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Abstract

New applications in materials, medicine, and computers are being discovered where the control of events at the molecular and nanoscopic
scales is critical to product quality, although the primary manipulation of these events during processing occurs at macroscopic length
scales. This motivates the creation of tools for the engineering of multiscale reacting systems that have length scales ranging from the
atomistic to the macroscopic. This paper describes a systematic approach that consists of stochastic parameter sensitivity analysis, Bayesian
parameter estimation applied to ab initio calculations and experimental data, model-based experimental design, hypothesis mechanism
selection, and multistep optimization.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

New applications in materials, medicine, and comput-
ers are being discovered where the control of events at the
molecular and nanoscopic length scales is critical to product
quality, although the primary manipulation of these events
during processing occurs at macroscopic length scales (e.g.
temperature of the system, valves on flows into and out
of the system, applied potential between two electrodes).
These applications include nanobiological devices, micro-
machines, nanoelectronic devices, and protein microarrays
and chips (Drexler, 1992; Hoummady and Fujita, 1999; Lee
et al., 2003; Prokop, 2001; Sematech, 2003; Tsukagoshi
et al., 2002).While many of these devices are designed using
highly simplified models or trial-and-error experimentation,
recent advances in computer speed and memory, numeri-
cal algorithms, and sensor technologies suggest that a more
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systematic approach to the design and control of these de-
vices is possible.
The potential applications motivate the creation of tools

for the engineering of multiscale reacting systems that have
length scales ranging from the macroscopic to the atom-
istic. This paper describes the challenges to building such
multiscale systems tools, which include uncertainties in
the physicochemical mechanisms as well as the values of
thermodynamic and kinetic parameters, high computational
cost in the simulation of model equations that can span a
wide range of time and length scales, lack of manipulated
variables and direct measurements of most properties at
the nanoscale during processing, and the inapplicability
of most existing systems engineering tools to address sys-
tems described by noncontinuum and dynamically coupled
continuum-noncontinuum models.
This paper describes an emerging approach to addressing

these challenges to the engineering of multiscale reacting
systems that consists of stochastic parameter sensitivity
analysis, Bayesian parameter estimation applied to ab initio
calculations and experimental data, model-based experimen-
tal design, hypothesis mechanism selection, and multi-step
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optimization. This enablesmultiscale systems to be designed
and controlled based on the numerical algorithms that are
most appropriate for simulating each of the length scales of
the process.

2. Challenges and requirements

Here the challenges associated with the design and con-
trol of multiscale systems are described, which specify the
requirements for multiscale systems tools. To make the de-
scription of the challenges as concrete as possible, the man-
ufacture of on-chip copper interconnections in electronic
devices is used as an illustrative example. In this process,
electrodeposition is used to deposit copper on surfaces and
in trenches and vias. The product quality of the deposit is a
function of nucleation at the atomic scale, surface morphol-
ogy at the nanoscale, shape evolution at the nano- to micro-
length scales, and deposit uniformity over the wafer surface.
This electrodeposition process involves phenomena that are
simultaneously important over 10 orders of magnitude in
time and length scales (Alkire andVerhoff, 1998).According
to the International Technology Roadmap for Semiconduc-
tors (Sematech, 2003), the manufacture of next-generation
interconnects will require design and control of all these
length scales.
Fig. 1 is a schematic of the electrodeposition of copper

into a trench, in which Cu2+ ions in solution diffuse and
migrate to the surface in response to a potential applied be-
tween the reference and working electrodes. Although the
introduction of organic chemical additive cocktails to the
solution to produce void-free copper deposits in sub-100nm
trenches is well established, the precise physicochemical
mechanisms of the interactions of these additives with the
copper surface are not well understood, making it difficult to
design new additive cocktails able to produce void-free de-
posits in smaller features. A challenge in applying systems
principles to these and other multiscale systems is that the
underlying mechanisms, as well as the thermodynamic and
kinetic parameters associated with the steps in these mech-
anisms, are uncertain.Multiscale systems tools are needed
that can handle uncertain mechanisms, as well as uncertain
parameters.
Another challenge to engineering multiscale systems is

that the codes used to simulate these systems are compu-
tationally expensive. For example, considerFig. 2, which
is a schematic of a multiscale simulation model for the
electrodeposition of copper into trenches. Chemical reac-
tions and the diffusion and migration of species in the so-
lution boundary layer are described by a system of partial
differential-algebraic equations, which are typically simu-
lated using finite differences or finite elements. The height
of the boundary layer is typically∼ 50�m and a typi-
cal time step for such a code is∼ 1ms. The nucleation,
surface chemistry, and roughness evolution of the trench
surface are most accurately simulated using noncontinuum

Fig. 1. Electrochemical process for manufacturing on-chip copper inter-
connects, in which a rotating disk creates a boundary layer above the
wafer surface (not drawn to scale).

Fig. 2. Multiscale simulation of the electrochemical process for manufac-
turing on-chip copper interconnects (not drawn to scale).

methods such as kinetic Monte Carlo (KMC) simulation.
KMC methods are used to simulate structural properties of
matter that cannot be represented by a macroscopic contin-
uum description. A KMC simulation is a realization of the
Master equation (Fichthorn and Weinberg, 1991):

�P(�, t)

�t
=

∑

�′
W(�′,�)P (�, t)

−
∑

�′
W(�,�′)P (�, t), (1)

where� and�′ are successive states of the system,P(�, t)

is the probability that the system is in state� at timet, and
W(�′,�) is the probability per unit time that the system
will undergo a transition from state�′ to �. For a particu-
lar system being studied, the KMC code chooses randomly
among the possible transitions of the system and accepts
particular transitions with appropriate probabilities. After
each accepted or attempted transition, the time variable is
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incremented by one Monte Carlo time step (typically the
time step is∼ 1ns), and the process is repeated. By select-
ing the probabilities to satisfy certain conditions, the real
time variablet corresponding to the number of Monte Carlo
time steps can be computed.
In Fig. 2the dynamics within the trench was simulated us-

ing a three-dimensional (3D) KMC simulation code, which
tracks adsorption, desorption, bulk and surface diffusion,
and chemical reactions (Drews et al., 2004). To reduce the
computational load, the 3D KMC code was coarse grained,
such that groups of molecules were tracked instead of indi-
vidual molecules (Katsoulaokis et al., 2003), and periodic
boundary conditions were used at all sides of the simulation
domain. Even with these simplifications, it takes∼ 1 day to
perform one simulation run. This greatly limits the number
of simulation runs that a systems tool is allowed to make in
a coupled simulation-optimization algorithm such as used
in control vector parameterization (Ray, 1981). Further, sys-
tems techniques that write the simulation code as an alge-
braic system of equations to be embedded into a structured
nonlinear program (Jockenhovel et al., 2003), are not com-
putationally feasible for multiscale systems, as there would
be >1016 algebraic equations in the structured nonlinear
program.Multiscale systems tools must be much more com-
putationally efficient than most existing systems tools. Note
that the state dimension of KMC codes is very high, while
the numbers of simulation inputs (e.g., applied potential)
and outputs (e.g., surface roughness, fraction of voids) are
much lower.This motivates the creation of multiscale sys-
tems tools that act directly on simulation inputs and outputs,
to keep the computational cost low.
As a further complication, the codes inFig. 2 must be

dynamically coupled when dilute additives are included in
the simulation, as the surface chemistry and transport deter-
mines the amount of depletion of additives in the boundary
layer, and the boundary layer influences the rate that chem-
ical species reach the surface.Multiscale systems tools are
needed that can handle models described by dynamically
coupled continuum and noncontinuum codes.
A characteristic of noncontinuum codes is that their out-

puts typically have significant stochastic fluctuations, which
can be non-Gaussian. For example,Fig. 3is the current den-
sity response from a dynamically coupled KMC-finite dif-
ference simulation of copper electrodeposition in response
to a staircase function of the applied potential. The current
density only takes on discrete values, which are associated
with electron transfer at the copper surface (e.g., Cu2+ ion
gains two electrons to form copper metal). This response is
in sharp contrast to the typical step and staircase responses
reported in the controls literature (Ray, 1981).Althoughmost
existing systems tools are applicable to stochastic models
with Gaussian fluctuations, these tools always assume that
the deterministic part of the model is known.Multiscale
systems tools must be able to address models with large
amounts of non-Gaussian noise, for which a deterministic
model is unavailable.

Fig. 3. Current density response to a staircase function of applied potential
for the dynamically coupled simulation of the electrochemical process for
manufacturing on-chip copper interconnects (each step of the staircase
was 10 s long).

Fig. 4. Atomic force microscopy image of an electrodeposited copper
surface.

Another challenge in multiscale systems is the lack of key
measurements during processing at industrially relevant op-
erating conditions. For example, the only on-line measured
variables for the copper electrodeposition process are tem-
perature and current. There are no concentration measure-
ments at the surface, where the uncertain chemical mecha-
nisms and most of the uncertain parameters are located. The
key measurement data, which are atomic force microscopy
images, are only available at the end of the process (see
Fig. 4). Multiscale systems tools must include experimental
design methods that maximize the information from sensors,
to create models that are predictive.
Another characteristic of multiscale systems is a lack

of manipulated variables at the molecular and nanoscopic
length scales during processing. For example, the only vari-
able manipulated during the electrodeposition process in
Fig. 1 is the applied potential, which is not enough de-
grees of freedom to produce void-free copper in the 0.13�m
trenches used in modern microelectronic devices. Industrial
practice is to introduce additional degrees of freedom in the
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initial conditions, which is done through the selection and
concentrations of organic chemicals added to the solution.
In general,most multiscale systems require that molecular
and nanoscate manipulation be treated as a design focus, to
exploit self-assembly during processing.

3. Systems tools for continuum models

Before looking at multiscale systems tools, it is useful to
review some systems tools developed for continuum models
that address most, but not all, of the challenges of multiscale
systems (seeFig. 5). The first step is the identification of a
model, which is an iterative procedure. The first experiment
is designed using engineering judgment on how to excite
the dynamics of the system, or is computed using initial
estimates of the model parameters and some experimen-
tal design objective such as minimizing the uncertainties
in the parameters. Improved estimates of the parameters and
an associated uncertainty description can be computed from
the dynamic data collected from the experiment and from ab
initio computational chemistry (such as density functional
theory) calculations, using Bayesian parameter estimation
techniques (Gunawan et al., 2003). When several hypoth-
esized physicochemical mechanisms are available, model
selection techniques are used to select which mechanism
is most consistent with the experimental data. The model
parameters and uncertainty description are used to design
the next laboratory experiment, which can be constructed to
further reduce the model uncertainties or to maximize the
ability to distinguish among the multiple hypothesized
mechanisms. Parameter estimates obtained from this iter-
ative procedure can be many orders-of-magnitude more
accurate than estimates obtained from data collected from
trial-and-error experimentation. Once the model parameters
are accurate enough, the simulation model is incorporated
into an optimization algorithm to compute the physical
design variables, initial conditions, startup procedures, set-
point trajectories, and the feedback control system.
These systems tools are well established for continuum

models described by general integro-partial differential al-
gebraic equations (IPDAEs), and have been applied to the
manufacture of photographic chemicals (Matthews and
Rawlings, 1998), pharmaceuticals (Braatz, 2002), and semi-
conductors (Gunawan et al., 2004). The key to the gener-
ality of these tools is that they act directly on the inputs
and outputs of simulation codes, rather than requiring a
particular form for the equations or the numerical algorithm
used to simulate the equations. The numerical algorithms
implemented in the steps inFig. 5 incorporate parameter
sensitivity methods based on finite differences or automatic
differentiation (Feehery et al., 1997; Li et al., 2000). The
parameter sensitivities improve the numerical conditioning
of the systems tools while focusing the modelling effort
towards only the key parameters whose values must be
known with high certainty to produce predictive models.
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Fig. 5. Iterative process of model identification and robust optimization:
u represents all experimental design variables (e.g., initial conditions,
processing conditions, actuator and sensor locations),y represents the
measurements,�i is the vector of model parameter estimates andE�i is
the confidence region for theith hypothesized mechanism,� is the vec-
tor of parameter estimates andE� is the confidence region for the most
likely mechanism,̂u is the optimal control policy (including initial condi-
tions, equipment specifications, operating conditions, actuator and sensor
locations, etc.),K is the optimal controller, andEu is the uncertainty in
the implementation of the optimal control policy, including the effects of
disturbances.

This is especially important when the number of param-
eters is large, as is typical for microelectronics processes
(Gunawan et al., 2003).
In recent years fast techniques have been developed to

quantify the effects of model uncertainties on all states and
outputs for batch and semibatch processes, and to inte-
grate robustness into all design variables. Some of these
techniques have little or no restrictions on the zero dy-
namics, the integro-differential structure of the equations,
the simulation algorithms, or the form of the uncertainties
(Pan et al., 1998; Nagy and Braatz, 2003b). These analysis
algorithms have been incorporated into optimization algo-
rithms to produce designs and controllers that are robust to
the uncertainties (Nagy and Braatz, 2003a).
These systems tools address most of the requirements

for application to multiscale systems, in that non-Gaussian
stochastic behavior and uncertain mechanisms and parame-
ters are taken into account; the tools are computationally ef-
ficient, general purpose, and act directly on simulation inputs
and outputs; experimental design methods are included that
maximize the information from sensors to create predictive
models; and that design and control are optimized simultane-
ously, which enables molecular and nanoscale manipulation
in the design problem to be considered jointly with the ma-
nipulation of the on-line variables by feedback controllers
during processing. These systems tools do not consider all
of the issues particular to models described by noncontin-
uum and coupled continuum and noncontinuum simulation
codes, namely, the lack of an underlying deterministic model
for the noncontinuum simulation codes, and additional
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numerical stability issues that can arise when codes are
linked. The next section discusses some initial steps to
extend these systems tools to address these two additional
requirements of multiscale systems.

4. Noncontinuum and coupled
continuum/noncontinuum codes

For noncontinuum models, the optimizations that occur
in the model-based experimental design, Bayesian param-
eter estimation, hypothesis mechanism selection, and opti-
mal design and control steps inFig. 5are stochastic with no
closed form expression for the underlying deterministic sys-
tem, which implies that averaging techniques (Rusli et al.,
2003) or stochastic simulation algorithms such as simulated
annealing or genetic algorithms are appropriate (Aarts and
Korst, 1989). Such approaches are in contrast to the use of
reduced-order lattices (Lou and Christofides, 2003), which
increasethe noise level of the simulations. We have shown
that even the finite difference calculation of parameter sen-
sitivities typically used in systems engineering algorithms
must be formulated as a stochastic optimization problem,
to obtain parameter sensitivity estimates of the highest ac-
curacy (Drews et al., 2003a). More specifically, the finite
difference expressions for sensitivities reported in textbooks
and papers are derived assuming that the underlying system
can be described as a deterministic Taylor series expansion,
whereas this assumption is invalid for simulations that in-
clude noncontinuum models, whose outputs are stochastic.
A much more accurate and appropriate formulation is to
include a stochastic term in the series expansion, and de-
termine the finite difference expression by solving an opti-
mization problem whose objective is to compute either the
minimum variance or maximum likelihood estimate of the
parameter sensitivity. As in continuum models, these param-
eter sensitivities are a key step needed to reduce the com-
putational expense and improve the numerical conditioning
of the stochastic optimizations that define the systems tasks
in Fig. 5.
Recently we incorporated the stochastic parameter sen-

sitivity algorithm into a multistep optimization algorithm
(Raimondeau et al., 2003), that uses sensitivity analysis to
determine the key parameters, followed by solution map-
ping to parameterize the responses of the simulation model
as low-degree polynomials of the key parameters, and simu-
lated annealing to optimize the key parameters. This revised
algorithm has been used to estimate kinetic parameters as-
sociated with copper electrodeposition from measurements
of the applied potential and the surface using atomic force
microscopy images (seeFig. 4), where the simulation model
consisted of a coarse-grained KMC code dynamically cou-
pled to a finite difference continuum code (Drews et al.,
2003b).
Further, coupled continuum-noncontinuum codes in-

duce an additional systems issue—linkage instabilities

(Raimondeau and Vlachos, 2002). While numerically stable
codes are available for simulating each length scale, nu-
merical instabilities can be induced in the linkage of such
codes by temporal or spatial mismatches at the interfaces
between the codes. Control systems principles can be used
to design conditioners on the dynamic information transfer
between the simulation codes so that linkage instabilities
are suppressed, while self-consistency is maintained (Drews
et al., 2004).

5. Summary

This paper delineated the requirements for multiscale sys-
tems tools posed by the characteristics of multiscale systems,
using the manufacture of on-chip copper interconnections
as a specific example to illustrate the key points. Systems
tools applicable to continuum models were summarized that
satisfy the requirements for multi-scale systems, except for
issues specific to dealing with noncontinuum and coupled
continuum-noncontinuum codes. Extensions of these sys-
tems tools to deal with the requirements of multiscale sys-
tems were described, which incorporated stochastic sensi-
tivity analysis within multistep optimization algorithms.
Although the systems principles are the same for multi-

scale systems as for macroscopic systems, the problem for-
mulations and the numerical algorithms designed to solve
these formulations are different. Further, a new issue arises
in multiscale systems, which is how to address numerical
instabilities that can arise during the linkage of individual
simulation codes. Although advances have been made in
the analysis of noncontinuum codes (e.g.,Gallivan et al.,
2001; Makeev et al., 2002), much more research remains
to be done. More theory is needed to provide a systematic
methodology for the numerical stabilization of multiscale
simulation codes, and on algorithms for Bayesian parame-
ter estimation, model-based experimental design, hypothesis
mechanism selection, and robust optimization.
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