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Population balance equations have been used to model a wide range of processes
including polymerization, crystallization, cloud formation, and cell dynamics. Rather than
developing new algorithms specific to population balance equations, it is proposed to
adapt the high-resolution finite volume methods developed for compressible gas dynamics,
which have been applied to aerodynamics, astrophysics, detonation waves, and related
fields where shock waves occur. High-resolution algorithms are presented for simulating
multidimensional population balance equations with nucleation and size-dependent
growth rates. For sharp distributions, these high-resolution algorithms can achieve
improved numerical accuracy with orders-of-magnitude lower computational cost than
other finite difference and finite volume algorithms. The algorithms are implemented in the
ParticleSolver software package, which is applied to batch and continuous processes with
one and multiple internal coordinates. © 2004 American Institute of Chemical Engineers
AIChE J, 50: 2738-2749, 2004
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Introduction

Many chemical processes, including polymerization, solu-
tion crystallization, cloud formation, and cell dynamics, are
best described by population balance equations (Ramkrishna,
2000). Consider the one-dimensional (1-D) population balance
equation

afiL, 1) N HG(L, 1) f(L, 1)}
at oL

=h(L, 1, f) o))

where f(L, 1) is the distribution (also called the population
density), ¢ denotes the time, L is an internal coordinate, G(L, t)
is the growth/dissolution rate, and h(L, t, f) is the creation/
depletion rate. The entities in the distribution can be molecules,
cells, crystals, cloud particles, amorphous globs, and so on. The
internal coordinate L, often referred to as the size, is typically
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the characteristic length, volume, or mass, but it can also
represent age, composition, and other characteristics of an
entity in a distribution. The creation/depletion rate h(L, t, f)
includes nucleation, aggregation, agglomeration, breakage, at-
trition, and material leaving or entering the system, and can be
a function of other variables including the distribution, which
occurs in nucleation processes resulting from particle-particle
interactions and in agglomeration processes. Many of these
expressions involve integrals so that Eq. 1 is typically an
integrodifferential equation. The growth/dissolution rate G(L,
t) can be a function of size and other variables, such as the
temperature and the concentration of chemical species in so-
lution. The growth/dissolution and creation/depletion rates are
typically highly nonlinear functions of their arguments.

An accurate simulation of the distribution can be challenging
in that the distribution can extend many orders of magnitude in
size and time, and changes in the distribution can be very sharp.
This has motivated many researchers to develop specialized
algorithms for solving population balance equations (for ex-
ample, see Ramkrishna, 1985; Nicmanis and Hounslow, 1998;
Ramkrishna, 2000, and citations therein). These methods can
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be roughly divided into five categories: the method of mo-
ments, the method of characteristics, the method of weighted
residuals/orthogonal collocation, Monte Carlo simulation, and
finite difference methods/discretized population balances. The
method of moments approximates the distribution by its mo-
ments (Hulburt and Katz, 1964). Under certain conditions, the
moment equations are closed, that is, the differential equations
for the lower order moments do not depend on values for the
higher-order moments, which results in a small number of
ordinary differential equations (ODEs) that can be solved very
efficiently and with very high accuracy using off-the-shelf
ODE solvers. The main weakness of the method of moments is
the moment closure conditions are violated for more complex
systems. The method of characteristics aims to solve the pop-
ulation balance equation by finding curves in the L-f plane that
reduce the equation to an ODE. While the method is highly
efficient when the physics are simple, the approach does not
generalize to complex physics. The method of weighted resid-
uals approximates the distribution by a linear combination of
basis functions (Singh and Ramkrishna, 1977). As in the
method of moments, this results in a system of ODEs, which
can be solved using off-the-shelf solvers. The main weakness
of this approach is that the basis functions must be carefully
tuned to each specific system if a small number of ODEs is
desired. Monte Carlo simulations track the histories of individ-
ual particles, each of which exhibits random behavior accord-
ing to a probabilistic model (Shah et al., 1977; Maisels et al.,
1999; Song and Qiu, 1999). Monte Carlo simulations are most
suitable for stochastic population balance equations, especially
for complex systems (Ramkrishna, 1985). This method is typ-
ically computationally expensive. In the method of finite dif-
ferences/discretized population balances, the population bal-
ance equation is approximated by a finite difference scheme
(Kumar and Ramkrishna, 1996). Numerous discretizations of
the PBE with different orders of accuracy have been investi-
gated and applied to various particulate systems (Gelbard et al.,
1980; Hounslow et al., 1988; Marchal et al., 1988; Hounslow,
1990; Muhr et al., 1996; Kumar and Ramkrishna, 1997).

An alternative approach was recently proposed (Ma et al.,
2002), which is to apply the high resolution finite volume
methods developed for compressible gas dynamics, which are
the state-of-the-art methods in aerodynamics, astrophysics, det-
onation waves, and related fields where shock waves occur
(LeVeque et al., 1998). The high-resolution algorithms have
been specifically developed to provide high accuracy while
avoiding the numerical diffusion (that is, smearing) and nu-
merical dispersion (that is, nonphysical oscillations) associated
with other finite difference and finite volume methods. This
approach adapts the state-of-the-art methods used by research-
ers to simulate the most challenging hyperbolic equations, to
gain from their experience and efforts, rather than developing
new algorithms specific to population balance equations. An
advantage of this approach is that many of the high-resolution
algorithms developed in compressible gas dynamics, including
the algorithms investigated here, are general purpose. This
allows the simulation code to be quickly modified by a non-
expert to solve a particular problem of interest.

A recent book (LeVeque, 2002) extended high-resolution
algorithms to the simulation of variable-coefficient linear hy-
perbolic systems. These systems have the same mathematical
structure as the population balance equations with size-depen-
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dent growth and, thus, the high-resolution algorithms directly
apply to these equations. In addition, this article shows how to
transform the size-dependent population balance equation so
that the high-resolution algorithm for constant growth in (Ma et
al., 2002) also applies to such PBEs. The algorithms can
provide second-order accuracy for all regions in which the
solution is smooth, and avoid the numerical diffusion associ-
ated with first-order methods, and the numerical dispersion
near discontinuities or sharp gradients associated with other
second-order methods. The high-resolution algorithms are
compared to two popular methods for solving population bal-
ance equations, in simulations of several batch and continuous
population balance models with one or two internal coordi-
nates, and a variety of initial conditions.

High Resolution Finite Volume Algorithms

This section briefly reviews high resolution finite volume
methods, followed by a presentation of the high-resolution
algorithms for handling size-dependent growth and comments
on multidimensional population balance equations and imple-
mentation.

High-resolution methods were developed for solving the
nonlinear hyperbolic equation (LeVeque et al., 1998)

ou(x,t) 0 B

where x and u denote the spatial and state variables, respec-
tively. This hyperbolic equation is common in applications as
it arises naturally in material, energy, and momentum balances.
Analytical solutions are not possible except for a limited num-
ber of simple problems, which is why much effort has been
invested in computational fluid dynamics and related areas to
numerically simulate these equations. Numerical difficulties
can arise for problems with discontinuities or where the spatial
derivative in Eq. 2 is very large. First-order methods tend to
produce numerical diffusion, where the solution is smeared or
damped and most second-order methods can produce numeri-
cal dispersion, which is the appearance of nonphysical oscil-
lations (Morton and Mayers, 1994). The term “high-resolution
method” refers to a numerical algorithm that is designed to
provide at least second-order accuracy where the solution is
smooth, and that does not introduce numerical dispersion
(LeVeque et al., 1998). Modern high-resolution methods are
derived from an integral representation for the underlying
conservation equations, and so are in the class of finite volume
methods. This ensures that the main property of the distribution
(for example, total material, total energy, total momentum) is
exactly conserved, as well as ensuring accurate simulation of
growth rate kinetics (LeVeque et al., 1998), without requiring
specialized procedures as typically required by finite difference
methods.

The presentation will summarize the homogeneous 1-D case
first, followed by the extension to nonhomogeneous higher
dimensional systems. Let k and & denote the time and size
intervals, respectively, and f denote an approximation of the
average population density
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where m, n are integers such that m = 0 and 1 =n = N.

Size-independent growth

The homogeneous population balance equation with size-
independent growth is

af of
ar P& =0 @)
with the initial distribution f (L, 0), and the constant growth rate
g. Assuming ¢ > 0 (a similar derivation holds for g < 0), a
class of high resolution finite volume algorithms that is second-

order accurate almost everywhere has the form (LeVeque et al.,
1998)

kg kg
m+l _ rm __ _Z .
n - (fn n ]) 2h (1 h )

X [(f?*—l _fnm)(bn - (fZl n l)d)n 1] (5)
where the flux limiter function ¢, = ¢(6,) depends on the
degree of smoothness of the distribution, which is quantified by
the ratio of two consecutive gradients

en - f:ll _ - nll (6)

n+l n

The following conditions ensure second-order accuracy wher-
ever the solution is smooth (LeVeque, 1992)

1. ¢(0) is bounded with ¢(1) = 1
and ¢ is Lipshitz continuous at 6 = 1

$(6,) )
0,

2. 0=—=2Vn

3. 0=d(6,)=2 Vn

Many flux limiter functions have been proposed, including the
minmod, superbee, MC, and van Leer (LeVeque et al., 1998).
Each flux limiter leads to a different high-resolution method.
The MC and Van Leer limiters provide full second-order
accuracy. We have had good experience with the Van Leer flux
limiter (van Leer, 1974)

16,/ + 6

¢(6,) = T8

®)

For 1-D problems, this method is fotal variation diminishing,
which implies that the algorithm will not introduce numerical
dispersion (LeVeque et al., 1998).

Size-dependent growth

The homogeneous population balance equation with size-
dependent growth is
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with the initial condition (L, 0) and growth rate G(L). A recent
book (LeVeque, 2002) presented two high-resolution methods
for simulating such hyperbolic systems, which differ in the
selection of the growth rates in the algorithms. The first algo-
rithm HRI is a formal second-order accurate method when no
flux limiter is used. Here, the growth rates are evaluated at the
endpoints of each grid cell (LeVeque, 2002)

kG, kG,
) [ ( i )

kG,-\\ .
<1 - h )( n _fnl)d’n—l]

(10)

k
HRI: f1 = fi = (Gf

X (frer =)

where G,, = G (nh). The same flux limiter (Eq. 8) can be used
to achieve the desired nonoscillatory solution around disconti-
nuities and second-order accuracy in the smooth regions of the
solution. Although the second method (HR2) is not formally
second-order accurate even without the flux limiter, this
method in practice can provide comparable accuracy with the
first method. In this method, the growth rates are evaluated at
the grid midpoints (LeVeque, 2002)

k
HR2: £t = £ = (Goorof i = Guoaf 1)

y 11—
2h
k 1 an 1/2

" 2h

an+l/2

)(Gn+1/2fn+l - anl/Zf,nn)d)n

)(Gn l/an n3/2f;1nl)¢)nl:| (11)

with the same flux limiter function.

In addition to the aforementioned methods, the size-indepen-
dent high-resolution method (Eq. 5) can be extended to simu-
late the PBE with size-dependent growth. Assuming that the
growth rate does not depend on time, multiplying Eq. 9 by G
gives

a(Gf) a(Gf)
ot +G oL

=0 (12)

Defining f = Gf. and rewriting Eq. 12 in terms of f gives

of af
3 +G L =0 (13)
which, for each grid point, is equivalent to the population
balance equation for size-independent growth (Eq. 4). The
high-resolution algorithm for size-independent growth can be
used for simulating f with the constant growth rate g in Eq. 5,
replaced by the size-dependent growth rates evaluated at the
grid midpoints
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The flux limiter function ¢(f) uses the same functionality as in
Eq. 8, with the measure of smoothness given by

HR3: fnl =g

~’n"1)¢>n1] (14)

gt (15)
n+l n

The true distribution f is then computed from the distribution f
using

w I
fi=g (16)

n

The HR3 algorithm is not second-order accurate even without
the limiters, but in practice this algorithm often gives compa-
rable accuracy to the HR1 method (see Example 1 in the
section entitled Numerical Examples). For each high-resolution
algorithm, there exists a corresponding upwind method and
modified Lax-Wendroff scheme, which are obtained by setting
the flux limiter function ¢ to zero and one, respectively. How-
ever, the modified Lax-Wendroff schemes are not necessarily
second-order accurate, except for HR1. The upwind methods
from HR2 and HR3 are equivalent provided that G is nonzero
for the crystal sizes of interest.

Multiple dimensions and the nonhomogeneous term

In general, the distribution may have multiple internal coor-
dinates, which results in the multidimensional population bal-
ance equation

if <GS
i > oL h(L, t,f) (17)

J=1

where G; is the growth rate along the L; internal coordinate and
L denotes the vector of internal coordinates. These coordinates
can also include spatial coordinates, in which case the G; is the
velocity in the direction of the corresponding spatial coordi-
nate. Simulation of the multidimensional population balance
equation involves applying the high-resolution algorithm to the
homogeneous system

if < HGL)f
ot D) oL, 0

7

(18)

Jj=1

This step consists of applying the 1-D high-resolution algo-
rithm to each 1-D homogeneous system resulting from setting
all G; = 0 except for one internal coordinate sequentially at
each time instant. This technique is known as dimensional
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splitting (Ma et al., 2002; LeVeque et al., 1998). It is straight-
forward to extend the numerical analysis of LeVeque et al.,
1998, to show that the above high-resolution method with
dimensional splitting is second-order accurate for Eq. 17.

After each high resolution step, the nonhomogeneous term
h(L,z,f) is added to the distribution function f at each time
step—a technique known as a Godunov splitting. This method
is second-order accurate except for the first and last time steps,
which provides accuracy indistinguishable from Strang split-
ting which is formally second-order accurate for all time steps
(LeVeque et al., 1998). The reader is referred to the above
references for detailed numerical analyses of the accuracy of
these splitting techniques.

Implementation: boundary conditions, zero growth rate,
dependencies on time-varying variables, and numerical
stability and cost

In the high-resolution algorithms described here, the com-
putation of f”"! depends on the values of f™ ,. It is common
to assume that sufficiently small entities have essentially zero
size (Hounslow, 1990; Hounslow et al., 1988; van Peborgh
Gooch and Hounslow, 1996). As the population density at zero
size for the next time step requires the current value at size —h
and —2h, our implementation uses fictitious points at these
sizes that have population densities of zero at all times. At the
other end, the computation of £ " assumes that £ *" for all m,
which is known as the absorbing boundary condition
(LeVeque, 2002). In many problems, the nonhomogeneous
terms depend on the crystal-size distribution and the maximum
discretization point N is selected to include the entire distribu-
tion.

The transformation in deriving HR3 cannot be applied at
discretized points where the growth rates are zero. At these
points, the homogeneous PBE is rewritten as

of(L, 1) . 3dG(L)

of(L, 1)
oL TALD —p

at

+ G(L)

=0 (19

where G(L) = 0. The second term on the lefthand side drops
out, and finite difference approximation gives the density func-
tion at the next time step as

fm+l — fm m IG (20)
A i FY3 o

The derivative on the righthand side can be computed from
direct differentiation of the growth function, or can be esti-
mated using finite difference approximation.

In many cases, it is necessary to model the growth rate as a
function of time or other time-varying variables, such as tem-
perature or solute concentration. When the growth rate is
size-independent, but time-varying, the numerical algorithm is
the same as for the population balance Eq. 4, but with g = g(¥).
That is, the same high-resolution algorithm applies for this
problem with the constant g replaced by g™ to reflect the
dependence on time. The same modifications also apply to the
HR1 and HR2 algorithms (Egs. 10 and 11).

If the growth rate is a function of both size and a time-
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varying variable z(7), then a similar transformation that led Eq.
9 to 12 in HR3 gives

d(G(L, z(1) f)
at

d(G(L, z(1) f)
JL
A(G(L, z(1)) dz(r)

IR TR

+ G(L, z(1))

The resulting nonhomogeneous system can be simulated using
the high-resolution algorithm for size-dependent growth rate
with f = G(L, z(1))f, and the addition of the original nonhomo-
geneous term and the righthand side of Eq. 21. A simpler
expression can be derived for the typical functionality

G(L, z(1)) = G (2(1)G (L) (22)

Then, multiplying the original homogeneous population bal-
ance equation with only the G, term and factoring out G from
the derivative with respect to length gives the homogeneous
equation

9(G.f)
at

IG.Lf)
aL

+ G(L, z(1)) 0 (23)

As before, the high-resolution algorithm (Eq. 14) can be used
to simulation this equation, with f = G, f.

The Courant-Friedrichs-Levy (CFL) condition for size-de-
pendent growth is

k
(max G,) h‘ =1, (24)

which is the necessary condition for the convergence of the
high-resolution method, as it is necessary for any explicit
numerical method. Typically, the mesh size & is fixed, and the
CFL condition is rearranged to compute a time interval k, that
is further reduced to improve numerical accuracy with respect
to the time discretization.

For the same grid, the computational cost of the high-
resolution algorithms is approximately twice the cost of the
Lax-Wendroff method. The higher accuracy of the high-reso-
lution methods for sharp distributions, however, enables the
use of much larger mesh sizes to achieve the same overall level
of numerical accuracy. Using a larger mesh size both reduces
the number of grid cells for the same size domain and increases
the allowable time-step to maintain numerical stability (see Eq.
24). Thus, for the same level of numerical accuracy, the high-
resolution algorithms have much lower computational cost than
the upwind and Lax-Wendroff methods, especially for multi-
dimensional systems. For example, in Example 2 below the
high-resolution algorithm is more numerically accurate than
simulation using the Lax-Wendroff method applied to an order-
of-magnitude smaller grid cell size. The CFL condition (Eq.
24) indicates that the high-resolution algorithm could use an
order-of-magnitude larger time-step, in which case the compu-
tational time of the high-resolution method would be a factor of
~ 50 faster than the Lax-Wendroff method. For a 2-D popu-
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lation balance equation, the high-resolution algorithm would be
500X faster. The memory requirements for the upwind, Lax-
Wendroff, and high-resolution methods are the same.

The high-resolution algorithms, which solve the general 1-D
and multidimensional population balance Eqs. 1 and 17, are
implemented in the ParticleSolver software, which is freely
available for use as a stand-alone code, or for incorporation
into more complicated process simulations (Gunawan et al.,
2003).

Numerical Examples

These examples compare the numerical accuracy and stabil-
ity with established algorithms.

Example 1: Size-dependent growth in a batch process

This example illustrates the differences among the three
high-resolution algorithms for simulating PBEs with size-de-
pendent growth. Consider a batch process with a growth rate
that depends linearly on mass

G(v) = Gy (25)
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Figure 1. Analytical and numerical distributions using
the high-resolution methods (10), (11), and (14),
shown here as HR 1, HR 2, and HR 3, respec-
tively (Example 1).
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Table 1. Simulation Parameters in Example 1

Table 3. Kinetic Parameters (Example 2)

Variable Description Value Units Variable Value Units
k Time interval 10°* s b 1.78 Dimensionless
h Mesh size 10°* wm?® k, 4.64 X 1077 particles/um?/s
vy Mean volume of charge 0.01 pm?® g 1.32 Dimensionless
Ny Number of crystals in v, 1 Dimensionless ky 1.16 X 10? nwm/s
G, Growth rate 0.1 um?/s

where G, is a constant and the initial distribution is

Ny
flv, 0) == e (26)

0

where v, is the mean volume of the charge and N, is the total
initial number of particles in v, The analytical solution is
(Kumar and Ramkrishna, 1997; Ramabhadran et al., 1976)

NO U
flv, 1) = — exp[— — e O — Got] 27)
Vo o

Figure 1 compares the simulated CSDs from the three high-
resolution algorithms using the simulation parameters listed in
Table 1. Table 2 presents the average and the maximum abso-
lute errors associated with each method. While the average
absolute error is similar for the three high-resolution methods,
the maximum absolute error and Figure 1b indicate that HR1,
which is formally second-order accurate without limiter, pro-
vided the best agreement with the analytical distribution. The
larger deviations at the smaller size range arise from using the
boundary condition at zero volume as described earlier, which
is numerically equivalent to having a discontinuity at zero size.
In this case, the HR1 was able to keep the propagation of the
boundary condition error much lower than the HR2 and HR3
methods. The remaining examples in this section will use HR1
as the high-resolution algorithm for simulating PBEs with
size-dependent growth rates.

Example 2: Nucleation and size- and concentration-
dependent growth in a batch process

This example illustrates the accuracy of the high-resolution
algorithm for a batch process with nucleation and growth,
where the growth rate is a function of size and time-varying
variables; in this case, the solution concentration and temper-
ature

L, 1) N HG(L, c(t), T(1) AL, 1))}

at oL = By(c(1), T(1))8(L)

(28)

Table 2. Average and Maximum Absolute Error (Example

where ¢ is the solution concentration, B, is the rate of nucle-
ation of particles of zero size (Hounslow, 1990; Hounslow et
al., 1988; van Peborgh Gooch and Hounslow, 1996), and § is
the dirac delta function. For a seeded batch crystallization, the
dominant mechanism of crystal birth is secondary nucleation,
and the nucleation kinetics are typically in power-law form
(Nyvlt et al., 1985; Randolph and Larson, 1988)

c— Csar(T)>b

D) @9)

B()(C, T) = k1;V<

where k, and b are the kinetic parameters, V is the total volume
of crystals in the system, and c,,, denotes the saturated solute
concentration (the time-dependence in ¢ and T are suppressed
to simplify notation). The growth rate has linear size-depen-
dence and a similar power law functionality

¢ = csat( T)

CS[U( T) (30)

G(L,c,T) = kg< )g(l +0.1L)

where k, and g are the kinetic parameters. The kinetic param-
eters reported for the crystallization of potassium nitrate
(KNO3) crystals were used (see Table 3). The solution con-
centration obeys the mass balance

%
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Figure 2. Relative error in moments 0, 1, 2, and 3 pre-
dictions using the high-resolution method for a
batch process with size-and concentration-
dependent growth rate (Example 2).
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Figure 3. Crystal-size distributions from the high reso-
lution (HR), the upwind, and the Lax-Wendroff
(LW) methods using moderate size interval
with the “exact” density functionatt = 1,000 s
(Example 2).

where p,. is the crystal density (p, =2.11 X 10~'? g/um?), and
the saturated solution concentration is (Miller, 1993)

¢, T) [g/g of water] = 1.721 X 107*T*
—5.88X107°T + 0.1286 (32)

The simulation used an exponentially decaying temperature
trajectory

T(r) [°C] = 32 — 4(1 — ¢~ "186%) 33)

There exists no analytical solution to Eq. 28, so a high
resolution simulation using a very fine mesh size provided the
“exact” CSD, whose numerical accuracy was confirmed using
the method of moments (Hulburt and Katz, 1964). The initial
moments were evaluated analytically for the initial distribution

—3.48 X 107*L* + 0.136L — 13.3
if 180.5 um = L = 210.5 pm (34)
0 elsewhere

ML, 0) =

As shown in Figure 2, the zeroth through third moments from
the “exact” high-resolution simulation (k = 1073, h = 0.05
pum, N = 32,000) agree very well with those obtained using the
method of moments. Figure 3 compares the CSDs from the
high-resolution, the upwind, and the Lax-Wendroff methods
using a moderate size interval (h = 0.5 um, N = 3,200) with
the “exact” CSD computed earlier. The average absolute error
for the different methods is reported in Table 4, which shows
that the high-resolution method was an order of magnitude
more accurate than the upwind and the Lax-Wendroff methods.
The inaccuracies in the upwind method were caused by nu-
merical diffusion, which was apparent in Figure 3b. The error
in the Lax-Wendroff method arised from numerical dispersion
associated with the antidiffusion term, which induced nonphys-
ical generation of small crystals (see Figure 3a) and spurious

Table 4. Average Absolute Error (Example 2)
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Figure 4. Relative error in moments 0, 1, 2, and 3 pre-

dictions using the high-resolution method for a

batch process with size-independent and con-

centration-dependent growth rate (Example 2).

oscillations (see Figure 3b). The high-resolution algorithm
provided a much more accurate CSD without significant nu-
merical diffusion or dispersion.

Additional simulations compare the accuracy of the high
resolution, the upwind, and the Lax-Wendroff methods for
size-independent and size-dependent growth for different mesh
sizes. This is to elucidate whether the technique used to address
size-dependent growth affects the numerical accuracy or the
selection of numerical parameters in the simulation algorithms.

In these simulations, the size-dependent growth rate was the
same as earlier, and the size-independent growth rate was

C = Cyut

G, T) = kg< >g(max (1+0.1L)) (35)

sat

such that the CFL condition for the two growth rates are
equivalent. Figure 4 shows the agreement in the moments
computed using the method of moments and the high resolution
method with fine interval sizes (kK = 1072s, h = 0.05 pm, N =
32,000), which provides the “exact” CSD for the size-indepen-
dent growth rate. Two mesh sizes were considered (2 = 0.1 wm
and 7 = 1 um). The average absolute error in the CSDs from
the high resolution, the upwind, and the Lax-Wendroff simu-
lations is reported in Table 5, and the corresponding CSDs are
shown in Figures 5, 6, and 7. Comparison of the error suggests
that the size-dependency of the growth rate does not necessitate
higher computational requirements than the size-independent

Table 5. Average Absolute Error for Size-Dependent and
Size-Independent Growth Rates (Example 2)

Avg. Abs. Error # = 0.1 um (h = 1 pum)

Methods Avg. Abs. Error Methods Size Dep. Size Indep.
High res. 321 x107° High res. 3.65 X 107°(7.68 X 107°) 8.36 X 107°(1.72 X 10™%)
Upwind 544 X107 Upwind 1.50 X 107*(8.40 X 10™%) 4.60 X 10~*(1.43 X 1077%)
Lax-Wendroff 575 X 107 Lax-Wendroff 5.56 X 107 (6.13 X 107%) 2.89 X 107 (9.42 X 1074
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Figure 5. Crystal-size distributions from the high-reso-
lution algorithms for size-independent and
size-dependent growth rates with mesh sizes
h =1 pm and h = 0.1 um (Example 2).

growth rate. Again, the high-resolution algorithms gave much
more accurate simulations compared to the upwind and the
Lax-Wendroff methods. Moreover, the errors also indicate that
the high resolution algorithm achieved higher accuracy than the
upwind and Lax-Wendroff methods with an order of magnitude
larger grid cell size.

Example 3: Nucleation and size-and concentration-
dependent growth in a multidimensional batch process

This example illustrates the ability of the high-resolution
algorithms to accurately simulate multidimensional population
balance equations. A batch crystallization model that describes

Size Dependent Size Independent
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Figure 6. Crystal-size distributions from the upwind
scheme for size-independent and size-depen-
dent growth rates with mesh sizes h = 1 um
and h = 0.1 um (Example 2).
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Figure 7. Crystal-size distributions from the Lax-Wen-
droff method for size-independent and size-
dependent growth rates with mesh sizes h =1
pm and h = 0.1 um (Example 2).

the temporal evolution of the distribution as a function of the
two main growth axes of potassium dihydrogen-phosphate
(KDP) is

Of(Ly, Ly, 1) 0{G\(Ly, Ly, ¢, T) f} n HGy(Ly, Ly, ¢, T) f}
ot JL, L,

= By(c, T)8(L,)8(L,)  (36)

where L, and L, are the characteristic crystal lengths (see,
Figure 8), and the dependence of ¢ and T on time is suppressed
to simplify notation. The growth rates G, and G, are assumed
to follow a similar power law function of the supersaturation as
in Example 2

c— Csat(T) s
) 0.1(1 +0.6L,) (37)

Gi(Ly, Ly, ¢, T) = kg1<07m

¢ = cxut( T)
Csat( T)

82
GyL, Ly, c, T) = ng< ) 0.1(1 + 0.6L,) (38)

Figure 8. Characteristic lengths of KDP crystals.
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Table 6. Kinetic Parameters (Example 3)

Variable Value Units

b 2.04 Dimensionless
ky, 7.49 X 107® particles/um?/s
g 1.48 Dimensionless
ke, 12.1 /s

g 1.74 Dimensionless
ke, 100.75 /s

where kg, kg, g1, and g, are the kinetic parameters. The

nucleation kinetics By(c,T) are the same as in Example 2. The
temperature trajectory 7(¢) follows a similar exponential de-
caying profile

T(t) [°C] =32 —4(1 — e "'7) (39)
The kinetic parameters determined from experimental data

(Gunawan et al., 2002) are reported in Table 6. The solution
concentration is given by the solute mass balance

dc

dr = Pcf j ALy, Ly, )(2G,(L,\L, — L%) + GzL%)dleLz
o Yo

(40)

where the crystal density p, =2.338 X 10~ '? g/um’, and the
saturated solution concentration obeys (Togkalidou et al.,
2001)

¢l T) [g/g of water] = 9.3027 X 107°T> — 9.7629
X 107°T + 0.2087 (41)
There is no analytical solution to Eq. 36, so a high resolution

simulation using a small interval sizes was used as the “exact”
CSD, whose accuracy was confirmed by comparison to the
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Figure 9. Relative error in moments 10, 01, 21, and 30
predictions using the high-resolution method
for a 2-D batch crystallizer of KDP (Example 3).

2746 November 2004

Exact HR

Figure 10. Crystal-size distributions from the high-reso-
lution (HR), the upwind, and the Lax-Wendroff
(LW) methods using moderate size interval
with the “exact” density function att = 80 s
(Example 3).

method of moments. The simulations used the initial distribu-
tion

f(Ll’ LZ’ O)

—3.48 X 10741} + L) + 0.136(L, + L,) — 26.6
={ if180.5 um =L, L, =210.5 um
0 elsewhere

(42)

Figure 9 shows that the moments from the “exact” CSD using
the high-resolution algorithm (k = 0.01 s, h; = h, = 0.1 pum,
N, = 600, N, = 2000) and the moment of methods agreed very
well. Figure 10 compares the simulated CSDs using the high-
resolution, the upwind, and the Lax-Wendroff algorithms with
moderate interval sizes (h, = h, = 0.5 um, N, = 120N, =
400) with the “exact” CSD. Table 7 reports the average abso-
lute error in the simulated CSDs.

From inspection of Figure 10, it is clear that the CSD from
the high-resolution method is much more accurate qualitatively
and quantitatively than the Lax-Wendroff and upwind meth-
ods. The numerical diffusion of the upwind method is much
more extensive than the high resolution method. The Lax-
Wendroff method simulates the region near the maximum
value of the CSD quite well, but numerical dispersion induced
spurious 2-D oscillations.

Example 4: Nucleation and size-dependent growth in a
continuous process.

This numerical example illustrates the accuracy of the high-
resolution algorithms for population balance equations for con-

Table 7. Average Absolute Error (Example 3)

Methods Avg. Abs. Error
High res. 1.2x107*
Upwind 32x 1074
Lax-Wendroff 50X 107
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Table 8. Simulation Parameters for Size-Independent
Growth Rate in an MSMPR Crystallizer (Examples 4 and 5)

Variable Description Value Units
k Time interval 0.01 s
h Mesh size 0.01 um
L, (mean volume of charge)'” 1 um
G, Growth rate 0.00168  uwm/s
B, Nucleation rate 2x 107 um 357!
T Residence time 100 S

tinuous processes with nucleation and size-dependent growth.
The dynamic population balance equation for simultaneous
nucleation and growth in a mixed suspension mixed product
removal (MSMPR) process is (van Peborgh Gooch and Houn-
slow, 1996)

af  a(G(L) (L)) AL)
a + T = BOS(L) - T 43)

where T is the residence time in the crystallizer.
The most widely used equation for modeling size-dependent
growth is the Abegg-Stevens-Larson (ASL) equation
G(L) = Gy(1 + yL)* z<1,L=0 (44)
where G,, y, and z are constants. For the ASL growth function,

the steady-state solution of the MSMPR population balance Eq.
43 is (van Peborgh Gooch and Hounslow, 1996)

1—(1+yL)'s

Gory(1 — 2) ) 43)

B
im AL) = 5‘; 1+ yL)"'eXp(

1
1>
To compare the numerical results with the analytical solution,
Eq. 43 was simulated for long times using the analytical
distribution (Eq. 45) as the initial condition, and the parameters

107° :
— analytical

2z - - HR
2 N Upwind
3107 =W
3
£0
£
3
c
%10—11
<]
>
©

107"

0 1 2 3
particle length, um3

Figure 11. Analytical and numerical distributions for
size-independent growth rate (z = 0 in Eq. 44)
in a MSMPR crystallizer (Example 4).

The analytical and high-resolution distributions overlap.
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Figure 12. Analytical and numerical distributions for
size-dependent growth rate (z = 0.3,y = 1) in
an MSMPR crystallizer (Example 4).

The analytical and high resolution distributions overlap.

in Table 8. Note that this is not a particularly fine mesh size for
simulating a population balance equation. Figures 11 and 12
show the distributions at times ¢+ = 0 s and ¢ = 400 s for
size-independent and size-dependent growth rates, respec-
tively. Even for a long time there are negligible numerical
diffusion and dispersion of the distributions for either growth
rates for the high-resolution method. Table 9 compares the
average absolute error in the simulations for the high-resolu-
tion, the upwind, and the Lax-Wendroff methods. The high-
resolution algorithms again gave the most accurate simulations,
which were an order of magnitude more accurate than the
upwind and two-orders of magnitude more accurate than the
Lax-Wendroff. The upwind method gave less accurate simu-
lations due to numerical diffusion which slightly flattened the
distribution, while the Lax-Wendroff method gave significant
deviations at small size ranges due to nonphysical generation of
small crystals from numerical dispersion (see Figure 11).

Example 5: Step and spike perturbations in a
continuous process

This example investigates the behavior of the algorithms
when step and spike perturbations are introduced to the steady-
state distribution (Eq. 45) with size-dependent growth rate, as
in Figure 12, and the evolution of the perturbed distributions
are simulated according to Eq. 43. Figures 13 and 14 present
the simulation results for step-up and step-down perturbations,
respectively, with the simulation parameters reported in Table
8. The perturbed distributions converge to the steady-state

Table 9. Average Absolute Error (Example 4)

Avg. Abs. Error

Methods Size Indep. Size Dep.
High res. 397 x 1072 4.15x 10712
Upwind 213 x 1071 2,18 x 1071
Lax-Wendroff 9.22 X 10710 9.19 X 1071°
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Figure 13. Return of the distribution to the MSMPR
steady-state (s.s.) distribution after a step-up
perturbation using the high-resolution (HR),
the Lax-Wendroff (LW), and the upwind meth-
ods (Example 5).

MSMPR distribution with negligible numerical diffusion or
dispersion. As in Example 4, the high-resolution gave the
highest accuracy followed by the upwind and Lax-Wendroff
methods, respectively. The magnitude of the step perturbation
affects the time needed to go back to the steady-state distribu-
tion, but not the final distribution that each method converges
to.

A spike disturbance in the distribution is particularly chal-
lenging to handle, and was used to compare numerical results
with the popular upwind and Lax-Wendroff methods. Using
the simulation parameters listed in Table 8, Figure 15 shows
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Figure 14. Return of the distribution to the MSMPR
steady-state (s.s.) distribution after a step-
down perturbation using the high-resolution
(HR), the Lax-Wendroff (LW), and the upwind
methods (Example 5).
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Figure 15. High-resolution, the upwind, and the Lax-
Wendroff simulations for a spike perturbation
(Example 5).

how the spike moves from smaller to larger sizes (that is, left
to right) with time due to crystal growth, while the spike’s
width increases and height decreases as the distribution evolves
to the steady-state distribution. The high-resolution method
produces much less numerical diffusion than the upwind
method, and much less numerical dispersion than the Lax-
Wendroff method.

Conclusions

High-resolution finite volume algorithms were introduced
and extended to simulate 1-D and multidimensional population
balance equations with nucleation and size-dependent growth.
The algorithms avoid the numerical diffusion associated with
first-order methods, and the numerical dispersion associated
with other second-order methods near discontinuities or sharp
gradients. The high-resolution algorithms gave consistent and
accurate simulation results for batch and continuous population
balance models with a variety of initial conditions. For sharp
distributions, the improved numerical accuracy of the high-
resolution algorithms enables the use of larger mesh sizes and

AIChE Journal



longer time steps, resulting in orders-of-magnitude reduction in
computational cost compared to alternative finite difference/
finite volume methods, while providing similar overall numer-
ical accuracy. All of the high resolution algorithms in this
article, which solve the general population balance Egs. 1 and
17, are implemented in the ParticleSolver software, which is
freely available for use as a stand-alone code, or for incorpo-
ration into more complicated process simulations (Gunawan et
al., 2003).
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