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Abstract

Chemical reacting systems involve phenomena that span several orders of magnitude in time and length scales, from the molecular
to the macroscopic. To account for the multiscale character of these processes, many papers have adopted a simulation architecture that
employs coupled simulation codes, in which each code simulates the physicochemical phenomena for a different range of length scales in
the reacting system. When dynamically coupling codes, it is possible for the codes that solve the individual continuum or non-continuum
models to be numerically stable, while the dynamic linkage of the individual codes is numerically unstable. This paper uses control theory
to gain insight into these numerical instabilities as well as to design linkage algorithms that modify the dynamic information passed
between the individual codes to numerically stabilize their coupling, and to increase the numerical accuracy of the simulation results. The
approach is applied to a coupled KMC-FD code for simulating copper electrodeposition in sub-micron trenches.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many chemical reaction modeling papers have adopted
a multiscale simulation architecture that employs coupled
simulation codes, in which each code simulates the physic-
ochemical phenomena for a different range of length scales.
Vlachos (1997)linked a surface Monte Carlo model and
a fluid-phase continuum reaction/transport model, resulting
in a multiscale integration hybrid algorithm to simulate ho-
mogeneous/heterogeneous processes.Hansen et al. (2000)
incorporated molecular dynamic data into a level set code
to simulate the multiscale growth of an aluminum film. A
coupled molecular dynamics and Monte Carlo simulation
code was used to improve feature-scale simulations of the
ionized physical vapor deposition of copper in a trench; the
ion sticking probabilities which are location dependent were
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supplied by a molecular dynamics code to a Monte Carlo
code that simulated the trench in-fill (Coronell et al., 2000).
Linked codes have been used to simulate metal-oxide semi-
conductor field effect transistors (MOSFETs) in which a
Monte Carlo code computes the electron transport across the
MOS which is sent to a finite element (continuum) code that
computes the potential and electric field distribution (Hadji
et al., 1999). The output of the finite element code was sent
back to the Monte Carlo code, and the calculations were re-
peated iteratively until convergence was obtained.Gobbert
et al. (1997)simulated low-pressure chemical vapor de-
position by linking a reactor scale code, a feature scale
code, and a mesoscale code that mediated the linkage
between the other codes.Pricer et al. (2002)linked a
coarse-grained kinetic Monte Carlo (KMC) code and
a finite difference (FD) code to simulate copper elec-
trodeposition in a variety of surface geometries and
studied the additive effects on morphology evolution.
Drews et al. (2004)developed a code-coupling algo-
rithm that mediated the boundary conditions dynamically
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passed between the KMC and FD codes, to suppress nu-
merical instabilities and improve the accuracy of the linked
simulation.

When dynamically coupling codes, it is possible for the
codes that solve the individual continuum or non-continuum
models to be numerically stable, while the dynamic coupling
of the individual codes is numerically unstable (Raimondeau
and Vlachos, 2002). As an illustrative example, consider the
multiscale simulation of the copper electrodeposition pro-
cess (seeFig. 1), which is used in the manufacture of on-
chip interconnects for semiconductor devices (Andricacos,
1999). The final product quality is determined by deposit
shape and surface morphology, which has a characteristic
length scale on the order of nanometers to microns. An ac-
curate description of the deposition process should simulta-
neously capture the macroscopic transport phenomena of all
species in the bulk and the surface phenomena at the work-
ing electrode, to resolve key structural properties of copper
deposits. The time scales characterizing the deposition pro-
cess range from a few milliseconds in the electrolytic solu-
tion to nanoseconds at the electrode surface.

Fig. 2 shows the information flow between a dynami-
cally coupled FD and KMC simulation code for this process
(Drews et al., 2004). The FD code simulates a 2D contin-
uum model for the diffusion and migration of the electrolyte
species in the fluid boundary layer, which is described by
the material balance for each species and the electrical neu-
trality condition:

�ci
�t
= ∇ · (Di∇ci)+ ziF∇ · (uici∇�), (1)

∑
i

zici = 0 (2)

with boundary conditions:

Top: ci = c∞i , �= 0,

Bottom: Ni =−ziuiF ci∇�−Di∇ci,
Sides: Periodic,

where ci,Di , and zi are the concentration, the diffusion
coefficient, and the ionic charge of speciesi, respectively,Ni

is the species flux at the bottom boundary of the FD domain,
F is the Faraday’s constant,� is the solution potential, and
the subscript∞ denotes the bulk condition.

The KMC code describes the evolution of the deposit
shape and surface morphology. On the surface, the cupric
ions undergo two charge-transferred reactions:

Cu2+ + e− → Cu+, (3)

Cu+ + e− → Cu. (4)

The cuprous ions are allowed to diffuse freely on the sur-
face to find favorable energy sites before reduction to cop-
per. The simulation domain was coarse-grained to reduce
the excessive computational cost. The KMC code simulates

Fig. 1. Electrochemical process for manufacturing on-chip copper inter-
connects, in which a rotating disk creates a boundary layer above the
wafer surface (not drawn to scale).
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Fig. 2. Dynamic coupled FD–KMC codes used to simulate an electrode-
position process:� is the surface overpotential, andj is the current density.

the electrodeposition phenomena by considering the likeli-
hood of various actions (e.g., adsorption, surface diffusion,
reaction) that can occur at each MC time step (seeDrews
et al., 2004for details).

At each coupling time instance, the KMC code passes to
the FD code the vector of species concentrations,c, at the
interface between the FD and KMC spatial domains, and the
FD code passes the vector of interface fluxes,f, to the KMC
code. The dynamically coupled codes with a coupling time
step of 5 ms showed the presence of a numerical instability
(seeFig. 3). Choosing a much smaller time step to avoid
the numerical instability would make the coupled simulation
very computationally expensive without providing enhanced
resolution of time scales in the FD code (Drews et al., 2004).

This paper shows how numerically stable code-coupling
algorithms can be designed using control theory. First, it is
shown how to write a multiscale simulation code in the op-
erator form used in systems theory (shown inFig. 4). Then
nonlinear systems theory is used to make precise statements
regarding the well-posedness and numerical stability of dy-
namically coupled simulation codes. These statements in-
clude a constructive procedure for verifying that the dynamic
coupling of simulation codes is well-posed and a sufficient
condition for the numerical stability of dynamically coupled
simulation codes. Then control theory is used to provide
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Fig. 3. An interface concentration,ci , as a function of time, indicating a
numerical instability (for details, seeDrews et al., 2004).
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Fig. 4. Coupled codes written in operator form, withxt = [xT
1,t xT

2,t ]T
for x = u, e, y.

guidance for the design of numerically stable algorithms
for dynamically coupling simulation codes. The results are
illustrated by application to the multiscale simulation of
the electrodeposition of copper into a trench.

2. Writing multiscale simulation codes in operator form

Any interconnection of dynamically coupled simulation
codes can be written in operator or “block diagram” form.
Each block represents an operator between the input and
output of each simulation code, and the lines between the
blocks represent the transfer of information between simu-
lation codes. This approach is applicable regardless of the
time scales, length scales, or numerical algorithm used in
each simulation code, including whether each simulation
algorithm is deterministic or stochastic. To illustrate these
points, consider the dynamic coupling used in the multiscale
simulation of the copper electrodeposition problem inFig.
2. The input–output behavior of the FD code can be written
asf = HFDc where the operatorHFD is the mapping be-
tween the inputs and outputs of the FD code. To write the
KMC code in operator form, note that it has an additional

input which is implicit in any Monte Carlo code (not shown
in Fig. 2), which is the random signalϑ used to select be-
tween possible events in the KMC code. In this particular
application, the KMC domain includes events that occur at
much smaller time scales than the FD domain, so the KMC
code iterates for many thousands of iterations before send-
ing its outputs to the FD code. The input–output behavior
of the KMC code can be written asy2=HKMCe2, where

e2= [f T �T ϑT ]T and y2= [cT jT ]T.
The dynamically coupled code is written in the block dia-
gram form inFig. 4 by defining

H1=
[
HFD 0

0 0

]
, H2=HKMC, y1= [f T 0T]T,

e1= y2, u1= 0, u2= [0T �T ϑT ]T, and

e2= u2+ y1,

where 0 is the vector of zeros defined so that the dimensions
are consistent.1

3. Well-posedness of dynamically coupled simulation
codes

As the simulation proceeds, each signal (e.g.,e, y, andu
in Fig. 4) is a sequence of the formx = {xt , t = 0,1, . . .},
where the indext corresponds to the time instant in which
the simulation codes pass information, withxt belonging to
the real vector space of dimensionn, denoted byRn. The
first question that arises in the analysis of dynamically cou-
pled simulation codes is whether their interconnection is
well-posed, that is, whether all signals exist and are unique
for any choice of inputs to the coupled codes. For example,
the coupling inFig. 4 is well-posed if the solutions for the
sequences{et } and{yt } exist and are unique for any choice
of sequence{ut }. A simulation code iscausalif the value of
the output of timet depends only on the values of the inputs
up to timet. Any reasonable implementation of a simulation
code for a physical system will be causal. A simulation code
is strictly causalif the output at timet is a function only of
the simulation inputs for the times strictly less thant. Strict
causality is equivalent to having the simulation output re-
quire some time to respond to changes in its input. Any sim-
ulation code that uses an explicit solver for time-stepping

1A control engineer would refer to the dynamic coupling inFig. 2
as beingmulti-rate, in that many events occur in the KMC code before
the interface concentrations are passed to the FD code. This results in
no change in the operator representation in the system, provided that the
stochastic signal,ϑ, which changes at the much shorter time interval of
the KMC code, is stacked into a vector and the operatorHKMC refers
to the mapping from the inputs to outputs of the KMC code at each
coupling time instance. Then the operator form represents the dynamics
at the coupling time instances rather than the KMC time instances. This
is a standard approach for addressing multi-rate systems using single-rate
analysis, referred to in the literature aslifting (Qiu and Tan, 1998).
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is strictly causal. Theorem 2 byVidyasagar (1980)gives a
constructive procedure for testing the well-posedness of an
arbitrary interconnection of discrete-time nonlinear opera-
tors. When applied to an arbitrary interconnection of simu-
lation codes, the sufficient conditions for well-posedness are
that: (i) all simulation codes are causal, (ii) some are strictly
causal, and (iii) a reduced digraph constructed from this in-
formation as well as the pathways of information flow be-
tween codes does not contain any cycles or self-loops (see
Vidyasagar, 1980for details). The following lemma special-
izes the conditions to the interconnection inFig. 4.

Lemma 1. The coupled system in Fig.4 is well-posed if
both simulation codesH1 andH2 are causal and one of the
simulation codes is strictly causal.

4. Numerical stability of dynamically coupled
simulation codes

The next question arising in the analysis of dynamically
coupled simulation codes is whether the interconnection of
simulation codes is numerically stable. Forx ∈ Rn, the
vectorp-norm ofx = [x1 x2 · · · xn]T is defined by‖x‖p =(∑n

i=1 |xp
i |

)1/p
for p ∈ [1,∞), and‖x‖∞=max1� i�n|xi |.

For the infinite sequencex={xt , t=0,1, . . .} with xt ∈ Rn,
the lp-norm ofx is defined by‖x‖lp =

(∑∞
t=0 ‖xt‖p

)1/p for
p ∈ [1,∞), and‖x‖l∞ = supt=0,1,...‖xt‖∞. The spacelp is
defined as the set of all discrete signalsx={xt , t=0,1, . . .}
whoselp-norm is bounded. Now stability can be defined.

Definition 1. 2 Let x ∈ lp. Then the operatorH is lp-stable
with finite gain�(H) if there exist non-negative constants
�(H) and�(H) such that‖Hx‖lp ��(H)‖x‖lp + �(H).

For brevity, the term “lp-stable” is used in this paper to
refer to “lp-stable with finite gain”. The integerp in the above
definitions is selected as a matter of convenience. Checking
whether a simulation code isl∞-stable is especially easy to
test, since all this means is that the simulation outputs are
bounded for bounded simulation inputs. Another relatively
easy check is whether a simulation code isl2-stable, as this
just means that the simulation outputs have bounded energy
for all simulation inputs with bounded energy, where this
notion of energy is a generalization of energy as taught in
thermodynamics.

For brevity, the focus here is on the coupling of two sim-
ulation codes that pass updated boundary conditions at a
shared interface between the physical domains simulated by

2 This definition of lp-stability is more general than that most com-
monly used in control theory (e.g.,Zhou et al., 1996), which assumes
that �(H)= 0. The more general definition is needed for the application
of nonlinear systems theory to simulation codes because most simulation
codes do not produce a zero-norm output for a zero-norm input. For ex-
ample, for the FD code inFig. 2, a zero interface concentration does not
imply a zero interface flux.

1e1
y

2e 2
y+ 

+ 

u2

u1H1

H2

F 

Fig. 5. Interconnected system that incorporates the code-coupling filterF.

the two codes. Similar results hold when more than two
simulation codes are dynamically coupled, including when
there is spatial overlap between domains. The following is
one of the classic results of nonlinear stability theory.

Theorem 1 (Small Gain Theorem). Consider the intercon-
nected system in Fig.4. Suppose that the operatorsH1
andH2 are causal andlp-stable: ‖H1x‖lp ��(H1)‖x‖lp +
�(H1), ‖H2x‖lp ��(H2)‖x‖lp+�(H2), where�(H1), �(H2),
�(H1),�(H2)�0 andp ∈ [1,∞]. Then the system in Fig.
4 is lp-stable if�(H1)�(H2)<1.

Theorem 1 provides a sufficient condition for the numer-
ical stability of two dynamically coupled simulation codes.
As an example application, for the coupled KMC–FD codes
described inFig. 2, both simulation codes are causal since
the codes were constructed from first-principles models,
andl∞-stable since the codes produce bounded outputs for
bounded inputs (each individual code is numerically stable
and the physical systems do not have variables that “blow
up”). Then Theorem 1 gives that a sufficient condition for
numerical stability is that�(HFD)�(HKMC)<1, which is
the product of the gains for the individual simulation codes.

As the practical application of this result, it is well-known
that introducing a filter can reduce the gain of a system,
that is, a filterF can be designed such that�(FHi)< �(Hi).
This suggests that inserting a filter intoFig. 4, to giveFig.
5, may numerically stabilize a dynamically coupled simu-
lation code. This is precisely the approach taken byDrews
et al. (2004)to numerically stabilize the coupled FD–KMC
simulation codes inFig. 2. The next section applies control
theory to guide the design of this filter,F, to numerically
stabilize the dynamically coupling of two simulation codes,
while improving their accuracy in simulating the true dy-
namics of the multiscale system.

5. Design of a numerically stable code-coupling
algorithm

Although the overall approach taken here applies to
general interconnections of coupled simulation codes, for
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Fig. 6. Interconnected systems with perturbations used in the filter analysis.

brevity and illustration purposes, this paper will focus on
the application to the coupled codes inFigs. 2and4. In this
sectionH1 andH2 in Fig. 4 refer to the operators describ-
ing the real physical systems, withH1c = (I + W1�1)H1
and H2c = (I + W2�2)H2 referring to the operators de-
scribing the corresponding simulation codes which provide
numerical approximations of the input–output behavior of
the real physical systems. As is standard in robust control
theory (Zhou et al., 1996), �i are unitary norm-bounded
perturbation operators with weightsWi selected to be min-
imum phase and stable linear time invariant operators that
quantify the approximation error between the real physi-
cal systems and the corresponding simulation codes. The
weightsWi have a low response at low frequencies (which
means that the simulation codes accurately capture long
time behavior) and high response at high frequencies (where
the simulation codes are expected to be less accurate). The
example demonstrates how these weights can be designed
to incorporate the error contribution from the time delay in
the information passing between the codes.

The following assumptions are made: (i) the operators
H1, H2, F,W1,W2,�1, and�2, arelp-stable, (ii) the inter-
connection inFig. 4is well-posed andlp-stable. Assumption
(ii) implies that the variables in the real physical system are
well-posed and do not “blow up” for bounded inputs. As is
typical when studying robust control problems, linear sys-
tems theory will be used to design a compensator (in this
case, the filterF) based on linearizations of the nonlinear
operators, so henceforthH1 andH2 refer to the linearized
operators.

With the definitionsy = [yT
1 yT

2 ]T andu = [uT
1 uT

2 ]T in
Fig. 4, the mapping fromu to y, y =NT u, is given by

NT =
[

(I −H1H2)
−1H1 (I −H1H2)

−1H1H2
H2(I −H1H2)

−1H1 H2(I −H1H2)
−1

]
, (5)

whereI is the identity operator of appropriate dimensions.
Assumption (ii) implies that the operatorNT is lp-stable. It is
assumed that the coupled simulation codes are numerically
unstable, so that the interconnection inFig. 4is notlp-stable
whenH1 andH2 are replaced byH1c andH2c. The goal of
the filter F in Fig. 6 is to numerically stabilize the coupled
codes, which means to stabilize the interconnection inFig.
6 for all allowed perturbations�i , while maintaining con-

sistency between the real physical system and the coupled
simulation codes. In general a filter could be located at the
output of each simulation code; here the filter was located
only at the output of the KMC code, because the KMC code
is not as accurate as the FD code in describing the behavior
of the real physical system, and that such a filter location has
the additional advantage of directly suppressing the effects
of KMC simulation noise on the dynamics of the coupled
codes.

Theorem 2. Consider the block diagram in Fig.6 under
Assumptions(i)–(ii). Let d1, d2 ∈ R1 be positive. Suppose
that there exists a constantk >0 such that the following
conditions hold:

(a) the interconnection in Fig.4 is well-posed and
lp-stable,

(b) the interconnection in Fig.5 is well-posed and
lp-stable,

(c) max{�(W1), �(FW2)}<k,

(d) infd1,d2>0 �(DN1D
−1)<1/k, where D =

[
d1I

d2I

]
and

N1=
[
(I−H1FH 2)

−1H1FH 2 (I−H1FH 2)
−1H1

H2(I−H1FH 2)
−1 H2(I−H1FH 2)

−1H1

]
.

(6)

Then the interconnection in Fig.6 is lp-stable for all unitary
norm-bounded perturbations, �i ∈ {�: �(�)�1,�(�)=0}.

Proof. The input–output mapping inFig. 6can be written as

ŷ = (I −N1Nw�)−1N2u, (7)

where

Nw =
[
W1

FW2

]
, �=

[
�1

�2

]
,

N2=
[

(I −H1FH 2)
−1H1 (I −H1FH 2)

−1H1FH 2
H2(I −H1FH 2)

−1H1 H2(I −H1FH 2)
−1

]
.

(8)

Condition (b) implies thatN1 andN2 are lp-stable. Hence
the interconnection inFig. 6 is lp-stable if and only if

(I −N1Nw�)−1 is lp-stable

↔ D−1(I −DN1D
−1DNw�D−1)−1D is lp-stable

↔ (I −DN1D
−1DNw�D−1)−1 is lp-stable

← �(DN1D
−1)�(DNw�D−1)<1

↔ �(DN1D
−1)�(NwD�D−1)<1

← �(DN1D
−1)�(Nw)�(D�D−1)<1

← �(D�D−1)<1, �(Nw)< k, and

�(DN1D
−1)<1/k

← �(�)<1, �(W1)< k, �(FW2)< k, and

�(DN1D
−1)<1/k,
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where the latter part of the second relation follows from
Theorem 1. �

Recall that condition (a) in Theorem 2 just states that the
interconnection of the real physical systems is well-posed
and does not have signals that “blow up” with time. As dis-
cussed earlier, condition (a) is a mild condition. Condition
(b) states that the interconnection of the real physical sys-
tems is well-posed and does not have signals that “blow up”
with time when a filter is introduced into the system. For
the design reasons discussed below, the filterF is selected
to be low pass. If the filter is selected to bem first-order
linear time-invariant systems in series, then a physical pro-
cess with this transfer function ism equivalent well-mixed
systems in series. That is, the introduction of this filterF
into the physical system would introduce a lag into the dy-
namics of the interconnected system, which for a physical
system is not likely to introduce instability. That is, condi-
tion (b) is very likely to hold if condition (a) holds. The next
lemma shows that condition (b) in Theorem 2 is obtained
“for free” when lp-stability of the interconnection inFig. 4
can be proven using the small gain theorem (Theorem 1).

Lemma 2. Suppose that the interconnection in Fig.4 is
well-posed andlp-stable, that the operatorsH1 andH2 are
lp-stable and causal, the filter F is strictly causal, and that
�(F )�1 and�(H2H1)<1. Then the interconnection in Fig.
5 is well-posed andlp-stable.

Proof. The strict causality ofF with Lemma 1 implies that
the interconnection inFig. 5 is well-posed. The operatorN2
in Eq. (8) can be written in terms of(I−FH 2H1)

−1 or (I−
H2H1F)−1 using the identities(I−H1FH 2)

−1H1=H1(I−
FH 2H1)

−1 and(I −H2H1F)−1H2=H2(I −H1FH 2)
−1.

With Theorem 1, this implies that the interconnection in
Fig. 5 is lp-stable if�(F )�(H2H1)<1. �

Condition (c) of Theorem 2 quantifies the differences in
input–output behavior of the real physical systems and the
simulation codes, and motivates the positioning of the filter
F at the output of the KMC code. The weightsWi should be
selected to be high pass for most simulation codes, since the
input–output behavior of a simulation code deviates from
that of the real physical system for the shortest time scales.
This behavior, which occurs for nearly any model for a real
physical system, is referred to asunmodeled dynamicsin the
controls literature. In the coupled KMC–FD code, the un-
certainties associated with the KMC code were rather large,
so the filterF is positioned so that it can reduce the effects
of these uncertainties on the coupled system. The filterF
should be tuned based on condition (c), sinceF has a more
direct effect on the gain in condition (c) than the gain in con-
dition (d). Condition (c) indicates that the filterF should be
designed to suppress the effects of the uncertainties of the
KMC code, which are quantified by the high pass weight
W2. Since bothW2 and F are linear time invariant, even

when the operatorsHi are nonlinear, the filterF can be de-
signed by plottingFW2 in the frequency domain, and se-
lecting the dynamics ofF to roll off at the frequencies where
the uncertainties in the KMC code are considered likely to
be significant (where|W2(e−j�)| is large), so that�(FW2)

is significantly less than�(W2).
Algorithms exist for solving the optimization in condition

(d) (e.g., seeZhou et al., 1996). Conditions (c) and (d) can
be used to show that the simulation codes are numerically
stabilized if sufficient filtering is performed. The next result
considers tuningF for numerical accuracy.

Theorem 3. Define M byŷ − y =Mu and �2(M) as the
gain of M forp = 2, where y is the vector of outputs of the
real physical system defined in Fig.4 and ŷ is the vector of
outputs defined in Fig.6. Then�2(M)< k if the conditions
of Theorem2 are satisfied withp = 2 and

inf
d1,d2 �=0

�2

([
d1I

d2I

] [
N1Nw N2

k−1N1Nw k−1(N2−NT )

]

×
[
d−1

1 I

d−1
2 I

])
<1. (9)

Proof. With M = (I −N1Nw�)−1N2−NT , block diagram
manipulation and robust performance theory (Zhou et al.,
1996) gives the condition in (9). �

When the perturbations are negligible(Nw ≈ 0), then
Eq. (9) simplifies to

�2(N2−NT )< k. (10)

Hence a filter designed to minimize the errorŷ − y should
minimize the left-hand side of Eq. (10). Consequently, a
filter designed to barely achieve numerical stability of the
coupled codes does not yield simulation results that are most
consistent with the real physical system.

As the operatorNT reduces toN2 whenF = I , the code-
coupling filter should be designed to equal the identity op-
erator except for frequencies where the weightW2 is large.

For the electrochemical system, the weightW2 designed
to cover the�t=5 ms temporal mismatch between the codes
is plotted inFig. 7.3 Fig. 8 shows the interface concentra-
tion of copper ions as a function of time after insertion of
the first-order filter between the KMC and FD codes de-
signed according to the above design rules (low-pass filter
with steady-state gain of one that rolls off for frequencies
where the weightW2 is large).Fig. 8 indicates that the fil-
ter successfully suppresses the numerical stability that arose
when directly coupling the FD and KMC codes.

3 Details on the design of a weight to bound time delay variation are
given on pp. 119–120 ofMorari and Zafiriou (1989).
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Fig. 8. The interface concentration of copper ions as a function of time
has been stabilized by inserting a filter between the KMC and FD codes.

6. Conclusions

This paper showed how control theory can be used to
design numerical algorithms for coupling simulation codes.
Nonlinear systems theory provided a constructive procedure
for testing whether an arbitrary interconnection of simulation
codes is well-posed, and a sufficient condition for the nu-
merical stability of dynamically coupled simulation codes.
Linear systems theory provided specific design requirements
for a code-coupling filter for a pair of dynamically coupled
FD-KMC codes for simulating a multiscale copper elec-
trodeposition process. Systems theory elucidated the trade-
off in filter design between providing numerical stability and
numerical accuracy.
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