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ABSTRACT: The measured induction times in droplet-based microfluidic systems are stochastic and are not described by the
deterministic population balances ormoment equations commonly used tomodel the crystallization of amino acids, proteins, and
active pharmaceutical ingredients. A stochastic model in the form of a Master equation is formulated for crystal nucleation in
droplet-based microfluidic systems for any form of nucleation rate expression under conditions of time-varying supersaturation.
An analytical solution is provided to describe the (1) time evolution of the probability of crystal nucleation, (2) the average number
of crystals that will form at time t for a large number of droplets, (3) the induction time distribution, and (4) themean, most likely,
and median induction times. These expressions are used to develop methods for determining nucleation kinetics. Nucleation
kinetics are determined from induction times measured for paracetamol and lysozyme at high supersaturation in an evaporation-
based high-throughput crystallization platform, which give lowprediction errors when the nucleation kinetics were used to predict
induction times for other experimental conditions. The proposed stochastic model is relevant to homogeneous and heterogeneous
crystal nucleation in a wide range of droplet-based and microfluidic crystallization platforms.

I. Introduction

Numerous studies have been carried out to obtain a better
fundamental understanding of nucleation mechanisms.1-8

More recently, high-throughput microfluidic crystallization
systems have been used to crystallize a variety of organic
compounds including amino acids, proteins, and active phar-
maceutical ingredients.9-15 The goals of such studies include
the identification of conditions to produce protein crystals
for X-ray and neutron crystallography, the search for poly-
morphs for pharmaceutical compounds, and exploration of
the behavior of nucleation and crystallization kinetics at high
supersaturation.2,16-20 Such applications have the potential
to impact structure-function analysis, pharmaceutical design,
bioseparations, controlled drug delivery, treatment of protein
condensation diseases, and study of human degenerative con-
ditions.16,21,22 Estimates of the nucleation kinetics can be used
to revise crystallization conditions to produce higher quality
protein crystals, for the design of kinetic processes such as
separations, and for investigations into the fundamentals of
nucleation. Microfluidic crystallization systems enable the
measurement of a large number of induction times for various
experimental conditions using only micrograms of starting
material, and many researchers have looked into the estima-
tion of nucleation kinetics from such data.

Techniques for the estimation of nucleation kinetics in
macroscale crystallizers (e.g., see the reviews23,24) are poorly
applicable at the microscale. Because of the small volumes,
fluctuations inmeasured induction times at themicroscale can
be large.25,26 Several methods have been used to estimate
nucleation kinetics in droplets. The deterministic population
balance models and moment equations used by various resear-
chers3,20 to estimate nucleation kinetics do not capture this
stochastic behavior,whichhasbeen characterized in a series of

high-throughput constant-supersaturation experiments.25-29

Nucleation kinetics have been fit to average induction times,
to the proportion of drops not containing crystals as a func-
tion of time, and to the average number of crystals per drop at
long times.25,27,28,30,31 The Poisson distribution provided a
good fit to distributions in the number of lysozymeand lactose
crystals nucleated at constant supersaturation in droplets
using temperature jump techniques.25,28 Izmailov et al.26 deve-
loped the induction time statistics for the classical nucleation
rate expression by assuming that the induction times could be
fit by a gamma distribution. Knezic et al.27 employed electro-
dynamic levitation and a two-step model to analyze cluster
size fluctuations and cluster rearrangements to study nuclea-
tion kinetics at high supersaturation.

The aforementioned papers do not fully characterize the
distribution of crystal nuclei in droplets in cases where super-
saturation varies with time. Time-varying supersaturation
occurs, for example, in an evaporation-based microwell crys-
tallization platform (see Figure 1) designed to force a phase
change in every experiment.13,32 An alternative microfluidic
crystallization system utilizes microchannels to form droplets
of varying concentrations.10 In either system, the supersatura-
tion in each droplet can bemonotonically increased in a known
way as the evaporation proceeds. In Section IIa of this paper,
a stochastic model in the form of aMaster equation is formu-
lated for any form of nucleation rate expression under condi-
tions of time-varying supersaturation. An analytical solution
is given for theMaster equation to describe the (1) time evolu-
tion of the probability of crystal nucleation, (2) the average
number of crystals that will form at time t for a large number
of droplets, (3) the induction time statistics, and (4) the mean,
most likely, andmedian induction times. Section IIb describes
how to apply these expressions to estimate the nucleation
kinetics from experimental data collected from droplet-based
microfluidic systems. Section III estimates kinetic parameters
in the classical nucleation expression by fitting mean induc-
tion times and induction time distributions for the nucleation
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of lysozyme and paracetamol in aqueous droplets in a high-
throughput evaporation-basedcrystallizationplatform.13Section
IV summarizes this study.

II. Theoretical Development

A. Statistics of Nucleation in Droplets with Time-Varying

Supersaturation. Assume that the time for a nucleus to grow
large enough to be observable is negligible and that the solu-
tion is spatially uniform (these assumptions are made in
nearly all published studies on crystallization in microfluidic
devices). Define κ(t) > 0 as the nucleation rate in a whole
droplet (in #/s); that is, κ(t) dt is the probability that a critical
nucleus will form during an infinitesimal time interval dt.
The time evolution of the probability Pn(t) that a droplet
contains n crystals is described by the Master equation:33

dP0ðtÞ
dt

¼ -KðtÞP0ðtÞ; P0ð0Þ ¼ 1 ð1aÞ

dPnðtÞ
dt

¼ KðtÞðPn - 1ðtÞ - PnðtÞÞ; Pnð0Þ ¼ 0; n ¼ 1; 2; :::

ð1bÞ
where the differential equations for ng 1 assume that earlier
nuclei do not grow fast enough to significantly deplete solute
from the solution. This latter assumptionwas explicitlymade
by Dombrowski et al.28 and implicitly made by other resear-
chers (e.g., ref 25), and is reasonable provided that the
crystals observed in each droplet have approximately the
same size. The differential equations (1) describe a nonsta-
tionary Poisson process34 and can be solved recursively or by
defining a probability-generating function (see Supporting
Information) to give

P0ðtÞ ¼ e
-
R t

0
KðsÞ ds ð2aÞ

PnðtÞ ¼ 1

n!

� Z t

0
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�n
e
-
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; n ¼ 1; 2; ::: ð2bÞ

Figure 2 shows the time evolution of the probabilities for
droplets in which the overall nucleation rate κ is constant:

PnðtÞ ¼ 1

n!
ðKtÞn e-Kt, n ¼ 0, 1, 2, ::: ð3Þ

which has been used to fit experimental data for nucleation in
droplets of constant supersaturation.25,35,36 The shapes of
the curves in Figure 2b are the same as those observed experi-
mentally for nucleation of lysozyme crystals in droplets
under constant supersaturation (see Figure 4 of ref 25).

Consider a large number of droplets in a high-throughput
microfluidic device in which each droplet moves from under-
saturated to saturated to supersaturated conditions. The

mean number of crystals at time t (averaged over a suffi-
ciently large number of droplets) is37
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so that the timewhen themeannumberof crystals is equal to 1 isZ tn,mean

tsat

KðsÞ ds ¼ 1 ð5Þ

where the subscript n indicates that this induction time is an
average over the number of crystals. The most likely time of
having exactly 1 crystal in the system is given by

dP1

dt

�����
t¼tml
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Hence, the most likely time tn,ml for there to be exactly one
crystal in the system is equal to the time for themean number
of crystals to be equal to 1. At this time, the probability
distributions are Pn=1/(n!e) and the variance in the number
of crystals n is

Var½n� ¼
X¥
n¼0

ðn - NÞ2Pn ¼ 1

e

X¥
n¼0

ðn - 1Þ2
n!

¼ 1 ð7Þ

The large value for the variance indicates a high probability
in a particular experiment that there is either no nucleus or
multiple nuclei at t= tn,mean= tn,ml. This is also seen by the
low probability for having exactly 1 crystal in the system
at the mean induction time, P1 = 1/e. In general, it can be
shown that the variance in the number of crystals n is

Var½nðtÞ� ¼
Z t

tsat

KðsÞ ds ð8Þ

which is monotonically increasing for experiments with
positive supersaturation (i.e., κ(t) g 0). These results hold
for any time evolution of the overall nucleation rate κ(t) and
hence any time evolution of the supersaturation.

The cumulative distribution function (CDF) for the time
Tn when at least n crystals have nucleated is

PðTnetÞ ¼ FðtÞ

¼ 1-
Xn- 1

m¼0

1

m!

Z t

tsat

KðsÞ ds
" #m

e
-
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The corresponding probability distribution function
(PDF) is38,39

f ðtÞ ¼ dFðtÞ
dt

¼
KðtÞ R t

tsat
KðsÞ ds

h in- 1

ðn - 1Þ! e
-
R t

tsat
KðsÞ ds ð10Þ

whose integral gives the probability ofTn lyingwithin a parti-
cular interval,

R t2
t1
f ðtÞ dt ¼ Pðt1eTnet2Þ.These induction time

Figure 1. (a) Evaporation-basedmicrowell crystallization platform
with droplets adhering to a glass slip, and (b) crystals formed within
an evaporating hanging drop as observed from above. In (a), dark
red and blue inks are used to visualize the evaporation channel and
the droplet, respectively.
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distributions can be used to compute a variety of induc-
tion times that can be compared to experiments. For the
induction time defined by the appearance of at least 1 nucleus
(n=1):

PðT1 e tÞ ¼ FðtÞ ¼ 1- e
-
R t

tsat
KðsÞ ds

f ðtÞ ¼ dFðtÞ
dt

¼ -
d

dt
e
-
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KðsÞ ds

¼ KðtÞe-
R t

tsat
KðsÞ ds ð11Þ

For time-varying nucleation rate κ(t), the mean time for
the appearance of at least n crystals is

tmean ¼
Z ¥

0

t
KðtÞ R ttsat KðsÞ ds
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-
R t

tsat
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dt ð12Þ

with the mean induction time for the nucleation of at least
1 crystal being

tmean ¼
Z ¥

0

tKðtÞe-
R t

tsat
KðsÞ ds

dt ð13Þ

This analytical expression corresponds to the induction time
that is normally experimentally reported in the literature.40

The variance of the distribution of times about themean time
for the appearance of at least n crystals is

VarðtindÞ ¼
Z ¥

0

t2
KðtÞ R ttsat KðsÞ ds

h in - 1
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-
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which for n=1 is
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0
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The maximum likelihood (most likely) induction time tml

must occur at a time t that satisfies df/dt=0 for f in eq 11,
which occurs if and only if

dK
dt

ðtmlÞ - K2ðtmlÞ ¼ 0 ð16Þ

That is, tml can be computed from all (typically 1 or 2) of the
finite positive roots of the above expression:

tml ¼ arg max
tk

f ðtkÞ
�����dKdt ðtkÞ - K2ðtkÞ ¼ 0

8<
:

9=
; ð17Þ

Themedian induction time tmedian for the nucleation of at least
1 crystal satisfies

PðT1 e tmedianÞ ¼ 0:5 S e
-
R tmedian

tsat
KðsÞ ds

¼ 0:5 S

Z tmedian

tsat

KðsÞ ds ¼ ln 2 ð18Þ

which is smaller than the induction times (5)-(6) but has a
similar value when the overall nucleation rate κ(t) increases
rapidly right before a crystal nucleates, which typically occurs
in an evaporation-based crystallization platform with con-
stant or increasing evaporation rate.20

B. Determination of Nucleation Kinetics. The overall nuc-
leation rate κ(t) could be experimentally estimated from the
ratio of the proportion of droplets not containing nuclei to its
derivative as a function of time in eq 1a, but taking deriva-
tives of data is inaccurate. Least-squares estimation is an
alternative approach that first parametrizes κ(t) in terms of
nucleation parameters and then fits these parameters to
experimental data.41 For example, the overall nucleation
rate is given by κ(t)= J(S(t))V(t) for homogeneous nuclea-
tion in droplets, where S(t)=(C(t)-Csat)/Csat is the relative
supersaturation determined from a material balance on the
solute,42 C(t) is the concentration (g/L) of solute to be
crystallized at time t, Csat (g/L) is the solubility, J(S) is the
number of crystals formed per time per unit volume (#/s-L),
andV(t) is the volume (L) of the droplet determined from the
evaporation rate and amaterial balance on the solvent.13 The
nucleation parametersA andB in the classical homogeneous
nucleation expression43-46

JðSÞ ¼ AC expð-B=ðlnðS þ 1ÞÞ2Þ ð19Þ
can be determined by numerical solution of

min
A,B

Xnexp
i¼1

X
k

ln P0, iðtkÞ þ
Z tk

0

JðSiðsÞÞViðsÞ ds
 !2

ð20Þ

which minimizes deviations from eq 2a, summed over all
experimental conditions i and times tk in which the propor-
tion of droplets without crystals, P0,i(tk), are measured. As
eq 20 was derived based only on eq 1a, its application does
not require the assumption that the growth of any crystals
does not significantly deplete solute from the solution.

An alternative formulation fits a mean or most likely
induction time tind ∈ {tn,ml, tn,mean, tmean, tml, tmedian}:

ψ ¼ min
A,B

Xnexp
i¼1

ðtind, i - tind,measured, iÞ2 ð21Þ

Figure 2. (a) Time evolution of probabilities Pn(t) for n=0, 1, 2, ..., 7 for κ=0.1, and (b) the corresponding Pn(t) vs n for different times. The
lines in (b) are drawn to guide the eye.
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where tind is given by eqs 5, 6, 13, 17, or 18. Unbiased
estimates of the nucleation parameters can be determined
using tind ∈ {tn,ml, tn,mean} by comparing each value to the
time when the average number of crystals in a large number
of droplets is equal to 1 (for an example of such data, see refs
25-35.). A weakness of using tind ∈ {tn,ml, tn,mean} is their
dependence on the assumption that the early nuclei do not
significantly deplete solute from the solution before addi-
tional nuclei form. This assumption was not needed to derive
the expressions for tind∈ {tmean, tml, tmedian}. Fitting themean
induction time tmean averages experimental errors over all of
the data points, whereas fitting the median induction time
tmedian is highly insensitive to outliers in the data.47 An experi-
mental measurement of tml is the time at the peak of a histo-
gram of measured induction times, which is not as precise to
estimate as tmean or tmedian.

If sufficient induction times are collected to construct a
cumulative distribution, these data can be directly fit to esti-
mate the nucleation kinetics by minimizing the sum of squa-
red errors of the cumulative distribution functions:

ψF ¼ min
A,B

Xnexp
i¼1

X
k

FiðtkÞ -Fmeasured, iðtkÞ
� �2 ð22Þ

with F(t) given in eq 11.
The above approaches for the determination of nucleation

kinetics also apply to heterogeneous nucleation, with suitable
modifications to the overall nucleation rate κ(t). For example,
consider droplets attached to a solid surface but otherwise
surrounded by humid air. If the crystals nucleate at the solid-
liquid interface, then this heterogeneous surface nucleation is
described by inserting κ(t) = Jhet(S(t))A(t) into the above
expressions (1)-(18), where A(t) is the contact area between
the droplet and the solid surface. If the nucleation occurs at the
liquid-air interface, then A(t) would be defined as the contact
area between the liquid and humid air. If nucleation occurs at
the interface between aqueous droplets surrounded by an oil,
then A(t) would be the contact area between the two liquids.

The next section applies two of the above approaches to
estimate nucleation kinetics from several sets of measured
induction times, both to validate the statistical model for
nucleation in droplets and for illustration purposes.

III. Results and Discussion

This sectionapplies the aboveanalyses to experimental data
for the nucleation of organic crystals in aqueous droplets in an

evaporation-based microfluidic platform (for details on the
experimental system and procedures, see ref 13). Computa-
tional fluid dynamics indicated that natural convection was
sufficient to ensure that the solutionswere spatially uniform.48

It was observed during the experiments that the crystals did
not stick to the glass slips,32 so the applications assume that
the nucleation was homogeneous.

A. Prediction ofMean Induction Time for Different Experi-

mental Conditions. The mean time in which paracetamol
crystals were first observed in an aqueous droplet was recor-
ded for each of 11 experimental conditions with varying evapo-
ration rates and initial solution concentrations (see Table 1).
The nucleation parameters A and B for the classical nuclea-
tion expression 19 were obtained by numerical solution of
eq 2149 to fit the mean induction times to the model values
tmean in eq 1350 for six experimental conditions.51 The mea-
sured induction times are well fit by the classical nucleation
model (Figure 3a). The nucleation rate expression with the

Table 1. Induction Times {tn,ml, tn,mean, tmean, tml, tmedian} from eqs 5, 6, 13, 17, and 18 for Paracetamol in Water for 11 Experimental Conditions

with Different Evaporation Rates and Initial Solute Concentrationsa

experimental
condition #

evaporation
rate (μg/h) C0 (g/kg water) tmean (h) tn,mean,tn,ml (h) tmedian (h) tml (h)

b tind,measured (h) tlower (h)
c tupper (h)

1 34.7 11.9 13.2 13.5 13.3 13.4 13.8 12.2 14.1
2 30.2 11.9 15.1 15.4 15.2 15.4 15.3 14.0 16.1
3 30.2 9.90 15.5 15.8 15.7 15.7 15.8 14.5 16.4
4 26.1 11.9 17.4 17.8 17.5 17.7 17.8 16.1 18.5
5 26.1 9.90 17.9 18.2 18.0 18.2 18.3 16.8 18.9
6 22.2 11.9 20.4 20.7 20.5 20.8 20.3 18.8 21.6
7 22.2 9.90 21.0 21.3 21.1 21.3 21.3 19.6 22.1
8 22.2 7.94 21.5 21.9 21.7 21.8 22.0 20.4 22.5
9 18.7 11.9 24.0 24.5 24.1 24.4 23.3 22.2 25.5
10 18.7 9.90 24.8 25.2 24.9 25.2 24.8 23.2 26.1
11 18.7 7.94 25.5 25.9 25.6 25.8 25.7 24.2 26.6

aEachmeasured induction time is the time inwhich one ormore crystals was observed averaged overmultiple droplets and tlower, tupper are 90%confidence
limits. The nucleation parameters A and B were fit in eq 21 for the odd-numbered experimental conditions based on the mean induction time tmean. Even-
numbered experiments are used to assess accuracy of the model predictions. bAn example calculation of the maximum likelihood induction time tml in
Supporting Information. c tlower is determined from

R
0
tlower f(t) dt=0.05 and tupper from

R
0
tupper f(t) dt=0.95 where f (t) is the induction time distribution (11).

Figure 3. (a) Measured and model (tmean) mean induction times for
paracetamol in water for six experimental conditions with kinetic
parametersA=3.52� 105 g-1 h-1 andB=14.3, (b) corresponding
nucleation rate expression 19, and (c) comparison of model and
experimental mean induction times for five additional experimental
conditions, showing 90% prediction intervals. [The nucleation
kinetics were the same regardless of whether the time to grow to a
visible size was taken into consideration (using growth kinetics
obtained from Finnie et al.,52G=0.0183(C(t)/Csat- 1)2 m/h), sup-
porting the assumption of negligible growth time.]



Article Crystal Growth & Design, Vol. 10, No. 6, 2010 2519

best-fit nucleation parameters predicted the induction times
for five other experimental conditions with an average
deviation of <1/2 h (see Figure 3c). All of the predicted
induction times are within 90% confidence intervals com-
puted from the PDF (11) for the induction time (Table 1).
The induction times {tn,ml, tn,mean, tmean, tml, tmedian} obtained
using the same nucleation kinetics are very close to each
other, for the nucleation of paracetamol in water for the 11
experimental conditions in Table 1. The corresponding CDF
and PDF for the induction times are shown in Figure 4 for
Experimental Condition #2. The induction time distribution
is very different from that obtained for nucleation in droplets
operating at constant supersaturation, which is an exponen-
tial distribution peaked at zero time, as seen by inserting a
constant κ in eq 10. In themicrofluidic system inFigure 1, the
supersaturation and the nucleation rate κ(t) start at zero and
slowly increase as water evaporates from the drop, reaching
large values only after ∼14 h, so that the value of the induc-
tion time distribution is negligible for the first ∼14 h.

B.Determine Nucleation Kinetics by Fitting the Cumulative

Distribution. The cumulative distribution of induction times
were collected for the evaporation of lysozyme inNaCl aque-
ous solution in many droplets at two experimental condi-
tions (see Table 2). The kinetic parameters A and B in the
classical nucleation expression 19 were fit to the cumulative
distribution of induction times for Experimental Condition
#1 by numerical solution of eq 22. Both the mean and vari-
ation of the measured induction times are closely described
by the nonhomogeneous Poisson model (11) with fitting of
only two kinetic parameters (see Figure 5ab). The classical
nucleation model (19) with the two best-fit kinetic para-
meters accurately predict the cumulative distribution of in-
duction times for Experimental Condition #2 (Figure 5ab),
providing some confidence in the statistical assumptions
underlying the model (11). The distribution of induction
times at one experimental condition provided enough infor-
mation to estimate A and B accurately enough to predict the

cumulative distribution function at another experimental
condition.

The goodness of fit of the cumulative distribution function
F(t) in 11 to the experimentally measured induction times was
also evaluated using the Kolmogorov-Smirnov statistic53

Dn ¼ sup
t

jFNðtÞ - FðtÞj ð23Þ

where the null hypothesis is that F(t) in eq 23 is the distribu-
tion 11. The statistical analysis, with details in Supporting
Information, accepted the distribution function 11 as appro-
priate for describing the empirical distribution function at an
alpha level of 0.1.

IV. Conclusion

In this study, a stochastic model was presented that char-
acterizes the statistics of crystal nucleation in microfluidic
systems with time-varying supersaturation and for any form
of nucleation rate expression. The analytical solution for this
model is applicable tomicrofluidic crystallizationplatforms in
which supersaturation changes with time due to changes in
solute/precipitant concentration, temperature, pH, etc., and
can be used to identify nucleation kinetics by fitting the mea-
sured average crystal number vs time (eq 4), the proportion of
droplets that do not contain crystals vs time (eq 20), induction
times (eq 21), or induction time distributions (eq 22). The
kinetic parameters for the nucleation of paracetamol in aqu-
eous droplets obtained by fitting the mean induction times
(13) to six experimental conditions gave predicted induction
times with an average deviation <1/2 h for six other experi-
mental conditions. The nucleation kinetic parameters in
lysozyme-NaCl-waterdropletsdeterminedby fitting thecumu-
lative induction time distribution (11) at one experimental

Figure 4. (a) Model cumulative distribution function and (b) pro-
bability distribution function 11 for Experimental Condition #2 for
paracetamol in water.

Table 2. Experimental Conditions for Measuring Induction Times for

Lysozyme in NaCl Aqueous Solution with Initial NaCl (precipitant)
Concentration of 0.36 M

a

experimental
condition #

evaporation
rate (L/h)

C0 (g/L
solution)

number of measured
induction times

1 1.961� 10-7 18 30
2 2.056� 10-7 18 15

aThe solubility of Csat(t) =1.5694[CNaCl(t)]
-2.94 g/L was incorpo-

rated into the time-varying supersaturation to correctly capture the
change in solubility. The nucleation parametersA andBwere fit in eq 22
for Experimental Condition #1. Induction times for Experimental
Condition #2 were used to assess accuracy of model predictions.

Figure 5. Lysozyme-NaCl-water system: (a) experimental and
model cumulative distributions of induction times at two experi-
mental conditions, withmodel (19) using parameters ln(A, g-1 h-1)=
12.5 and B=9.7 fit to induction times for Experimental Condition
#1, (b) probability distribution functions with model mean induc-
tion time (ο) and experimental mean induction time (�), and
(c) corresponding nucleation rate expression 19. The 95% confidence
intervals for ln(A, g-1 h-1) andB are [11.9, 13.1] and [7.4, 12.0] using
t-statistics and [11.3, 13.7] and [6.8, 12.7] using F-statistics (see
Supporting Information for calculation and discussion of the con-
fidence intervals). The time for a nucleus to grow large enough to be
visible in these experiments is very short compared to the induction
time.20
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condition accurately predicted the cumulative induction
time distribution at another experimental condition. The
Komogorov-Smirnov goodness-of-fit test indicated that
themeasured induction timedistribution at each experimental
condition is consistent with the theoretical distribution (11).
The stochasticmodel is widely applicable to crystal nucleation
in a wide range of droplet and microfluidics-based devices
including levitated droplet systems,27 continuous-flow plug-
based crystallization,8 and patterned substrate-based systems.29

As discussed in Section II, themodel should also be applicable
to heterogeneous nucleation at solid-liquid, liquid-vapor,
and liquid-liquid interfaces.
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