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Abstract

Crystallization is the main separation and purification process for the manufacturing of drug substances. Not only does crystal-
lization affect the efficiency of downstream operations such as filtering, drying, and formulating, the efficacy of the drug can be
dependent on the final crystal form. Advances in simulation and control algorithms and process sensor technologies have enabled
the development of systematic first-principles and direct design approaches for the batch control of crystallization processes. These
approaches address different challenges associated with pharmaceutical crystallization control. This paper provides an overview of
recent technological advances in the in situ control of pharmaceutical crystallization processes. Implementation of the first-principles
and direct design approaches are compared, and their relative merits are explained. Areas of future opportunities for application of
advanced control strategies in pharmaceutical crystallization are presented.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The global pharmaceutical and biotechnology indus-
tries are facing increased pressure to improve process
efficiency and reduce time to market. Reducing time
to market extends the length of time before patent
expiration, and improving process efficiency is impor-
tant in the manufacture of generic drugs and when
large quantities of drugs are needed for life-threatening
diseases (like AIDS) in poor countries. In the biotech-
nology industry, where the production cost is very
high, there is a strong incentive to reduce cost. Tech-
nologies involved in drug discovery, such as combina-
torial chemistry and high-throughput screening, are
shortening the evaluation time of potential drugs and
have received much attention recently [1]. Technologi-
cal advances in the pharmaceutical manufacturing pro-
cesses have not been as thoroughly discussed, but are
also valuable in reducing the time to production as well
as increasing profitability, efficacy, and safety of the
drugs.

Most pharmaceutical manufacturing processes in-
clude a series of crystallization processes to achieve high
purity and to produce the desired final crystal form. The
operating conditions of the crystallization process deter-
mine the physical properties of the products such as the
crystal purity, size, and shape distribution. These prop-
erties determine the efficiency of downstream opera-
tions, such as filtration, drying, and formulating, and
the product effectiveness, such as bioavailability and
shelf-life. For pharmaceuticals that exhibit various poly-
morphs or stereoisomers, the crystallization process also
affects the polymorph produced and the extent of chiral
separation. The solid-state phase and purity of the prod-
uct affect the drug dissolution and toxicity, which are
important from a consumer and regulatory point of
view [2]. Therefore batch-to-batch uniformity and con-
sistency are required. Improved control of crystalliza-
tion processes offers possibilities for better crystal
product quality, shorter process times, and the reduction
or elimination of compromised batches.

Recent trends in the early stage development of phar-
maceutical crystallization processes include the use of
smaller size crystallizers, automation of lab reactors,
and running experiments in parallel using multiple small
reactors [3]. This is motivated by limited availability of
pharmaceutical and higher throughput desired during
the development stage. Real-time analysis using in situ
sensors are essential as sampling becomes highly undesir-
able with smaller size crystallizers. Various spectroscopic
instrumentation are available for in situ monitoring dur-
ing the operation of crystallization processes (see [4,5]
and references cited therein). Attenuated total reflec-
tion-Fourier transform infrared (ATR-FTIR) spectros-
copy enables the accurate measurement of solution
concentrations for crystallization processes [6–12],
including the multi-solvent multi-solute organic systems
commonly encountered during pharmaceutical crystalli-
zation [13]. ATR-FTIR spectroscopy has also been
applied to the detection of the metastable limit, monitor-
ing during polymorphic transitions, and evaluation of
impurity concentrations during crystallization [12,14].
Both near-IR spectroscopy [15] and Raman spectroscopy
[16,17] coupled with fiber optics have been used for the in
situ detection of various polymorphs. Raman spectros-
copy has also been used for monitoring solution concen-
tration during protein crystallization [18,19].

Laser backscattering, also known as Focused Beam
Reflectance Measurement, is widely used in the pharma-
ceutical industry to measure changes in the crystal size
and shape [4]. It measures the chord length distribution
(CLD), which is a close function of the crystal size dis-
tribution [20]. Laser backscattering has been applied to
the detection of nucleation [12,21,22] and the monitor-
ing of fines dissolution [23] during crystallization pro-
cesses. Other techniques capable of online particle size
characterization during crystallization include ultrasonic
spectroscopy [24] and laser diffraction [25,26]. As a
complement to particle size characterization techniques,
process video microscopy is used to image the crystals
as they grow in solution, to visualize the extent of
agglomeration and changes in crystal size and shape
[4,27]. In recent years most of these techniques have
been used to design new pharmaceutical crystallization
processes and to troubleshoot problems with existing
processes.

Even with these advances in in-process sensors and a
better understanding of the crystallization mechanisms
at the molecular level, as exemplified by improved crystal
shape predictions [28], pharmaceutical crystallization
processes can be challenging to control due to variations
in solution thermodynamics and kinetics induced by con-
taminants, complex nonlinear dynamics associated with
nonideal mixing and dendritic growth, and unexpected
polymorphic phase transformations [29]. Most crystalli-
zation processes in the pharmaceutical industry are
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designed and controlled based on trial-and-error experi-
mentation, which can be time consuming and expensive.
Recently in-process sensors have enabled the develop-
ment of systematic first-principles (model-based) and di-
rect design (measurement-based) approaches for the
control of industrial crystallization processes. This paper
describes these approaches and efforts toward automa-
tion and the integration of various systems techniques
to achieve the rapid development of pharmaceutical crys-
tallization processes. Since many of the fundamental
mechanisms for the crystallization of pharmaceuticals
are similar to those for biochemicals and proteins
[30,31], the concepts presented here are also applicable
to the crystallization of industrial enzymes and
biopharmaceuticals.
Fig. 1. A schematic of a batch crystallizer. The crystals are not drawn
to scale.
2. First-principles approach

The fundamental driving force for crystallization
from solution is the difference in chemical potential be-
tween the solution and the solid phase; however, it is
more convenient to write the driving force in terms of
the supersaturation, which is the difference between
the solution concentration and the saturation concentra-
tion. Supersaturation is typically created by cooling,
evaporation, and/or addition of antisolvent, including
changing the pH by addition of acid or base (see Fig.
1). The limited temperature stability of most pharma-
ceuticals precludes the use of evaporation and limits
the temperature range that can be used during cooling
crystallization. For the crystallization of biochemicals
and biomolecules, such as amino acids and proteins,
supersaturation is created by similar methods used for
pharmaceuticals [30,31]. It is important to control the
extent of supersaturation during crystallization since
the size, shape, and solid-state phase of the product crys-
tals are dependent on the supersaturation profile
achieved during the crystallization process.

The first-principles approach to crystallization con-
trol is the most widely studied [4,32], where a model con-
structed from material and energy balances are used to
optimize some function (e.g., mean crystal size) of the
crystal size distribution. An overview of the first-princi-
ples approach is described below. For a detailed review
of model development for solution crystallization, the
readers are referred to review articles on this subject
[32,33]. The population balance equation describes the
material balance that accounts for the distribution of
different size crystals in the crystallizer. To simplify the
model, most batch crystallization studies in the litera-
ture only consider nucleation and growth kinetics (e.g.,
no agglomeration, no dendritic growth), ignore shape
changes, and study the optimization of the temperature
profile for a cooling crystallizer. A simplified population
balance equation for a well-mixed batch process is
of
ot

þ
Xn

j¼1

o

orj
ðGjðrj; S; T ; hgÞf Þ

¼ Bðf ; S; T ; hbÞ
Yn
j¼1

dðrjÞ ð1Þ

where T is the temperature, S is the supersaturation,
f(r1, . . ., rn, t) is the crystal size distribution, ri is the ith
characteristic growth dimension, Gi = dri/dt is the
growth rate along ri, B is the nucleation rate which is
typically some integral function of f, d is the Dirac delta
function, hg is a vector of growth kinetic parameters,
and hb is a vector of nucleation kinetic parameters.
The nucleated crystals are assumed to have zero size,
which is reasonable because the distribution is not
significantly affected if the actual size of a nucleus is
used.

Although software is available for simulating these
equations (e.g., see review [4]), a simplified moments
model is typically used for identifying the kinetic para-
meters. This model is obtained by multiplying both sides
of (1) by powers of ri and integrating [34]. For crystals
with one characteristic growth dimension and size-inde-
pendent growth, these moment equations are:

dl0

dt
¼ Bðlk; S; T ; hbÞ ð2Þ

dlj

dt
¼ jGðS; T ; hgÞlj�1; j ¼ 1; 2; . . . ð3Þ

where the moments

ljðtÞ ¼
Z 1

0

rjf ðr; tÞdr ð4Þ

are related to physical properties of interest such as crys-
tal number, length, area, and volume. The value of k, in
Eq. (2), is typically 2 or 3. The number of moments
needed to describe the crystallization process depends



Fig. 2. Iterative procedure for model identification and optimal control design: u is a parameterization of all experimental design variables (e.g.,
initial conditions, processing conditions, sensor locations), y is a vector of measurements, hi is the vector of model parameter estimates and Ehi is the
confidence region for the ith hypothesized mechanism, h is the vector of selected parameter estimates and Eh is its associated confidence region, and û
is the optimal control policy (including initial conditions, equipment specifications, operating conditions, actuator and sensor locations, etc.).
Software implementing these steps is available for download [78].
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on the nucleation mechanism that is dominant in the
crystallizer. Assumptions are typically made so that
the moment equations are closed, that is, there exists
an integer j such that derivatives of the lower order mo-
ments do not depend on the higher order moments. This
enables the integration of a small finite number of lower
order moment equations without requiring the integra-
tion of the equations for the higher order moments.
Hence a small number of sparse ordinary differential
equations are solved instead of the partial differential
equation (1). The model is completed by a material
balance on the solute and an energy balance for the
multiphase system; these are integrodifferential equa-
tions that can be written in terms of low order moments
[35].

A data-efficient method for model identification is an
iterative procedure involving optimal experimental de-
sign, automated batch experiments, parameter estima-
tion, and model selection (see Fig. 2). This procedure
is repeated until the model parameters are accurate
enough for use in dynamic optimization and control
[35,36]. The procedure has been applied to various crys-
tallization processes including those with shape change
[35,37,38], and to pharmaceuticals [39]. The follow-
ing describes the model identification process in more
detail with respect to pharmaceutical batch crystal-
lization.

2.1. Experimental design and data collection

The experimental design variables for batch crystalli-
zation can include mixing speed, mass and distribution
of seed crystals, temperature and solvent addition pro-
files, and the final batch time. The initial batch experi-
ment for the model identification process shown in Fig.
2 is designed using initial estimates of the model para-
meters and some experimental design objective such as
minimizing the uncertainties in the model parameters
[40]. Initial estimates may come from prior experience
with the pharmaceutical to be crystallized. Alternatively,
the initial estimates of kinetic parameters may come from
the application of parameter estimation to data col-
lected during the determination of the metastable
zone [22,41]. When initial estimates are not available,
the first batch experiment can be designed using engineer-
ing judgment on how to excite the dynamics of the
system.

The temperature, solution concentrations, and crystal
moments or ratios of moments, which is a function of
particle size distribution, are measured during the batch
experiment. These data are used for estimation of kinetic
parameters [42,43] as described in the next section. In
the pharmaceutical industry, using ATR-FTIR spectro-
scopy to measure the solution concentration has become
commonplace [7,11,12,44]. For the determination of the
crystal moments, a particle characterization technique,
such as laser backscattering, and an appropriate compu-
tational method is used. The crystal moment data can be
estimated from weighted normalization of the laser
backscattering data [20] or by using chemometrics to re-
late laser backscattering data to moments [45] (see Fig.
3). The weighted normalization is easy to apply and
has been used in industry but does not give the highest
accuracy. Correlating laser backscattering to moments
using chemometrics, on the other hand, is not very prac-
tical as this requires a large amount of calibration exper-
iments. The most theoretically justified method to
extract moments is inverse geometric modeling, which
uses analytical geometry and optimization to compute
moments from the laser backscattering data [46,47].
The theory behind this method requires many assump-
tions including that the particles perfectly backscatter
light at all angles and that all particles have a known
shape. More work is warranted to generalize geometric
modeling methods to the complex crystal shapes typical
in pharmaceutical crystallization.



Fig. 3. Methods to relate chord length distribution (CLD) to moments of the particle size distribution (PSD). The value for the CLD and PSD for
the ith bin is c(ri, t) and f(ri, t), respectively. The wi are calibration weights determined by chemometrics.
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2.2. Parameter estimation and hypothesis mechanism

selection

Improved estimates of the model parameters and asso-
ciated uncertainty descriptions are computed from the dy-
namic data collected from the batch experiments. The
model identification procedure shown in Fig. 2 considers
that there may be multiple hypothesized models for the
kinetic mechanisms. This is especially true for secondary
nucleation processes, common in the seeded batch crystal-
lization of pharmaceuticals, in which nuclei may be pro-
duced by particle–particle collisions, particle-mixing
blade collisions, or interactions between particles and tur-
bulent eddies. Each of the hypothesizedmechanisms uses a
different model structure for the kinetics [32,48,49]. Maxi-
mum likelihood or Bayesian estimation is used to compute
the parameter estimates from the input u and output y
data, for each of the i hypothesized models. The uncer-
tainty in themodel parameters for the ith candidatemodel,
Ehi, is quantified usingmultivariate statistics and used by a
model selection procedure to determine the most likely
model [37,38]. A common method is to select the model
with the smallest uncertainties.

Subsequent batch experiments in the model identifi-
cation procedure are designed to either produce data
that are likely to minimize the magnitude of the param-
eter uncertainties for the most likely hypothesized model
or to maximize the ability of the experiment to distin-
guish between multiple hypothesized models.

Model parameters obtained from the iterative model
identification procedure shown in Fig. 2 are much more
accurate than estimates obtained from data collected
from trial-and-error experimentation. Accurate model
parameters are typically obtained with 2–4 batch exper-
iments for crystallization processes dominated by nucle-
ation and growth. The model-based experimental design
approach applied to a batch cooling crystallization of a
proprietary pharmaceutical obtained nucleation and
growth parameters in two experiments [39].

2.3. Batch optimal control

Once the model is sufficiently accurate, it is used by a
dynamic optimization algorithm to compute the physi-
cal design variables, initial conditions, startup proce-
dures, setpoints to lower level feedback control loops,
and the feedback control system. Traditionally the stop-
ping criterion for model accuracy has been based on
engineering guesswork. Since small model uncertainties
can have a large effect on the crystal size and shape dis-
tribution of the product crystals [50], a more rigorous
stopping criterion is warranted. An example of a rigor-
ous stopping criterion for the model identification pro-
cedure is a bound on the expected effect of parameter
uncertainties and disturbances on the product quality
(see [51] and references cited therein).

Optimal control has been widely recommended to im-
prove batch crystallization operations [32]. Performing
the open-loop optimization off-line with nominal values
of the model parameters and then implementing the
optimal trajectory is the approach used most frequently.
This approach has been applied to the crystallization of
a proprietary pharmaceutical to maximize the crystal
size and minimize the coefficient of variation (which is
the width of the distribution over its mean) [39]. The
optimal recipe was predicted to reduce nucleation by
more than 50% compared to industrial practice.

The benefits of the nominal open-loop optimal con-
trol, however, can be lost due to errors in the model
parameters as observed in a study of paracetamol crys-
tallization [41]. Several optimal control algorithms have
been developed to provide robustness to parameter and
control implementation uncertainties. Approaches that
incorporate modern robustness analysis techniques in
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model-based controller design have been proposed (see
[52] for an overview and extensive list of references).
Most of these techniques minimize the worst-case devia-
tion of the performance index due to uncertainties (often
referred to as the minmax or minimax approach), or
solve a weighted optimization where one term in the
objective quantifies nominal performance while another
term accounts for robustness (e.g., as measured by the
worst-case deviation or the variance of the product qual-
ity). The resulting optimal control trajectory is the out-
come of the tradeoff between the nominal performance
and robustness objectives. These techniques can be used
to compute the robust open-loop optimal control
trajectory or formulated as a closed-loop robust optimal
control strategy by repeatedly solving the optimization
on-line. This has resulted in improved robustness of
the optimal performance in simulated batch crystalliza-
tion processes [51,52]. Fig. 4 shows the benefits of robust
optimal control in the simulated batch crystallization of
paracetamol in water, for the unseeded system described
in [41]. Applying the robust optimal control trajectory
obtained using worst-case minimization leads to a factor
of two reduction in the worst-case deviations of the
mean crystal size at the end of the batch, with only a
small degradation in the nominal mean crystal size. This
illustrates the tradeoff between nominal performance
and robustness.

2.4. Challenges of pharmaceutical crystallization control

The first-principles approach requires a model with
accurate crystallization kinetics. Data analysis for in situ
sensors has improved in recent years due to the use of
multivariate statistics for correlating spectral data [5]
and the development of better algorithms for estimating
particle size distribution based on improved understand-
ing of the operational physics of the sensors [47,53]. How-
ever, agglomeration, dendritic growth, polymorphism/
pseudo-polymorphism, and other phenomena can occur
in pharmaceutical crystallization processes, making it
challenging to determine kinetics that are accurate
enough for computing an optimal temperature or antisol-
vent profile that gives good performance on the real pro-
cess. Also, kinetic parameters can vary widely due to
impurities in the feed. These kinetic phenomena can con-
found the application of the first-principles approach.
Modeling and prediction of crystal morphology is even
less understood than size distribution because of the com-
plexity of the interaction between the solvents with or-
ganic crystals [3], rendering crystal shape control more
difficult than crystal size control.

In addition, the optimization step typically uses a sur-
rogate objective because no known expressions are
available for relating the crystal size and shape distribu-
tion to many of the practical crystallization objectives
such as filterability and tablet stability when compacted
with excipients. One approach to deriving an expression
for relating a practical optimization objective to in-pro-
cess measurements is to construct an inferential model (a
soft sensor). For example, inferential modeling of a
Merck pharmaceutical was used to predict the filtration
time from in-process laser backscattering data so that
the process could be monitored for operational prob-
lems and batch-end times [45]. Since the laser backscat-
tering data can be related theoretically to the particle
size distribution [46,47,53], such a relationship could
be combined with an inferential model to derive an
expression relating the crystal size distribution to a prac-
tical crystallization objective such as filtration time.
While this approach may be suitable for existing pro-
cesses in which enough data may be available, the infer-
ential modeling step requires too much data to be
readily applied to the development of new processes.
This data burden would be significantly lower if auto-
mated lab-scale filtration equipment became available
and integrated with other automated crystallization
systems.

Advantages of the first-principles approach for the
development of pharmaceutical crystallization processes
are that: (1) first-principles modeling is needed to move
pharmaceutical crystallization from an art to a science/
engineering task, (2) the iterative process of constructing
a model as in Fig. 2 increases process understanding,
and (3) first-principles models enable a systematic investi-
gation of the effects of different seeding strategies and of
non-ideal mixing through simulations (see [54] and refer-
ences cited therein). Advances in numerical algorithms
and computer hardware are enabling the simulation of
more complex crystallization processes, such as those
including agglomeration [55]. This will make the first-prin-
ciples approach feasible for a wider range of pharmaceuti-
cal crystallization processes. These advances will increase
the systematic use of first-principles modeling for the de-
sign and control of future pharmaceuticals processes.
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3. The direct design approach

The metastable zone specifies the default region for
operating an industrial crystallization process to avoid
uncontrolled nucleation. The metastable zone is
bounded by the solubility curve and the metastable
limit, which can be determined experimentally in an
automated laboratory system [12,22]. The vast majority
of pharmaceutical crystallization processes are designed
so that the desired operation is within the metastable
zone. Operation close to the metastable limit (high
supersaturation) results in excessive nucleation, lower
purity, and higher filtration times. Operation close to
the solubility curve (low supersaturation) leads to slow
growth and long batch times. The setpoint supersatura-
tion profile is the result of the compromise between the
desire for fast crystal growth that occurs near the meta-
stable limit and low nucleation rate that takes place near
the solubility curve (see Fig. 5).

The most common practice in the pharmaceutical
industry is to use trial-and-error to experimentally deter-
mine an operating profile that lies within the metastable
zone and gives acceptable crystals. A much more effi-
cient approach is direct design, which uses feedback con-
trol to follow a setpoint supersaturation curve in the
metastable zone (see Fig. 5) [12,56–58]. The closed-loop
control strategy used to implement direct design, shown
in Fig. 6, is most accurately referred to as concentration-
control (C-control) although it is commonly called
supersaturation-control, since the supersaturation is
not directly measured, but is calculated from the in-pro-
cess solution concentration measurement and a previ-
ously measured saturation concentration. A direct
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measurement of the supersaturation during the crystalli-
zation process would be preferred since the saturation
concentration can vary due to feed impurities. However,
there is no sensor for direct supersaturation measure-
ment that has been accepted by the pharmaceutical
industry, although prototype supersaturation sensors
have been developed [59]. Two control trajectories
resulting from application of the direct design approach
to the paracetamol–water system is shown in Fig. 7.

This C-control strategy is very different from industrial
practice in the pharmaceutical industry, which imple-
ments the setpoint trajectory as a function of time. In
C-control, the setpoint is state-dependent instead of time-
dependent. More specifically, the setpoint in C-control
is a desired dependancy between two states––the solution
concentration and the temperature. The feedback control
structure is implemented so that its objective is to provide
the desired interrelationship between the two states.

The setpoint concentration-temperature trajectory is
suboptimal, in the sense that it does not optimize a per-
formance objective defined as an analytical function of
the crystal size distribution. Instead, this approach pro-
vides a nearly constant tradeoff between the need to
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avoid excessive nucleation (keep the nucleation rate dN/
dt small, where N is the number of crystals nucleated
and t is time) and to avoid overly long batch times (keep
the growth rate dr/dt large, where r is a characteristic
dimension of the crystals). If the tradeoff between the
nucleation and growth rates is represented in terms of
minimizing their ratio (dN/dt)/(dr/dt) = dN/dr, then a
constant tradeoff would be represented by dN/dr equal
to a constant. If the nucleation and growth rates are
functions only of supersaturation, then a constant trade-
off would correspond to constant supersaturation.

For many pharmaceutical crystallization processes,
the lack of an explicit performance objective in terms of
the crystal size distribution is not much of a drawback.
Although there are empirical expressions that relate
many performance objectives such as filtration time to
the crystal size distribution [60], these expressions do
not take into account the crystal shape and other factors
important for pharmaceutical crystals, and suitable
expressions are unavailable for critical drug-specific
objectives such as the ability to form stable tablets when
compacted with excipients. Without these expressions,
first-principles optimization-based approaches use a sur-
rogate objective such as maximizing the mean crystal size
or minimizing the amount of nucleated crystal mass, as
discussed in several review papers [4,32]. The value of
globally optimizing a performance objective is clearly
lower when a surrogate objective is used.

The direct design approach does not require the der-
ivation of first-principles models and the associated
determination of crystallization kinetics. This is a signif-
icant advantage for crystallization processes where phe-
nomena such as dendritic growth occur, for which
parametrized descriptions appropriate for parameter
estimation are not available. The metastable zone
determination and C-control strategy can be easily
implemented and even automated using an FTIR spec-
trometer, an ATR-FTIR probe, a glass vessel, a thermo-
couple, a cold/hot water source, valves, a chemometrics
software package for relating the infrared spectra to the
solution concentration, and flexible software such as Vi-
sual Basic [12,56,58]. Batches can be run with various
agitation speeds and seed types, amounts, and sizes
[56] and for several operating curves in the metastable
zone [58], to determine the conditions that produce the
best product crystals. Such automated crystallizers are
expected to become standard in industrial pharmaceuti-
cal crystallization laboratories.
Error in nucleation parameter b (%)
-30 -15 0 15 30

-150
C control

Fig. 8. Sensitivity of mean crystal size as a function of variation in the
nucleation kinetic exponent b, with nominal nucleation and growth
kinetics and solubility curve experimentally determined for the
crystallization of paracetamol in water. The nominal mean size was
109lm.
4. Comparison of T- and C-control strategies

To simplify the presentation, the subsequent dis-
cussion focuses on batch cooling crystallization,
although similar considerations hold for antisolvent
crystallization.
Current industrial operation of pharmaceutical crys-
tallizers is to follow a batch or semibatch recipe that
specifies seed mass, seed time, and a temperature trajec-
tory to follow as a function of time. This temperature
trajectory is the setpoint to a lower level ‘‘slave’’ propor-
tional-integral feedback controller that manipulates a
valve on flow of cooling fluid to a jacket on the crystal-
lizer. The weakness of this approach is that the concen-
tration–temperature relationship can shift widely due to
changes in the kinetics and phase equilibria, which are
not directly taken into account in temperature control.

New control strategies have become possible due to
recent developments in sensor technologies such as
ATR-FTIR spectroscopy that provide in-process mea-
surement of solution concentrations. This has opened
up the opportunity to design control systems with much
lower sensitivities of the crystal product quality to model
uncertainties and process variations. A detailed simula-
tion and experimental study has shown that controlling
concentration versus temperature gives much lower sen-
sitivities to most practical disturbances and to variations
in the nucleation and growth kinetics [41]. An example
where C-control is more robust than T-control by a fac-
tor of two is shown in Fig. 8.

Although the above discussion describes C-control in
the context of the direct design approach and T-control
in the context of the first-principles approach, it is actually
possible to implement either approach using C-control or
T-control. This is illustrated in the flowchart in Fig. 9.
First consider the case where the direct design approach
is used to design a T-control system. Batch recipes for cur-
rent manufacturing-scale pharmaceutical crystallizers are
written in terms of temperature versus time setpoints,
rather than in terms of solution concentration. While
ATR-FTIR spectroscopy has become widely used in
pharmaceutical process development laboratories, it has
not yet had widespread use at the manufacturing scale.
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Fig. 9. Flowchart for the first-principles and direct design approaches.
Here ‘‘T-control’’ includes both temperature control (in the case of
cooling crystallization) and solvent addition control (in the case of
antisolvent crystallization).
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Although recent changes in the US Food and Drug
Administration�s process certifications and improvements
in infrared instrumentation designed for the plant-scale
are expected to result in more manufacturing facilities
using solution concentration measurements, some phar-
maceuticals companies may be reluctant to move away
from using batch recipes given in terms of temperature
setpoints. In this case, the direct design approach with
C-control could be used in the development laboratory,
with a concurrent measurement of the temperature and
addition rate. If the same localized mixing and cooling
could be achieved in the industrial-scale crystallizer, then
using these measured temperature and addition rate pro-
files in the industrial-scale crystallizer with the same seed-
ing procedure and the same seed characteristics (including
the same seed mass per unit volume) would produce sim-
ilar product crystals as in the laboratory-scale crystallizer.
Unfortunately, it is usually difficult to achieve the same
localizedmixing and cooling in an industrial-scale crystal-
lizer, as it has very different heat transfer characteristics
and mixing behavior than at the laboratory scale. Fur-
thermore, implementing temperature or addition rate
profiles at the industrial scale will not have the reduced
sensitivity to disturbances achieved by C-control.

Now consider the case where the first-principles
approach is used to design a concentration-based
controller instead of a temperature control system.
The parameterization of the optimal control trajectory
in terms of temperature can just be replaced by a param-
eterization in terms of the concentration–temperature
setpoint and the feedback controller parameters that
implement that setpoint. This type of implementation
will provide much greater robustness than the optimal
temperature control schemes commonly described in
the literature.

In a rigid implementation of T-control, the batch
time is fixed from run to run. An interesting aspect of
C-control is that it allows the batch time to vary, since
time is not explicitly considered by the feedback control
system. The C-control system is an automated method
to compensate for changes in the crystallization kinetics
by varying the cooling rate, which changes the batch
time. Certainly variability in batch time is preferred over
variability in product quality.

The operation of other batch and semibatch processes
would benefit from employing a similar operating strat-
egy as C-control, where the dependencies between phys-
ically or chemically defined states are used as setpoints.
This is more than just the well-known ability of a well-
designed state feedback control to suppress the sensitivity
of the outputs to disturbances. In crystallization the
phase equilibria, the kinetics, and the constraints (being
in the metastable zone) are parameterized in terms of a
low number of important states with physical meaning.
The idea of C-control is to design a state feedback con-
troller with the goal of forcing the control trajectory to
operate within the space dimension defined by this low
number of states (in this case, concentration and temper-
ature). This physics-based control strategy is natural
from the point of view of thermodynamics and kinetics,
and it allows the design of robust control systems without
requiring highly accurate first-principles models. This
type of strategy should be considered whenever a chemi-
cal process is to be controlled.
5. Future opportunities

The vast majority of papers on crystallization control
have investigated the control of some characteristic (e.g.,
weight mean size) of the crystal size distribution. How-
ever, there has been a rapid growth of experimental lit-
erature devoted to the study of polymorphism [61,62],
with the desired objective being to produce one poly-
morph while avoiding others. Unexpected or undesired
polymorphic transformation of pharmaceutical is a
well-known phenomenon observed during manufactur-
ing processes including crystallization [63]. Because dif-
ferent polymorphs of the same drug compound can have
different properties, a thorough evaluation of polymor-
phism is included in the New Drug Application to dem-
onstrate control over the manufacturing process [2,64].

To ensure consistent production of the desired poly-
morph, better control over the crystallization process is
needed. Strategies for obtaining the desired polymorphs
include seeding, choice of solvents, and crystal engineer-
ing (see [65–67] and references therein). Although the the-
oretical framework for solvent-mediated polymorphic
transformation [68] is available, it is still difficult to pre-
dict and control during pharmaceutical crystallization
[29]. In a high-throughput evaluation of various crystalli-
zation conditions for paracetamol polymorphs, some irre-
producibility was observed, consistent with the known
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intractable nature of the polymorphic transformation
[69]. For the efficient design of robust and reliable crystal-
lization processes, a more integrated approach based on
underlying physical mechanisms is desired rather than
trial-and-error. We believe that controlling polymorphic
transformation during pharmaceutical crystallization is
an area where the implementation of more advanced
modeling and control strategies can have a large impact.

Another area where modeling and control strategies
can be beneficial is macromolecular crystallization. Due
to recent developments in genomics and proteomics, there
has been an increasing demand in protein crystallization
for structure-based drug design. For faster protein
structure determination, high-throughput approaches
including microfluidics have been developed for rapid
screening of numerous crystallization conditions that re-
sult in protein crystal formation [70–72]. Because many
of the protein crystals produced this way are not of dif-
fraction quality, there is a need for optimization of
high-throughput protein crystallization process to pro-
duce large high-quality crystals for structural analysis
[73]. It has been shown that larger crystals of several
model proteins, such as lysozyme and aprotinin, can be
obtained by controlling the supersaturation level by
changing the temperature or the ionic strength of the solu-
tion [19,74,75]. This strategy or a more advanced control
strategy could be used in combination with high-through-
put techniques to improve protein crystal growth.

Protein crystallization is also important in the manu-
facture of biopharmaceuticals. Therapeutic proteins
require different crystal characteristics, where small uni-
form crystals with a narrow distribution are preferred
[76]. Also, therapeutic proteins are produced at a much
larger scale than proteins for structural studies. In this
respect, a better understanding of issues associated with
scale-up, such as the effect of mixing on protein crystal-
lization, is desired. Currently, insulin is the only thera-
peutic protein commonly produced in crystalline form
[77]. Recently it was observed that some crystalline
proteins exhibit increased stability compared to the
amorphous form, suggesting that an increasing number
of therapeutic proteins may be produced in the crystal-
line form in formulation [77]. These recent developments
in drug delivery and biotechnology open many opportu-
nities to apply advanced control strategies in the crystal-
lization of proteins and other biomolecules.
6. Conclusions

Systematic approaches to control crystallization pro-
cesses is desired to reduce time to market, increase the
efficiency of drug manufacturing, and improve product
consistency. The stability of the pharmaceutical prod-
uct, its pharmacokinetics, and efficiency are determined
by the size distribution and the solid-state phase of the
crystals. Recent developments in sensor technologies
have enabled the design and implementation of ad-
vanced control strategies to pharmaceutical crystal-
lization processes.

This paper described some pharmaceutical crystalli-
zation processes that have been controlled using the
first-principles approach, and some that have been con-
trolled using the direct design approach. Efforts were
summarized that explicitly consider parameter uncer-
tainties and nonidealities in the model assumptions in
the first-principles approach. The direct design approach
circumvents these modeling issues by using in situ con-
centration measurements and engineering understand-
ing of the constraints posed by the solubility curve and
metastable limit, and the need to follow a control trajec-
tory that trades off the rates of nucleation and growth.
Either approach can be implemented with concentra-
tion-vs-temperature or temperature-vs-time setpoints,
with these implementations having very different sensi-
tivities to disturbances such as deviations in seed charac-
teristics and changes in the contaminant profiles in the
feed streams. These types of studies provide recommen-
dations on which control strategy is most appropriate
for a particular solute(s)–solvent(s) system.

Potential applications of advanced control to phar-
maceutical crystallization include the production of de-
sired crystal polymorphs and protein crystals.
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