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Abstract--Screening tools are developed which provide nonconservative estimates of the achievable 
performance in the presence of general structured model uncertainty. These tools allow the rational 
selection among plant designs, or can be applied to provide recommedations on how to modify a plant 
design to improve the closed loop performance. Many of these tools are applicable to the pairing or 
partitioning of inputs and outputs of decentralized controllers. It is shown through examples that 
ignoring or improperly characterizing plant/model mismatch while selecting among plant designs can 
lead to erroneous results. 

I. INTRODUCTION 

Ignoring or improperly characterizing plant/model 
mismatch while selecting among plant designs can 
lead to erroneous results. This motivates the deve- 
lopment of screening tools which provide an esti- 
mate of achievable performance for a given plant 
design in the presence of model/plant mismatch. 
The purpose of this manuscript is to derive screening 
tools which allow the use of a general structured 
uncertainty description. By including conditions on 
the controller structure, these tools can be used for 
choosing actuators, sensors, and the appropriate 
partitions and pairings between inputs and outputs. 

2. BACKGROUND 

Tools for analyzing the stability and performance 
of uncertain systems, and the framework of robust 
loopshaping, are summarized. 

2.1. Robustness analysis 

To account for plant/model mismatch, the true 
process is represented by a set of plants. This set of 
plants is modeled as unity norm-bounded pertur- 
bations Ai on the nominal system, where As is 
complex for representing unmodeled dynamics or 
frequency domain performance specifications, and 
real for representing parametric uncertainty. The 
perturbations, which may occur at different 
locations in the system, are collected in the block- 
diagonal matrix A =diag{Ai} shown in Fig. 1 The 
generalized plant G is calculated by off-the-shelf 
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Fig. 1. Equivalent representations of system. 

software (Balas et al., 1992), given the nominal 
model P, the performance specifications, and the 
size, nature, and location of the uncertainty. The 
generalized plant G and the controller K can be 
combined to give the overall system matrix M. If G 
is partitioned to be compatible with K, then M is 
given by the linear fractional transformation M = 
Ft(G,K)=Gu+GI2K(I-G22K)-~G21. The LFT 
F~(G, K) is well-defined if and only if the inverse of 
1-  Gz2 K exists. 

The system is robust to linear time invariant 
perturbations if and only if the structured singular 
value/~a[M(/'w)] is less than 1 for all frequencies 
(Doyle, 1982; Packard and Doyle, 1993). Though 
exact calculation of/~ can be computationally expen- 
sive (Braatz et al., 1994), upper and lower bounds 
for/~ can be calculated in polynomial time and are 
usually close (Young, 1993). Similar necessary and 
sufficient tests exist for systems with arbitrary nonli- 
near (NL) (Shamma, 1991), arbitrarily fast linear 
time varying (FLTV) (Shamma, 1991), or arbitrarily 
slow linear time varying perturbations (SLTV) 
(Poolla and Tikku, 1993). The necessary and suffi- 
cient tests for systems with NL, FLTV, or SLTV 
perturbations can be calculated in polynomial time. 
Though this manuscript will focus on systems with 
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linear time invariant perturbations, the results 
extend to these other types of perturbations with 
minor modifications. 

2.2. Re-parameterizing the system 

It is useful to parameterize the uncertain system in 
terms of a transfer function of interest T (see Fig. 1). 
Transfer functions of particular interest include the 
block-diagonal sensitivity S= (1+ ['K) -~ and the 
block-diagonal complementary sensitivity I:I= 
[~K(I+ PK) -1, where/~ is the block-diagonal part of 
the plant corresponding to the controller structure, 
P= diag{Pii}. The expression for N o and N s [such 
that M= Ft(G, K)= Ft(N a, I:I)= Ft(N s, ~¢)] can be 
calculated directly from G to be (equations 5.6 and 
5.7 of Braatz, 1993) 

Nn=[G~,  G , 2 '  ' ] 
Gzl l - P P - I  ; (1) 

N~=[GII-t-G12p-IG21 -GI2 P - l ]  
t°P - I G21 1-- PP-I  " (2) 

2.3. Robust Ioopshaping framework 

Given N T and the structures of T and A, the # 
conditions are expressed as norm bounds on T. In 
the following, let Ar represent an arbitrary transfer 
function with the same structure as T. The following 
lemma (which corresponds to Theorem 1 of 
Skogestad and Morari (1988) and Theorem 4.1 of 
Braatz (1993) provides a sufficient bound on the 
magnitude of the transfer function T for a/x con- 
dition to be achieved. 

Lemma 1 (Sufficient Upper Bound). L e t  M =  

Ft(N, T), and k be a given constant. Define 

f(c) =--I~[a at] kcrNz, kcrN22 " 

Assume d e t ( I -  N22 T) ¢ 0, f(0) =/~A(Nn) < k, and 
f (  oo ) > k. Let c ~ solve f ( c T ) = k. Then/z~(M) < k if 
o(r)<c~. 

The bounds given by the above lemma are the 
tightest bounds possible in that, given o >  c~, there 
exists a T with O(T)= o that does not meet robust 
performance. Detailed descriptions, derivations, 
and interpretations of the sufficient upper bound 
and other necessary bounds and sufficient bounds 
are provided in Chapter 4 of Braatz (1993). 

3. DESIGN CRITERIA 

Figure 1 represents the general block diagram for 
linear systems with uncertainty. The generalized 
plant G is specified by the plant design, and which 
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actuators and sensors are under consideration. The 
structure of K is specified by the particular choice of 
pairings and partitions (the rows and columns of G 
can always be rearranged so that K is a block- 
diagonal). The criterion for selecting among both 
plant designs and control structures is the achievable 
worst-case performance 

"Is inf supl~A{Fl[G(jw), K(jw)]}<k?'" (3) K~ S to 

where k =  1 and ~Ks is the set of stabilizing con- 
trollers with given structure. There is no computable 
necessary and sufficient test for equation (3). This 
provides the motivation for developing computable 
necessary conditiofis for robust performance. These 
necessary conditions are used as screening tools 
which may remove candidates from further con- 
sideration. 

4. SCREENING TOOLS 

4.1. Pairing-independent screening tools 

In screening among plant designs it is natural to 
use tools which do not depend on the partitioning or 
pairing of the control loops. Researchers have deve- 
loped pairing-independent screening tools for the 
case where the controller is assumed to be designed 
via robust loopshaping (Lee and Morari, 1993; 
Braatz, 1993). Here a tight computationaily simple 
screening tool is derived for problems in which 
integral control is specified. 

Theorem 1 (Tool for Integral Controllers). Consider 
a system put into the general G - K form in Fig. 1, 
and let k be a given constant. Then there exists a 
stabilizing controller with integral action in all chan- 
nels that satisfies lza[M (jw)] < k for all frequencies 
only if (i) det[P(0)] 4:0, and (ii) vt< k where 

vt~/za[Gtl(0) + G12(O)P '(0)G21(0)]. (4) 

Furthermore, conditions (i) and (ii) are sufficient for 
the existence of a stabilizing decentralized 
proportional-integral controller that satisfies 
~IM(0) ]  < k. 

Proof: ( ~ )  Assume that there exists a stabilizing 
controller K with integral action in all channels [i.e. 
K(s) = (1/s)l~(s) with /~(s) having no transmission 
zeros at s = 0 ,  and ~¢(0)=0] that satisfies 
/~a[M(jw)]<k, Vw. It is well-known that the 
existence of a stabilizing integral controller K 
implies condition (i) (for example, see Theorem 
3 of Davison, 1976). Condition (ii) follows 
because vl is equal to /aa[M(0)], that is, 
/xA[M(0)] =~ta{F,[Ns(O), S(0)]} =/ua[FAN~(O), 0)] = 
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pA[N~,(0)] =/za[Gl,(0) + G,z(0)P-'(0)G2,(0)] = yr. 
QED (=>). 

( ~ )  Condition (i) holds if and only if there exists a 
decentralized proportional-integral controller K 
which stabilizes the plant (Guardabassi and 
Locateili, 1982). Condition (ii) implies BalM (0)] < k 
since v,=#a[m(o)]. QED (~) .  

The above screening tool reduces to a well-known 
condition when the steady-state robustness require- 
ments hold at open loop, that is,/.ta[Gll(0)] < k, and 
the measured variables are equal to the controlled 
variables plus measurement noise, that is, (722 = - P 
(aside: G22=/=- P in inferential control problems). 
Under these conditions, it can be shown using the 
matrix inversion lemma (Lemma 5.7 of Packard, 
1988) that conditions (i) and (ii) hold if and only if 
the determinants of all steady-state plant matrices 
given by the uncertainty description have the same 
sign. 

4.2. Pairing-dependent screening tools 

After pairing-independent screening tools have 
reduced the number of plant designs to a manage- 
able number, it is natural to apply tools which 
depend on the partitioning or pairing of the control 
loops. Here general screening tools are summarized 
and pairing-dependent screening tools are derived 
for problems where failure tolerance is a require- 
ment. 

4.2.1. General screening tools. A necessary con- 
dition that equation (3) is satisfied is for 

v~;=- inf i,~[Fl(G, K ) ] < k  (5) 
K E A  K 

to hold for each frequency w, where AK is the set of 
all complex matrices with the structure of K (this 
condition is necessary because ~s( jw)  c Ax). This 
optimization is nonconvex, and difficult to solve in 
general. When the controller K in equation (5) is 
centralized then it can be parameterized by the 
Youla matrix Q to give M =  FI(G, K)  as an affine 
function of Q. Replacing/z with its upper bound 
then leads to computable tools which are useful for 
screening plant designs or control structures (Lee et 
al., 1995), although these tools are not strictly 
necessary conditions for equation (5). 

4.2.2. Screening tools for failure tolerance. The 
screening tools thus far measured the suitability of a 
control structure candidate solely in terms of robust 
performance. It may be desirable to also consider 
conditions for which the closed loop system will 
remain stable as any subset of loops are detuned or 
taken out of service (put on "manual"). A closed 
loop system with decentralized controller K is said 
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to exhibit strong failure tolerance (SFT) if it remains 
stable under arbitrary detuning of the block- 
diagonal complementary sensitivity/:/, that is, for all 
/ t  with the same structure as K which satisfies 
O[h3"(jw] ~<O[H(jto)]. A closed loop system which is 
SFT is stable to arbitrary failures in any of the 
control loops provided that these loops are placed in 
manual. The following is a tight screening tool for 
failure tolerant controllers with integral action. 

Theorem 2 (Tool for SFT). Assume det[/5(jo0]=/= 
O, Vw. Then there exists a decentralized controller 
with integral action in all channels which provides 
strong failure tolerance if and only if (i) P is stable, 
and 

(ii) tzA,~[t- P(0)/5-~(0)] < 1. (6) 

Furthermore, this controller can be chosen to be a 
decentralized proportional-integral controller. 

Proof: The proof basically follows from this Fact: 
Assume det[/5(jto)]~0, Wo. Then it immediately 
follows from the /.t-interaction measure theorem 
(Theorem 6.7 of Braatz, 1993) or Theorem 2.1 of 
Grosdidier and Morari, 1987) and the definition of/, 
that a decentralized controller which stabilizes /~ 
provides SFT if and only if condition (i) holds and 

O[/4(j~o)] </~ 7,~[1- P(jw)/5- l(jw)], Vw. (7) 

( ~ )  Assume there exists a controller with integral 
action in all channels which provides SFT. Then the 
Fact implies condition (i), and evaluating equation 
(7) at zero frequency (where/~ =/SK(I+/5K)-  1 = I) 
implies condition (ii). QED (~) .  

( ~ )  The assumption that det[/5(jo0]=/=0 at w=O 
implies that there exists a decentralized 
proportional-integral controller which stabilizes 15 
(Guardabassi and Locatelli, 1982). Condition (ii) 
implies that equation (7) will hold at zero frequency 
and det[/5(j~o)]~0, Vw implies that the right-hand 
side of equation (7) is non-zero at all frequencies. 
Thus this controller can be detuned sufficiently to 
satisfy equation (7) at all frequencies. Now apply the 
Fact. QED (~) .  

It is clear from the proof of Theorem 2 that, when 
there exists a controller which provides an SFT 
system, the controller can be designed via the #- 
interaction measure. 

An uncertain system with decentralized controller 
K is said to exhibit robust strong failure tolerance 
(RSFT) if it remains stable for all II AII~_< 1/k and all 
/~ with the same structure as K which satisfies 
O[fI(jto)]<~O(fI(jw)]. Screening tools for robust 
strong failure tolerance are derived via an extension 
to the/~-interaction measure. 
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Lemma 2 (Robust Interaction Measure). Consider a 
system put into the general G - K form in Fig. 1, and 
let k be a given constant. Assume (i) G is stable, and 
(ii) det[/5(jw)] 4=0, Vw. Then the closed loop system 
is stable for all 11A I]~ <~ 1/k if the decentralized con- 
troller K stabilizes the block-diagonal plant P and 

o[tT(j~,)] < c~ (~o), (8) 

where at each frequency c~(w) solves 

/ ~ [ ~ ] ( [  G~(je~) 

kc~(w)G21(jo)) 

G'2(Jc°)P-'(Jw) ] )  
kc~(w)[l_P(jco)(p_~(jw)] =k.  (9) 

Proof." If G is stable, then robust stability is 
assured if K (I + PK) -  1 is stable and 
ga{Ft[G(jw), K(jw)I}<k,  Vw. Because c~(o2) is a 
lower bound to ~al [ l  - p(jw)p-l( jw)] ,  satisfaction 
of equation (8) implies 0[/4 (j~o)] < 
/~[I-P( j~o)P-~( jw)] ,  which implies nominal stabi- 
lity via Theorem 2.1 of Grosdidier and Morari, 1987 
or Theorem 6.7 of Braatz, 1993). Application of 
Lemma 1 proves the result. QED. 

Robust failure tolerant controllers are provided 
when H is chosen to have independent blocks. 
Detuning the controller will not affect robust stabi- 
lity provided equation (8) continues to hold. The 
robust interaction measure (RIM) is optimal, that is, 
it provides the least conservative bound on O(/-/) 
which guarantees robust stability of the overall 
system. The following is a tight screening tool for 
RSFT. 

Theorem 3 (Tool for RSFT). Consider a system put 
into the general G - K form in Fig. 1, let k be a given 
constant, and assume that det[/~(jw)] 4=0, Vto. There 
exists a decentralized controller with integral action in 
all channels which provides RSFT only if (i) G is 
stable, and (ii) VF< k, where 

VF~jU[A A//] ( [ G,,(O) G12(0)/6- I(0) 
kG2,(0) k[1-P(O)P- ' (O)]])"  (10) 

Furthermore, conditions (i) and (ii) are sufficient for 
the existence of  a decentralized proportional-integral 
controller that satisfies/xa[M(0)] <k  and stabilizes 
the closed loop system with arbitrary detuning of  the 
block-diagonal complementary sensitivity H. 

Proof: The proof exactly parallels the proof of 
Theorem 2, but with the RIM from Lemma 2 taking 
the place of the g-IM. QED. 

It is straightforward to show that Theorems 2 and 
3 provide sufficient conditions for decentralized 
integral controllability (Morari and Zafirou, 1989) 
and its generalization to include plant/model mis- 
match (Braatz, 1993). 

4.3. Comparisons between screening tools 

4.3.1. Integral vs general. If the input and output 
weights do not require for the controller to have 
integral action, then screening candidates based on 
the general condition (5) would potentially lead to a 
larger number of potential candidates than would 
Theorem 1, that is, v~;<~vt. The screening tool for 
controllers with integral action approximates the 
more computationally complex necessary condition 
given by equation (5) when the performance weight 
is sufficiently large. This can be proved rigorously 
for systems with at least one complex uncertainty 
block using the fact that # for such systems is 
continuous (Packard and Pandey, 1993), and that 
the conditions are equal when the performance 
weight includes integrators in all channels (Braatz, 
1993). 

4.3.2. RSFT vs integral. Candidates which pass 
the RSFT screening tool given by Theorem 3 will 
always pass the screening tool for integral con- 
trollers given by Theorem 1. The RSFT screening 
tool allows further screening of candidates, based on 
failure tolerance and control structure consider- 
ations. 

4.4. Inferential control applications 

It is common in applications for the controlled 
variables to be different from the measured vari- 
ables. An example is a distillation column where the 
setpoints are the top and bottom compositions. 
Composition measurements are unreliable and often 
too slow for effective control, so temperature meas- 
urements are used. 

A popular method of controlling these processes 
is to use the two-step inferential design procedure 
(Weber and Brosilow, 1972): 

(1) an estimator is designed to provide compo- 
sition estimates using temperature measure- 
ments, and 

(2) a controller uses these composition estimates 
for feedback control. 

To test for the existence of a robust controller 
with integral action on the composition estimates 
(instead of integral action on the measured vari- 
ables), the estimator is applied to the plant before 
application of the screening tools. Examples illus- 
trating this procedure are given elsewhere (Braatz, 
1993; Lee and Morari, 1993). 

5. EXAMPLE 

The steady-state model for a paper machine 
design is given by P(O) = In + rE~, where 
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, ( u )  

0 1 - 1  0 . . .  0 

1 0 1 ' .  " . .  : 

- 1  1 " . .  " ' .  " ' .  0 

0 ". " - .  " . .  1 - 1  

: ". " . .  1 0 1 

0 . . .  0 - 1  1 0 

n x n  

I, is the identity matrix of dimension n, n = 24 is the 
number of actuators and sensors, and the interaction 
parameter r is imprecisely known, r e  [0.09, 0.27]. 
For these processes, this range of parametric uncer- 
tainty is not unreasonably large, and zero steady- 
state error is a standard performance requirement 
(Braatz et al.,  1992; Laughlin et al.,  1993). 

The condition mumber of the nominal plant is 
equal to its minimized condition number (Braatz 

and Morari,  1994) and is given by K[Pnom(0)] = 
x(l+0.18E24) =4.75. The nominal R G A ~  1.261. 
These well-known controllability measures do not 
indicate any control difficulties with this paper 
machine design. 

The screening tool given by Theorem 1 accounts 
for both the magitude and the highly correlated 
structure of the model uncertainty. The G matrix at 
zero frequency is determined by elementary algebra 
to be 

G(0) = 
1 + 0.18E24 

The perturbation A is repeated scalar real, that is, 
A = 6,1. Off-the-shelf software gives v~ = 1.2 > 1; 
thus there does not exist an integral controller which 
stabilizes all plants given by the uncertainty descrip- 
tion. The R G A  and condition number underesti- 
mated the control difficulty for this paper machine 
design. This illustrates that ignoring or improperly 
characterizing plant/model mismatch while analyz- 
ing the controllability of a plant design can lead to 
incorrect results. 

At  this point, the design/control engineer may 
consider either changing the actuator spacing, the 
slice lip, the machine width, or some other variable 
in the paper machine design. The screening tools 
can be plotted as a function of these design variables 
to provide insight into how to design the paper 
machine for the purposes of robust control. For 
illustration, consider the specification of the actua- 
tor spacing a with fixed slice lip design and constant 
machine width w = 2.4 m. The actuator spacing a is 
always chosen so that the machine width w is a 
multiple of the actuator spacing, that is, w = n a ,  
where n is the plant dimension. With the slice design 
fixed, the interactions are expected to diminish as 

"o 1.5 
.c 
_>, 

"R 1 

~ 0.5 

' i  i, 
I n t e g r i t i e S _  

0 
0 0.1 0.2 0.3 0.4 

actuator spacing 

Fig. 2. Paper machine design for controllability. 
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the actuator spacing increases. This effect is approx- 
imated by r = k / a ,  where the proportionality con- 
stant k e ]0.009, 0.027] characterizes the interaction 
uncertainty. The controllability index for integral 
controllers v~ is shown in Fig. 2 (the solid line) as a 
function of actuator spacing. 

For decentralized control of this paper machine, 
the appropriate pairing is that each actuator should 
be paired to its downsteam sensor. Thus in this case 
the controllability index for failure tolerant decen- 
tralized design v~, [given by equation (10)] can be 
used for selecting among plant designs by pre- 
choosing this pairing (VF is given by the dashed line 
in Fig. 2). Both screening tools indicate that the 
paper machine becomes uniformly more difficult to 
control as the actuator spacing decreases. For the 
given slice design and machine width, a controller 
robust to the interaction uncertainty which provides 
zero steady-state error cannot be designed for paper 
machines with actuator spacing less than 0.105 m. 

Recall that candidates allowed by the screening 
tool for fault tolerant integral controllers will always 
be a subset of the candidates allowed by the screen- 
ing tool for integral controllers. Figure 2 illustrates 
that for our machine the candidates allowed by the 
two screening tools are the same,  that is, that includ- 
ing decentralized failure tolerance as a performance 
requirement does not further restrict the number of 
candidates. Experience with other examples has 
shown that this is usually not true. 

Figure 2 illustrates that vl is not always greater 
than vs for a given design. This is because v~ 
includes scalings on both the magnitudes of the 
uncertainty A and/~, whereas only the magnitude of 
A is scaled in yr, By scaling only A, the maximum 
amount of uncertainty which may be allowed for a 
robust integral controller to exist can be deter- 
mined. These re-scaled controllability indices will 
uniformly bound each other. These re-scalings were 
not performed in this manuscript to simplify the 
presentation in Section 4. 
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off control system complexity with closed loop per- 
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