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Abstract

New applications in materials, medicine, and computers are being discovered where the control of events at the molecular and
nanoscopic scales is critical to product quality, although the primary manipulation of these events during processing occurs at mac-
roscopic length scales. This motivates the creation of tools for the design and control of multiscale systems that have length scales
ranging from the atomistic to the macroscopic. This paper describes a systematic approach that consists of stochastic parameter
sensitivity analysis, Bayesian parameter estimation applied to ab initio calculations and experimental data, model-based experimen-
tal design, hypothesis mechanism selection, and multistep optimization.
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1. Introduction

New applications in materials, medicine, and com-
puters are being discovered where the control of events
at the molecular and nanoscopic length scales is critical
to product quality, although the primary manipulation
of these events during processing occurs at macroscopic
length scales (e.g. temperature of the system, valves on
flows into and out of the system, applied potential
between two electrodes). These applications include
nanobiological devices, micromachines, nanoelectronic
devices, and protein microarrays and chips [30,53,72,
95,100,113,120]. While many of these devices are de-
signed using highly simplified models or trial-and-error
experimentation, recent advances in computer speed
and memory, numerical algorithms, and sensor technol-
ogies suggest that a more systematic approach to the de-
sign and control of these multiscale systems is possible.
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The potential applications motivate the creation of
tools for the design and control of multiscale systems
that have length scales ranging from the macroscopic
to the atomistic. This paper describes the challenges to
building such multiscale systems tools, which include
uncertainties in the physicochemical mechanisms as well
as the values of thermodynamic and kinetic parameters,
complexities in the simulation of model equations that
can span a wide range of time and length scales, lack
of manipulated variables and direct measurements of
most properties at the nanoscale during processing,
and the inapplicability of most existing systems tools
to address systems described by noncontinuum and
dynamically coupled continuum–noncontinuum models.
These challenges specify the requirements for multiscale
systems tools.

This paper describes how these requirements can be
satisfied by a systematic approach to the design and con-
trol of multiscale systems that consists of stochastic
parameter sensitivity analysis, Bayesian parameter esti-
mation applied to ab initio calculations and experimen-
tal data, model-based experimental design, hypothesis
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mechanism selection, and multistep optimization. This
enables multiscale systems to be designed and controlled
based on the numerical algorithms that are most appro-
priate for simulating each of the length scales of the
process.
2. Challenges and requirements

The challenges associated with the design and control
of multiscale systems specify the requirements for multi-
scale systems tools. To make the description of the
challenges as concrete as possible, the manufacture of
on-chip copper interconnections in electronic devices is
used as an illustrative example. In this process, an
applied potential is used to electrodeposit copper on
surfaces and in trenches and vias. The product quality
of the deposit is a function of nucleation at the atomic
scale, surface morphology at the nanoscale, shape evolu-
tion at the nano- to micro-length scales, and deposit
uniformity over the wafer surface. This electrodeposit-
ion process involves phenomena that are simultaneously
important over ten orders of magnitude in time and
length scales [2–4]. According to the International Tech-
nology Roadmap for semiconductors [113], the manu-
facture of next-generation interconnects will require
design and control of all of these length scales.

Fig. 1 is a schematic of the electrodeposition of cop-
per into a trench, in which Cu2+ ions in solution diffuse
and migrate to the surface in response to a potential ap-
plied between the reference and working electrodes.
Although the introduction of organic chemical additive
cocktails to the solution to produce void-free copper
deposits in sub-100 nm trenches is well established
[5,6], the precise physicochemical mechanisms of the
interactions of these additives with the copper surface
are not well understood [21,69,89–91,117,118,122], mak-
ing it difficult to design new additive cocktails able to
produce void-free deposits in smaller features. A chal-
Fig. 1. Electrochemical process for manufacturing on-chip copper
interconnects, in which a rotating disk creates a boundary layer above
the wafer surface (not drawn to scale).
lenge in applying systems principles to these and other
multiscale systems is that the underlying mechanisms,
as well as the thermodynamic and kinetic parameters
associated with the steps in these mechanisms, are uncer-
tain. Multiscale systems tools are needed that can handle

uncertain mechanisms, as well as uncertain parameters.
Another challenge to engineering multiscale systems

is that the codes used to simulate these systems are com-
putationally expensive. For example, consider Fig. 2,
which is a schematic of a multiscale simulation model
for the electrodeposition of copper into trenches. Chem-
ical reactions and the diffusion and migration of species
in the solution boundary layer are described by a system
of partial differential–algebraic equations, which are
typically simulated using the finite volume or finite ele-
ment method. The height of the boundary layer is typi-
cally �50 lm and a typical time step for such a code is
�1 ms. The nucleation, surface chemistry, and rough-
ness evolution of the trench surface are more accurately
simulated using noncontinuum methods such as kinetic
Monte-Carlo (KMC) simulation [12,27,52,73,103,124].
KMC methods are used to simulate structural properties
of matter that cannot be represented by a macroscopic
continuum description. A KMC simulation is a realiza-
tion of the master equation [33]:

oPðr; tÞ
ot

¼
X

r0
W ðr0; rÞP ðr0; tÞ �

X

r0
W ðr; r0ÞP ðr; tÞ ð1Þ

where r and r 0 are successive states of the system, P(r, t)
is the probability that the system is in state r at time t,
and W(r 0,r) is the probability per unit time that the sys-
tem will undergo a transition from state r 0 to r. For a
particular system being studied, the KMC code chooses
randomly among the possible transitions of the system
and accepts particular transitions with appropriate
probabilities defined by the kinetic rate laws for each
Fig. 2. Multiscale simulation of the electrochemical process for
manufacturing on-chip copper interconnects (not drawn to scale).
The dots represent Cu2+ ions in solution, with the film on the surface
being metallic copper.



Fig. 3. Current density response to a staircase function of applied
potential for the dynamically coupled simulation of the electrochem-
ical process for manufacturing on-chip copper interconnects (each step
of the staircase was 10 s long).

Fig. 4. Atomic force microscopy image of an electrodeposited copper
surface.
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allowed event in the simulation [27]. After each accepted
or attempted transition, the time variable is incremented
by one Monte-Carlo time step (typically the time step is
�1 ns), and the process is repeated. By selecting the
probabilities to satisfy certain conditions, the real time
variable t corresponding to the number of Monte-Carlo
time steps can be computed.

The bottom part of Fig. 2 shows the infill of several
trenches simulated using a three-dimensional (3D)
KMC code, that tracks adsorption, desorption, bulk
and surface diffusion, and chemical reactions [28,29].
To reduce the computational load, the 3D KMC code
was coarse-grained [41,55,56,60,78,114], such that
clusters of molecules were tracked instead of individual
molecules [25,66,67,98,99], and periodic boundary con-
ditions were used at all sides (but not the top or bottom)
of the simulation domain. Even with these simplifica-
tions, it takes �1 day to perform one simulation run.
This greatly limits the number of simulation runs that
a systems tool is allowed to make in a coupled simula-
tion–optimization algorithm such as used in control vec-
tor parameterization [105]. Further, systems techniques
that write the simulation code as an algebraic system
of equations to be embedded into a structured nonlinear
program [59], are not computationally feasible for
multiscale systems, as there would be >1016 algebraic
equations in the structured nonlinear program. Multi-

scale systems tools must be much more computationally

efficient than most existing systems tools. Note that the
state dimension of KMC codes is very high, while the
numbers of simulation inputs (e.g., applied potential)
and outputs (e.g., surface roughness, fraction of voids)
are much lower. This motivates the creation of multiscale

systems tools that act directly on simulation inputs and

outputs, to keep the computational cost low.
As a further complication, the codes in Fig. 2 must be

dynamically coupled when dilute additives are included
in the simulation, as the surface chemistry and transport
determines the amount of depletion of additives in the
boundary layer, and the boundary layer influences the
rate that chemical species reach the surface. Multiscale

systems tools are needed that can handle models described

by dynamically coupled continuum and noncontinuum

codes.
Another characteristic of noncontinuum codes is that

their outputs typically have significant stochastic fluctu-
ations, which can be nonGaussian. For example, Fig. 3
is the current density response from a dynamically cou-
pled KMC-finite difference simulation of copper electro-
deposition in response to a staircase function of the
applied potential [109]. The current density only takes
on discrete values, which are associated with electron
transfer at the copper surface (e.g., as a Cu2+ ion gains
two electrons to form copper metal). The values of the
current density are computed by dividing the sum of
the amount of charge passed within a given time interval
by the length of the time interval, which is highly noisy
as this calculation essentially involved taking the deriv-
ative of a noisy signal (charge passed with a short time
interval). This response is in sharp contrast to the typical
step and staircase responses reported in the controls lit-
erature [74,105]. Although most existing systems tools
are applicable to stochastic models with Gaussian fluc-
tuations, these tools always assume that the determinis-
tic part of the model is known. Multiscale systems tools

must be able to address models with large amounts of
nonGaussian noise, for which a deterministic model is

unavailable.

Another challenge in multiscale systems is the lack of
key measurements during processing at industrially rel-
evant operating conditions. While there are some on-line
measurements available, most of these measurements
are only available after processing is completed. For
example, the only on-line measured variables for the
copper electrodeposition process are temperature and
current. There are no on-line concentration measure-
ments at the surface, where the uncertain chemical
mechanisms and most of the uncertain parameters are
located. The key measurement data, which are atomic
force microscopy images, are only available at the end
of the process (see Fig. 4). Multiscale systems tools must

include experimental design methods that maximize the
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information from the available sensors, to create models

that are predictive.
Another characteristic of multiscale systems is a lack

of manipulated variables at the molecular and nano-
scopic length scales during processing. For example,
the only variable manipulated during the electrodeposit-
ion process in Fig. 1 is the applied potential, which does
not provide enough degrees of freedom to produce void-
free copper in the 0.13 lm trenches used in modern
microelectronic devices. This is why industrial practice
is to introduce additional degrees of freedom in the ini-
tial conditions, which is done through the selection and
concentrations of organic chemicals added to the solu-
tion. In general, most multiscale systems require that
molecular and nanoscale manipulation be treated as a de-

sign focus, to exploit self-assembly during processing.
3. Complex systems tools

Before looking at multiscale systems tools, it is useful
to review some systems tools developed for complex
continuum models that address most, but not all, of
the challenges of multiscale systems (see Fig. 5). Before
carrying out model identification for a complex system,
an identifiability analysis should be carried out to deter-
mine whether the available measurements are sufficient
to enable the estimation of model parameters and com-
peting hypothesized mechanisms (see [57], and refer-
ences cited therein). The next step is the identification
ab initio Computational Chemistry Calculatio
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Fig. 5. Iterative process of model identification and robust optimization of
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and Ehi is the confidence region for the ith hypothesized mechanism, h is the
most likely mechanism, û is the optimal control policy (including initial con
sensor locations, etc.), K is the optimal controller, and Eu is the uncertainty in
of disturbances.
of the model, which is an iterative procedure. The first
experiment is designed using engineering judgment on
how to excite the dynamics of the system, or is com-
puted using initial estimates of the model parameters
and some experimental design objective such as mini-
mizing the uncertainties in the parameters [8,11,13]. Im-
proved estimates of the parameters and an associated
uncertainty description are computed from the dynamic
data collected from the experiment. This can be aug-
mented with ab initio computational chemistry calcula-
tions (such as density functional theory) using Bayesian
parameter estimation techniques [48]. While DFT calcu-
lations have a high computational cost and limited accu-
racy for complex chemical systems, they have been very
useful for computing prior parameter estimates that are
improved by applying Bayesian parameter estimation to
experimental data.

When several hypothesized physicochemical mecha-
nisms are available, model discrimination techniques
are used to select which mechanism is most consistent
with the experimental data techniques (e.g., [15,50,
106]). The model parameters and uncertainty descrip-
tion are used to design the next laboratory experiment,
which can be constructed to further reduce the model
uncertainties or to maximize the ability to distinguish
among the multiple hypothesized mechanisms [8].
Parameter estimates obtained from this iterative proce-
dure can be many orders-of-magnitude more accurate
than estimates obtained from data collected from trial-
and-error experimentation. Once the model parameters
ns
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Fig. 6. Schematic diagram of the junction increase that takes place
during rapid thermal annealing after ion implantation of dopant.

Time (s)
0 10 20 30 40 50 60 70

Te
m

pe
ra

tu
re

 (º
C

)

0

200

400

600

800

1000

1200

Fig. 7. A typical rapid thermal anneal temperature program, which
consists of a stabilization step and a spike-anneal (i.e., a fast linear
heating step followed by a natural cool down step).
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are accurate enough, the simulation model is incorpo-
rated into an optimization algorithm to compute the
physical design variables, initial conditions, startup pro-
cedures, setpoint trajectories, and the feedback control
system.

These complex systems tools are well established for
continuum models described by general integro-partial
differential algebraic equations (IPDAEs), and have
been applied to the manufacture of photographic chem-
icals [88], pharmaceuticals [14,34], and semiconductors
[49]. These applications include a wide range of real
physical systems at Merck, Eastman Kodak, and Sema-
tech (an international consortium of semiconductor
companies), indicating the wide applicability of these
tools. The key to the generality of these complex systems
tools is that they act directly on the inputs and outputs
of simulation codes, rather than requiring a particular
form for the equations or the numerical algorithm used
to simulate the equations. Also key to providing gener-
ality is that the numerical algorithms implemented in the
steps in Fig. 5 incorporate parameter sensitivity methods
based on finite differences (e.g., [13,18,65]) or automatic
differentiation [16,17,32,35,75] and can handle correla-
tions between parameter estimates [77]. The parameter
sensitivities improve the numerical conditioning of the
systems tools while focusing the modeling effort towards
only the key parameters whose values must be known
with high certainty to produce predictive models. This
is critical when the number of parameters is large, as
is typical for semiconductor processes ([48,86]).

In recent years fast techniques have been developed
to quantify the effects of model uncertainties on all
states and outputs for the batch and semibatch processes
used to manufacture the most complex systems [9,31,
83,87], and to integrate robustness into all design vari-
ables. Some of these techniques have little restrictions
on the zero dynamics, the integro-differential structure
of the equations, the simulation algorithms, or the form
of the nonlinearities or uncertainties [81,93,94,96,97,
119]. The uncertainties can be defined by joint probabil-
ity distributions or upper and lower bounds on parame-
ter estimates, with most robustness analysis methods
applying either semi-analytical techniques or Monte-
Carlo simulation to carefully constructed low-order
approximations for the simulation models. These analy-
sis algorithms have been used to determine how much
accuracy is needed to achieve an effective design or con-
trol strategy [82], and have been incorporated into opti-
mization algorithms to produce designs and controllers
that are robust to the uncertainties [92,94].

To illustrate the complexity of systems that can be
addressed by these systems tools, consider their applica-
tion to the manufacture of ultrashallow junctions. The
current technology for the formation of ultrashallow
junctions in microelectronic logic devices relies almost
exclusively on ion implantation to introduce dopants
into the substrate (see Fig. 6). Although junctions can
be made shallower by reducing the implant energy, the
effectiveness of this approach has been limited by the
need to anneal the resulting structure to over 1000 �C
both to activate the dopant electrically and to eliminate
implant-induced defects in the crystal structure (see
Fig. 7 for an example temperature trajectory). Defects
mediate unwanted diffusion of dopants during the an-
neal process, which leads to a significant undesired in-
crease in the junction depth. The aforementioned
systems tools have been applied to the post-implant
annealing process, to construct a simulation model
and to minimize the junction deepening while maximiz-
ing dopant activation.

The simulation model includes the coupled mass bal-
ance equations for interstitial atoms, interstitial clusters,
and related defects. These equations have the general
form for species i :

oNi

ot
¼ � oJ i

ox
þ Gi ð2Þ
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where Ni denotes concentration and Gi is the net gener-
ation rate. The flux Ji incorporates terms due to diffu-
sion and drift in response to electric fields. The model
also includes Poisson�s equation describing the electric
field generated by spatial imbalance of the charge den-
sity. The simulation model consisted of �25 partial dif-
ferential equations which were nonuniformly spatially
discretized using between 200 and 800 points in the
depth direction, resulting in up to 20,000 extremely stiff
ordinary differential equations that were solved using
the public domain software FLOOPS [71], which inte-
grates the equations using a combination of the one-step
trapezoidal rule and the multiscape backward differenti-
ation formula [10].

The activation energies in the expressions for Gi and
Ji were obtained by Bayesian parameter estimation,
which incorporated information from density functional
theory (DFT) calculations, past experimental studies,
and boron secondary ion mass spectroscopy data from
the International Sematech consortium of semiconduc-
tor companies [48]. A combination of parameter sensi-
tivity analysis and kinetic insights was used to select
the physical mechanism [47,46], in which the most
important part was the specification of the network of
chemical reactions for the clusters. Parameter sensitivity
analysis was a necessity in the construction of the phys-
ical mechanism, as the number of kinetic parameters
was large, including 18 activation energies associated
with the interstitial diffusion, cluster association, and
cluster dissociation reactions.

The complex systems tools in Fig. 5 permitted the
construction of a clear picture of the fundamental ki-
netic processes that govern diffusion and electrical acti-
vation of dopant [61,62,64]. The agreement between
the simulated and experimental boron dopant profiles
was within 2 nm for the entire junction (see Fig. 8). To
provide further validation of the simulation model, the
junction depth and sheet resistance (this is a measure
of dopant activation) were computed for a wide range
of temperature profiles, and compared to a large num-
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Fig. 8. Experimental and simulated boron dopant profiles, for two
batch operating recipes [48].
ber of experimental values reported in the literature
and to the ‘‘Sematech curve,’’ which summarizes addi-
tional experimental values (see Fig. 9). The predictions
of the simulation model are highly consistent with re-
ported experimental values.

The simulation model was incorporated into an opti-
mal control problem to compute an annealing tempera-
ture trajectory that minimized the junction depth while
maintaining a desirable level of boron activation [49].
Robustness analysis as shown in Fig. 5 was applied to
rigorously quantify the performance degradation from
uncertainties in the feedback control implementation
and the model parameters. The analysis indicated that
limited improvement in product quality is achievable
using existing metrology and rapid thermal processing
controllers.

As discussed in Section 2, the limited actuation avail-
able at macroscopic length scales motivates the applica-
tion of molecular design, and it was argued that the
potential impact of such design optimization can be
much greater than the potential benefit of improved feed-
back control. As it is highly advantageous in terms of
electronic device properties to restrict the chemistry to
dopant and silicon molecules, we have been keeping
the atomic species unchanged, but using the simulation
model to change the bond structure at the silicon surface
[63]. We have shown that the effects of the structure of
bonds at the silicon surface have a substantial effect on
the junction depth due to a change in the effective surface
boundary condition for interstitials. These simulation
studies have motivated discrete changes in processing
conditions, which are being evaluated experimentally
[22] and form the basis of a patent disclosure [112].

These complex systems tools address most of the
requirements for application to multiscale systems, in
that nonGaussian stochastic behavior and uncertain
mechanisms and parameters are taken into account;
the tools are computationally efficient, general purpose,
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Fig. 9. Comparison of junction depth-sheet resistance pairs from
various published experimental papers and TED simulations employ-
ing various heating and cooling rates, and annealing temperatures. The
Sematech curve summarizes the sheet resistance and junction depth
data in experimental studies performed by International Sematech [48].
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and act directly on simulation inputs and outputs;
experimental design methods are included that maxi-
mize the information from sensors to create predictive
models; and that design and control are optimized
simultaneously, which enables molecular and nanoscale
manipulation in the design problem to be considered
jointly with the manipulation of the on-line variables
by feedback controllers during processing. The com-
plex systems tools, however, do not consider all of the
issues particular to models described by noncontinuum
and coupled continuum and noncontinuum simulation
codes, namely, the lack of an underlying deterministic
model for the noncontinuum simulation codes, and the
additional numerical stability issues that can arise when
codes are linked. The next section discusses efforts to ex-
tend these complex systems tools to address these two
additional requirements of multiscale systems.
4. Noncontinuum and coupled continuum/noncontinuum

codes

For the noncontinuum models that describe complex
systems, the optimizations that occur in the model-based
experimental design, Bayesian parameter estimation,
hypothesis mechanism selection, and optimal design
and control steps in Fig. 5 are stochastic with no closed
form expression for the underlying deterministic system.
For KMC codes, it has been proposed to construct re-
duced-order models by truncating unlikely configura-
tions and grouping probabilities that evolve together
[37–39], using smaller lattices [79,80], approximating fast
reactions either deterministically or as Langevin equa-
tions [51], or applying least-squares model identification
methods [36,40]. Similar reduced-order models have
been defined for dynamically coupled continuum/non-
continuum codes [102,109]. Although such approaches
are acceptable for controller design, one of the main
points in Section 2 is that molecular and nanoscale
manipulation should be treated as a design problem, to
exploit self-assembly during processing—not primarily
as feedback controller design. For design purposes, the
reduced-order models must be a function of the physico-
chemical parameters in the simulation codes to be
manipulated in the design optimization, which can be
changed through modifying the chemistry of the system,
rather than as a function of macroscopic manipulated
variables such as temperature. Developing reduced-
order models that are globally applicable and a function
of both the physicochemical parameters and the macro-
scopic manipulated variables is a challenging problem,
considering the high computational cost of the simula-
tion codes.

Another consideration is that simulation codes which
include molecular-scale phenomena are stochastic,
which implies that averaging techniques [109] or sto-
chastic optimization algorithms such as simulated
annealing are appropriate [1]. We have shown that even
the finite difference calculation of parameter sensitivities
typically used in systems engineering algorithms must be
formulated as a stochastic optimization, to obtain esti-
mates of the highest accuracy [24]. More specifically,
the finite difference expressions for sensitivities reported
in textbooks and papers are derived assuming that the
underlying system can be described as a deterministic
Taylor series expansion, whereas this assumption is
invalid for simulations that include noncontinuum
models, whose outputs are stochastic. A much more
accurate and appropriate formulation is to include a
stochastic term in the series expansion, and determine
the finite difference expression by solving an optimiza-
tion problem whose objective is to compute either the
minimum variance or maximum likelihood estimate of
the parameter sensitivity. As in continuum models, these
parameter sensitivities are a key step needed to reduce
the complexity and improve the numerical conditioning
of the stochastic optimizations that define the systems
tasks in Fig. 5.

Recently we incorporated our stochastic parameter
sensitivity algorithm into a multistep optimization algo-
rithm [101] that uses sensitivity analysis to determine the
key parameters, followed by solution mapping to
parameterize the responses of the simulation model as
low-degree polynomials of the key parameters, and sim-
ulated annealing to optimize the key parameters. The
low-order parameterization is used to reduce the num-
ber of runs of the computationally expensive stochastic
simulation code required to converge to the parameter
estimates. This revised algorithm (see Fig. 10) has been
used to estimate kinetic parameters associated with cop-
per electrodeposition from measurements of the applied
potential and the surface using atomic force microscopy
images (see Fig. 4), where the simulation model con-
sisted of a coarse-grained KMC code dynamically cou-
pled to a finite difference continuum code [26].

This application coarse-grained the KMC code to
further reduce the computational expense; other acceler-
ation methods such as the tau-leaping [44,45,104] and
gap-tooth methods [41] could be applied, in isolation
or in addition to coarse-graining.

Another important consideration is that the coupling
of simulation codes can induce an additional systems
issue—linkage instabilities. While numerically stable
codes are available for simulating each length scale,
numerical instabilities can be induced in the coupling
of such codes by temporal and spatial mismatches at
the interfaces between the codes. For the coupling of
continuum codes, one approach to numerically stabilize
the coupling codes is by passing both boundary condi-
tions and associated sensitivity information between the
codes [19]. The approach cannot be applied to dynamic
couplings that include noncontinuum codes; however,



Fig. 10. A simplified schematic of the multistep optimization algorithm for parameter estimation in stochastic simulation codes. Kinetics from
ab initio calculations such as DFT are included using a Bayesian formulation [48].
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since the associated sensitivities cannot be computed to
high enough accuracy for such codes. We have used con-
trol systems theory to design numerical linkage algo-
rithms that modify the dynamic information passed
between the simulation codes to numerically stabilize
their coupling, and to increase the numerical accuracy
of the simulation results [29,110,111]. In this approach,
the simulation codes are represented by deterministic
or stochastic discrete-time nonlinear operators, with
mismatches at the interfaces between simulation codes
modeled as norm-bounded perturbations, as is com-
monly done in robust control theory (see Fig. 11).
Dynamic coupling algorithms are exactly modeled as
additional operators inserted into the block diagram,
which are designed by optimal control theory [110,
111]. A constructive procedure for testing whether an
arbitrary interconnection of simulation codes is well-
posed is provided by nonlinear systems theory [110,
111], which also provides general conditions regarding
Finite
Volume Code

∆2∆1

Kinetic Monte 
Carlo Code 

noise

Fig. 11. Time- and length-scale mismatches at interfaces between
simulation codes can be modeled as perturbations Di on the informa-
tion passed between simulation codes. The effects of these mismatches
and uncertainties in kinetic parameters in the individual simulation
codes on the simulation outputs can be analyzed using nonlinear
systems theory and uncertainty-based simulation techniques.
the numerical stability and accuracy of dynamically cou-
pled simulation codes. The dynamic coupling algorithms
designed by this control theoretic approach have been
analyzed using the classical methods of numerical anal-
ysis (e.g., such as described in the textbook by [7]) and
compared to previous algorithms such as direct coupling
[29,107]. Nonlinear control theory and numerical analy-
sis are complementary approaches for drawing clear and
direct comparisons between the various dynamic cou-
pling algorithms described in the literature (e.g., see
[23,58,86,95,102,121]; and references cited therein).

More recently we have been using nonlinear systems
theory to guide the design of much more complex dy-
namic coupling of simulation codes than shown in
Fig. 11. An improved multiscale simulation model for
the electrochemical process used to manufacture copper
interconnects (shown in Figs. 1 and 2) is shown in
Fig. 12. The multiscale simulation model couples multi-
ple instances of a solid-on-solid KMC simulation code
[27] to an internally coupled moving boundary (MB)
finite-volume/level set continuum simulation code
[20,76,123] to simulate the filling of on-chip features
(trenches) by electrodeposition in the presence of addi-
tives. The KMC and MB simulations dynamically pass
interface conditions during the simulations. The MB
code sends surface concentrations and the solution po-
tential to each KMC code, which computes reaction
rates from the simulation of the chemistry and physics
that occur at the electrode surface. The KMC codes
send species fluxes to the MB code which are used as
surface boundary conditions. The MB code advances
the copper-solution interface using the level-set method,
and simulates the chemistry and physics in the electro-
lyte in and above the trench using the finite volume
method.



Fig. 12. A coupled simulation with ‘‘master-worker’’ computational
paradigm. The stripes in the copper deposit denote the location of
KMC simulations. The zoom-in picture of the copper deposit shows
the distinction of the actual surface morphology and the surface seen
by the MB code in the simulation.
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It is useful to relate the multiscale systems approach
described in this paper to coarse microscopic time-step-
per-based methods for constructing bifurcation maps
[70,115,116]. These methods satisfy one of the key
requirements for multiscale systems tools described
in Section 2, in that they act directly on the inputs and
outputs of simulation codes. Although originally devel-
oped for continuum codes, these methods can be applied
to noncontinuum codes [43,42,54,68,84,85,115]. It is
straightforward to show that these methods apply to
dynamically coupled continuum/noncontinuum codes
as well. The main assumption underlying these time-
stepper methods is the requirement of a clear separation
of time scales [43,108], which holds for some but not all
physical systems (note that the aforementioned methods
in Sections 3 and 4 do not require a clear separation in
time scales). For systems in which this assumption
holds, these time-stepper methods enable the analysis
of the nonlinear dynamical behavior of multiscale sys-
tems, which can be used for an initial assessment of
whether the qualitative dynamic behavior of a hypothe-
sized mechanism is consistent with experimental obser-
vations. Hypothesized mechanisms with qualitative
dynamics that are consistent with experiments are re-
moved from further consideration in the mechanism
selection step in Fig. 5.
5. Conclusions

This paper describes the characteristics of multiscale
systems, using the manufacture of on-chip copper inter-
connections as a specific example to illustrate the key
points. These characteristics specify the requirements
for multiscale systems tools. One of the key points was
that limitations in manipulations available during pro-
cessing for most multiscale systems imply that a much

larger impact on product quality can be achieved from

molecular design rather than on designing better feed-
back controllers. Systems tools applicable to complex
continuum models were summarized that satisfy the
requirements for multiscale systems, except for issues
specific to dealing with noncontinuum and coupled non-
continuum–continuum codes. This was illustrated in an
application to the manufacture of ultrashallow junc-
tions. An extension of the complex systems tools to deal
with the requirements of multiscale systems was de-
scribed, that incorporates stochastic sensitivity analysis
within a multistep optimization algorithm.

Although the systems principles are the same for mul-
tiscale systems as for macroscopic systems, the problem
formulations and the numerical algorithms designed to
solve these formulations are different. Further, a new
issue arises in multiscale systems, which is how to address
numerical instabilities that can arise during the linkage
of individual simulation codes. Some results in applying
nonlinear control theory to design numerical linkage
algorithms were described. More theory is needed to
provide a systematic methodology for the numerical
stabilization of multiscale simulation codes, and on
algorithms for Bayesian parameter estimation, model-
based experimental design, hypothesis mechanism selec-
tion, and robust optimization.
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