O)) 
t 

I Y; 0.1031 
Y; 0.0543 
Y& 0.0227 

4 Y? 0.0625 
.Y,* 0.0671 

h Y nl 0.0260 
7 .Vm 0.0518 
x Y ,?I 0.0264 
9 Y,l 0.0538 
IO Y”, 0.0331 

Upper bound 

E, + w’K(G~,,,~) 

Projection 
error 

E, 

Condition 
number 

K ( G,m,) 

0.2805 0.0804 7.960 
0.1595 0.0341 4.989 
0.1617 0.0086 6.088 
0.1976 0.0565 5.613 
0.2302 0.0530 7.047 
0.1732 0.0066 6.625 
0.1793 0.0431 5.149 
0.2823 0.0103 10.821 
0.2322 0.0436 7.501 
0.2128 0.0077 8.157 
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revealed some useful insights while previously existing 
criteria led to inconsistent results. Although we have not 
discussed design-dependent screening tools in this paper, 
several such screening tools are discussed in Lee and Morari 
(1991, 1994). 
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Appendix 
Proof of Theorem 2. 

.‘I& r?[D(R + UQV)D-‘1 

= nn& c+[DRD-’ + (DU)Q(VD)-‘I. (A.l) 

We first make the terms pre- and post-multiplying Q unitary 

by replacing Q E Vxr with 

Q E {[(DU)*(DU)]-‘“Q[(VD-‘)(VD-‘)*I-”*: (2 E zrx’}. 

Then, 

inf 
p E %‘X’ 

o[D(R + UQV)D-'1 = d~~x, o(DRD-’ + UQV), 

(A.21 

where 0 = (DU)[(DU)*(DU)]-‘n and 

P = [(VD-‘)(VD-‘)*I-“*(VD-‘). 
^ 

We want to find 0, and p1 such that [fi fl,] and 
are both unitary. Simple calculation shows that [ 1 i I 

0, = (D*)-‘U,(U*,(D*D)-‘U,)-“2 

and 

pA =(V,D*DV:)-‘uV,D*. 

Now 

$I,~, r_?(DRD-’ + Z?Qv) 

= ar&e(DRD-l + [ir &][f: ;][ ;]) (A.3) 

= tip~,x,c(]~ O,]*DRD-‘[ []* + [t i]) (~.4) 

= inf ii 
QEV’X ([ 

Rl, +e a12 

R2, I) &2 ’ 
(A.5) 

where 8,, = O*DRD-‘V*, R,, = O*DRD-‘VT, R2, = 
OTDRD-‘v* and &a = O~DRD-‘P*,. From Doyle (1984) 

inf CT 0 WllfQ Rl2 - - 
GEY’XI R2l R22 I) 

= max [*([IT,, A,,]), F( [ iis])]. (A.6) 

Hence, the condition (33) is satisfied if and only if there 
exists D E Ld, such that 

@([RI1 R,,])< a and (+ < a. (A.7) 

Now 

m2, A2211 

= (T(U:DRD-‘[v* v:]) (A.8) 
= a( UfDRD-‘) (A.9) 

= O[((D*)-‘U~(U~(D*D)-‘UJ’R)*DRD-‘] (A.lO) 

= r?[(U:(D*D)-‘U,)-‘“UyRo-‘I. (A.ll) 

Similarly, one can show that 

Rl2 cr 82, (IY I) = a[DRV:(V,D*(DV:))-‘a]. (A.12) 

Now 

a[(U:(D*D)-‘U,)-‘nU,RD-‘]<a (A.13) 

~h,,,[(U~(D*D)-‘U,)-“2UfR(D*D)-‘R*U1 

x (Uf(D*D)-‘U,)-‘a - a2Z] < 0 

ttr\,,,[U~R(D*D)-‘R*UI - a2Uf(D*D)-‘U,]<O 

(A.14) 

++A,,,[Uf(R(D*D)-‘R* - a2(D*D)-‘)U,] -=O. (A.15) 

Likewise 

(r[DRVr(V,D*DV:)-“2] < a 

tth,,,[V,(R*(D*D)-‘R - a2(D*D)-‘)V;] < 0. (A.16) 

Defining X = D*D completes the proof. QED 


