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In many solids, diffusion of foreign atoms takes place primarily through highly mobile
intermediate species that periodically exchange with atoms in the crystalline lattice. A
method is developed for determining key diffusion parameters via the short-time decay of
an initial step concentration profile. This method takes advantage of the relative ease with
which step concentration profiles can be fabricated by thin film deposition, and in the limit
of very short times provides particularly simple analytical means for obtaining parame-
ters connected to diffusion length and defect formation. Application of the method to
isotopic heterostructures of silicon shows that under the ultrahigh vacuum conditions of
the experiment, interstitial atoms mediate self-diffusion. © 2005 American Institute of
Chemical Engineers AIChE J, 52: 366–370, 2006

Introduction

Diffusion of foreign atoms in solids has been studied exten-
sively to understand the governing mechanisms and, in the case
of semiconductors, to facilitate improvements in device fabri-
cation. In many cases such as silicon, studies of dopant diffu-
sion6,8,10 and isotopic self-diffusion6,13 have suggested that
migration takes place primarily through highly mobile inter-
mediate species (such as interstitial atoms) that periodically
exchange with atoms in the crystalline lattice. Experimental
methods for such studies often measure the decay of an artifi-
cially created concentration profile. The initial shapes can be
delta functions3 or steps.1,14 For long-time diffusion, Fick’s
Second Law with a constant- diffusion coefficient often offers
a satisfactory framework for data analysis. Experimental pro-
files are usually fitted with Gaussian or error-function forms in
the respective cases of delta functions or steps.

However, Cowern et al3 have shown that for short diffusion
times, the dynamics of intermediate-species creation, motion
and annihilation can no longer be neglected. These workers
constructed a suitable mathematical description for the case of
an initial delta-function profile,3 and applied the resulting ex-
pressions to boron diffusing in silicon. The description pro-

vides two parameters describing motion and exchange of the
intermediate species instead of a single composite diffusion
coefficient, thereby offering more insight into diffusion mech-
anisms. For sufficiently short times, profiles decay with “ex-
ponential tails” that provide an unmistakable signature of dif-
fusion via a fast-moving intermediate species. The exponential
tails simplify data analysis and decrease the susceptibility to
errors in fitting the two parameters.

Unfortunately, the creation of delta-function initial profiles of-
ten requires fairly sophisticated fabrication techniques that require
precise on-off control of the foreign atom concentration. Step
functions tend to be easier to create by standard thin-film deposi-
tion techniques, but to our knowledge the advantages of short-time
measurements have not been exploited for initial step profiles.
This article derives the required mathematical framework.

Furthermore, the framework is applied to experimental data for
the self-diffusion of the 30Si isotope into a 28Si matrix. The
mechanism for Si self-diffusion has generated much controversy
over many years. Older literature7,8,11 has suggested that self-
interstitials mediate diffusion at high temperatures, while vacan-
cies dominate at lower ones. More recent results argue for the
predominance of interstitials at all temperatures,1 or for a combi-
nation of the mechanisms with very similar temperature depen-
dences.13 Shape analysis of the present results shows that intersti-
tial atoms carry the primary diffusion flux in Si self-diffusion
under the conditions of the experiment, as opposed to vacancies.
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Theory

The foreign atoms under consideration are typically dopants
or unintentional impurities present in low concentrations (�
1%), but isotopic variants of the host can be treated in the same
way. Diffusion of such species is often mediated by point
defects such as interstitials and vacancies,12 which can migrate
alone or bond to foreign atoms to form mobile defect-dopant
pairs.7, 8, 11 Cowern et al. 4 have enumerated four ways in which
foreign atoms in substitutional sites (S) can enter into highly
mobile states (M) by interaction with host interstitials (I) or
vacancies (V). Corresponding rate expressions can be written
as summarized in Table 1, where CM, CS, CI, CV, and CH,
respectively, represent the concentrations of foreign mobile-
state species, foreign substitutional atoms, host interstitials,
vacancies, and host lattice atoms (H). Similar rate expressions
can also be written for mobile species annihilation, also shown
in Table 1. The parameters K and k respectively denote first-
and second-order rate constants. In all cases, the second-order
expressions can be written in pseudo first-order form by rec-
ognizing that the total concentration of foreign atoms is much
smaller than the concentration of host atoms. Thus, the host
reaches quasi-equilibrium with its interstitials and vacancies in
a way that is largely independent of what the foreign atoms do.
This quasi-equilibrium implies that CI, CV, and CH are essen-
tially constant, and can be incorporated into pseudo first-order
rate constants. Note that Cowern et al.3 give similar expressions
to those shown here with g and r in that treatment correspond-
ing to Kgen and Kann, respectively.

With the rate expressions given in Table 1, the governing
equations for foreign atoms are given by

�CM/�t � DM�2CM � KannCM � KgenCS (1)

��CS � CM�/�t � DM�2CM (2)

where DM denotes the diffusivity of the mobile species. By
hypothesis, mobile foreign atoms M exist in much smaller
concentrations than substitutional atoms S, and can be consid-
ered as unstable intermediates in a chemical reaction. The
classical quasi-steady state approximation can then be applied
to M, implying that �CM/�t � 0 Eqs. 1 and 2 can then be solved
to yield the following analytical expression for CS

CS� x, t� � Cmin � �Cmax � Cmin�s��, �� (3)

where Cmin and Cmax denote the initial and final concentration
of foreign atoms in the step, and s(�, �) is the normalized
concentration. The variables � � x/� and � � Kgent respectively
denote nondimensionalized space and time. The quantity �
equals the mean number (ñ) of migration steps (or equivalently,

lattice exchanges) of the foreign atoms, and � � �DM/Kann

equals the mean path length between the generation and anni-
hilation events. The function s(�, �) is then given by the
following series expressions

s��, � � � �
n�0

�

Pn�� � fn��� (4)

where

Pn�� � � ��n/n!�e	� (5)

fn�0��� � H��� (6)

fn
0��� �
1

22n	1 �
k�0

n	1

2kBn	1
2n	2	k�2 � e	� �

l�0

k

�l/l!� if � � 0

(7)
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(	�)l/l!� if � 	 0 (8)

H(�) represents the Heaviside step function, and B the binomial
coefficient given by Bk

n � n!/k!(n 	 k)!. Pn(�) gives the
probability that a diffusing atom has exchanged with the lattice
n times in time t, and fn(�) gives the spatial distribution of the
migrated atoms. For short times with � 
 1, the higher order
terms in Eq. 4 can be neglected, leading to a first-order ap-
proximation incorporating only the terms n � 0 and n � 1

s��, � � � e	��1 �
�

2
(2 � e	�)� if � � 0 (9)

s��, � � � �e	�e�/ 2 if � 	 0 (10)

Equations 9 and 10 indicate that in this limit, the normalized
foreign atom profile spreads with an exponential shape. How-
ever, since the amount of material that diffuses remains very
small, significant deviations from the initial profile can be
easily seen only on the depleted side of the step, where the
large dynamic range of SIMS can be used to advantage. Equa-
tion 10 mirrors the expression derived by Cowern et al. for the
case of an initial delta function profile. As time increases, the
higher order terms in Eq. 4 become significant and cannot be
neglected. When � (and ñ) becomes large, the diffusion profile
approaches an error function.

Table 1. Rate Expressions for Defect/Foreign Atom Pairing Mechanisms

Type of Reaction Stoichiometry

Generation Annihilation

Rate First-Order Rate Constant Rate First-Order Rate Constant

Interstitial (kick-out) S � I N M � H kgenCICS kgenCI kannCHCM kannCH

Interstitial (dissociation) S N M � V KgenCS Kgen kannCVCM kannCV

Vacancy pair (combination) S � V N M kgenCVCS kgenCV KannCM Kann

Vacancy pair (dissociation) S N M � I KgenCS Kgen kannCICM kannCI
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Figure 1 shows example profiles calculated from Eqs. 3 – 10
for various values of �. For small values of �, even the raw
concentration profiles approximate an exponential shape near
the initial step. Figure 2 shows the corresponding normalized
concentrations s against x. In these plots, the true exponential
shape shows clearly.

Figure 2 illustrates an additional useful feature of the step
profile in the short-time limit when � 
 1. The exponential tail
breaks away sharply from the rest of the initial step at a
normalized concentration s that is easily measured. The sharp
break represents a true discontinuity in slope, and is the man-
ifestation of a certain discretization in the system at very short
times. Foreign atoms have moved either once or not at all, since
ñ 
 1. Atoms that have not moved at all remain fixed in the
initial step, while those that have, show up in the exponential
tail. The slope of the exponential tail on a semilogarithmic plot
together with the breakaway concentration at x � 0 can be used
to estimate � and � independently. Eqs. 2 and 10 can be written
as

ln�CS(�, �) � Cmin

Cmax � Cmin
� � ln�s��, ��� �

�

2
e� (11)

or alternatively

ln�CS(x, t) � Cmin

Cmax � Cmin
� � ln�s�x, t�� � ln�Kgent/2� � x/� (12)

Thus, plotting the normalized concentration s against x at a
particular time t yields a straight line giving � and Kgen from
the slope and intercept, respectively.

This approach has advantages over the delta function
method. Note that � and Kgen are determined completely inde-
pendently in Eq. 12. In the delta function method, Kgen is
determined from the width of the diffused profile, which equals
��2Kgent.3 Thus, errors in � propagate directly into errors in
Kgen. In addition, the standard deviation approach suffers when
the initial profile contains some pre-existing broadening. Dep-
osition methods often induce this broadening because of dif-
fusion during growth (which is symmetric about the x � 0

point for the step and delta function), or nonidealities in how
the flux of foreign atoms is started or stopped (which may not
be symmetric about x � 0). Convolution of the series solution
for the delta function case with the initial profile shape is
needed to determine the change in standard deviation due to
diffusion.3 This procedure can also be used for the step func-
tion case, but the intercept can also be determined more simply
from the discontinuity in slope that is present even when the
initial profile is broadened. Of course, some error is entailed in
this procedure, because the diffusing species now originate
from a region in the profile where the concentration is less than
Co. However, for the profiles measured experimentally here,
the error is no more than 10 – 15% in the computed parameters
compared to a full numerical solution. Since the reproducibility
of the experiment is at least of this order, the error of using the
intercept approach is not especially significant.

Experiment

Self-diffusion of silicon provides a convenient test case for
the expressions derived above. Other groups have examined
long-time diffusion of 30Si from substrates with natural isoto-
pic abundances into epitaxially grown layers depleted in
30Si.1,14,15 The natural isotope abundances in Si are 92.2% mass
28, 4.7% mass 29, and 3.1% mass 30. The epitaxial layers are
grown by low-pressure chemical vapor deposition atop the
natural-abundance substrates, and the concentration of 30Si
within the layers typically lays three orders of magnitude below
the natural level. Diffusion measurements then track the
spreading of the step concentration profile of 30Si within the
isotopic heterostructure. We applied a similar experimental
design to short-time diffusion, except that our annealing was
performed in ultrahigh vacuum.

Step-function isotope structures were obtained as 4-in. n-
doped wafers from Isonics Corporation. Arsenic served as the
dopant, and was present at a uniform level throughout the step
function structure at a concentration of 1 � 1019 cm	3. The
concentration of 30Si within the grown layer was 0.002%.
Specimens of approximate dimensions 1.3 cm�0.5 cm were

Figure 1. Simulated profiles for dopant diffusion for var-
ious values of �.

Figure 2. Normalized concentrations s corresponding to
the data in Figure 1.
The straight lines for small values of � reflect the “exponential
tails.”
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cut from the wafers and degreased by successive 5-min rinsing
cycles in electronic-grade trichloroethylene, acetone, and meth-
anol. Native oxide was removed with 49% HF followed by
rinsing in deionized water for 1 min. Immediately thereafter, a
typical specimen was mounted for resistive heating by clamp-
ing against a thin Ta foil using Ta clips, and then placed in a
turbomolecularly pumped ultrahigh vacuum chamber that was
quickly pumped down to 10	9 torr to avoid significant native
oxide formation. Temperature was monitored with a chromel-
alumel thermocouple spot welded to the Ta foil adjacent to the
edge of the Si specimen.

Heating the structure to above 600°C led to silicidation of
the Si/Ta interface (without significant diffusion of the iso-
tope), promoting good thermal and electrical contact. Further
annealing to induce profile spreading took place above 800°C.
Isotope profiles were measured ex situ with secondary ion mass
spectroscopy (SIMS) using a CAMECA IMS-5f instrument
with a cesium ion beam. Multiple SIMS measurements were
made for each specimen to improve the accuracy of parameter
determination.

Results and Discussion

Figure 3 shows typical diffused 30Si profiles obtained at two
different annealing temperatures and times. The exponential
shape for small diffusion lengths and the error-function shape
at larger lengths are evident. The initial profile exhibited non-
trivial spreading in the as-received wafers. Hence, to obtain the
parameters � and �, a nonlinear least-squares fitting routine
was employed together with direct solution of Eqs. 1 and 2
using a differential equation solver. The effective diffusivity
Deff was calculated from the relation4

Deff � Kgen�
2 (13)

At long diffusion times, fitting the profiles with the conven-
tional error function expression gave values of Deff differing by
only 1-2% from those calculated by Eq. 13. Table 2 lists the
fitting parameters and the diffusivities calculated using Eq. (13)
for the two temperatures. For a 95% confidence interval, the
errors in �, � and Deff are 5%, 2% and 10%, respectively.

The exponential shape of the short-distance profile in Figure
3 gives clear evidence of a mechanism involving a highly
mobile intermediate species. A simple vacancy mechanism
cannot account for this shape because the diffusing atom does
not go into a highly mobile state. A vacancy pairing mecha-
nism outlined in Table 1 can explain the data in principle, but
seems unlikely in the case of Si self-diffusion because there is
no mechanism for such pairing. Such a mechanism has been
postulated for diffusion of dopants in Si, where interaction
between the vacancy and dopant atom arises from coulombic
attraction7 or possibly short-range elastic forces.7 However,
both of these interactions require that the foreign atom differs
chemically from the host so that charging and/or lattice distor-
tion can take place. Such effects do not occur when the foreign
atoms are merely labeled isotopically. The data of Figure 3
cannot distinguish between interstitial mechanisms involving
vacancy-interstitial (or “Frank-Turnbull”) dissociation as op-
posed to kickout, as has been proven by Marioton et al.9 and
Cowern.2 Such a distinction requires variation of point defect
concentrations in a controlled manner as outlined by Cowern et
al.4

The diffusivities shown in Table 2 are two to four orders of
magnitude larger than typical diffusivities reported in literature
at similar temperatures.7,8,11 It is well known that self-diffusion
measurements in Si suffer from large but unexplained discrep-
ancies among laboratories.7,8,11 We will discuss the likely rea-
sons for these differences elsewhere.5 Note, however, that the
large diffusivities reported here do not arise from the mathe-
matical framework for analysis; standard error function fitting
at long times yields essentially the same results as the more
complicated equations derived here.

Conclusion

The diffusion method developed here for initial step profiles
shares the advantages of related methods already described for
delta functions, but offers the additional advantages of fabri-
cation ease and analytical ease in the short-time limit. In the
particular case of Si self-diffusion, exponential tails on short-
time profiles give clear evidence that interstitials mediate the
dynamics under the conditions of the experiments.
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