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ABSTRACT: Excitonic solar cells based on aligned or unaligned networks of
nanotubes or nanowires offer advantages with respect of optical absorption, and
control of excition and electrical carrier transport; however, there is a lack of
predictive models of the optimal orientation and packing density of such
devices to maximize efficiency. Here-in, we develop a concise analytical
framework that describes the orientation and density trade-off on exciton
collection computed from a deterministic model of a carbon nanotube (CNT)
photovoltaic device under steady-state operation that incorporates single- and
aggregate-nanotube photophysics published earlier (Energy Environ Sci, 2014,
7, 3769). We show that the maximal film efficiency is determined by a
parameter grouping, α, representing the product of the network density and the
effective exciton diffusion length, reflecting a cooperativity between the rate of
exciton generation and the rate of exciton transport. This allows for a simple,
master plot of EQE versus film thickness, parametric in α allowing for optimal
design. This analysis extends to any excitonic solar cell with anisotropic transport elements, including polymer, nanowire,
quantum dot, and nanocarbon photovoltaics.

Nanostructured photovoltaics (PVs), e.g., dye-sensitized
solar cells (DSSCs), organic PVs, nanoporous metal

oxide, and single-walled carbon nanotube (SWCNT) solar cells,
have unique advantages for solar energy with respect to cost,
efficiency, morphology, and spectral coverage.1,2 In contrast to
bulk-semiconductor solar cells, materials with nanometer scale
heterogeneity remain challenging for mathematical model-
ing.3−6 For example, the interaction lengths can be too long for
ab initio treatment but too short for bulk, averaged properties.
This heterogeneity often generates an empirically intractable
parameter space. Accordingly, it is not obvious how to improve
the efficiency of recent carbon nanotube photovoltatic
devices.7−9 In recent work, we developed a physics based
approach to modeling exciton generation, transport, and
recombination in a single walled carbon nanotube photo-
voltaic.10 The deterministic model considered a steady-state
planar-heterojunction device incorporating SWCNT photo-
physics. We found that there existed an optimal thickness
beyond which efficiency decreased rapidly. The system of
nonlinear nonhomogenous integro-differential equations, how-
ever, required numerical evaluation. In this work, we perform a
detailed parametric analysis of the previous deterministic
model, and develop an analytical model that describes the
optimal thickness of the photovoltaic as a function of nanotube
density and photophysical constants. We find that the optimal
thickness is approximately the effective exciton diffusion length
for a given defect density, nanotube length and intrinsic
excition diffusivity.

Exciton Transport Model. In our previous work, we
considered a monochiral network of single-walled nanotubes
(SWCNT) sandwiched between two type-II exciton dissocia-
tion electrode semi-infinite plates separated by a distance T
(Figure 1).10 The Cartesian z axis is normal to the plates, with
the incident solar photon flux J0(ω) normally incident at z = 0.
A given nanotube in the film has orientation l ̂≡ (θ, ϕ), where θ
is the angle with the z axis. When the network density is high
enough (above the percolation threshold), the film can then be
meaningfully described by the distribution p(θ, ϕ), with p(θ, ϕ)
= δ(θ − θ′)δ(ϕ) for example representing an aligned film at
angle θ′.10
Exciton diffusion occurs via three channels. Longitudinal

transport is along the nanotube length, with diffusion
coefficient Dl. Exciton energy transfer occurs between
neighboring tubes either in bundles or at misaligned
interconnects, in both cases being orthogonal to the
longitudinal axis of the originating nanotube. Those effective
diffusion coefficients are DEET,b, dependent on the mean bundle
size, and DEET,I, respectively. Dl is approximately 5 orders of
magnitude larger than the latter two. The net exciton diffusivity
in the z axis is then achieved by integrating these effects over
the film orientation distribution10
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where bc is the bundle fraction in the film (typically near unity)
and γI is a sparsity coefficient capturing the density of
interconnects. The exciton population balance can then be
constructed by accounting for fluorescent emission, non-
radiative decay, Auger recombination, and tube-end quenching,
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where c(z) is the exciton concentration, N(z) is the exciton
generation rate from light absorption, kEEA is the auger
recombination rate constant, kΓ is the radiative decay rate
constant, k1′ is the impurity quenching rate constant propor-
tional to the concentration of impurities, kend is the end-
quenching rate constant, and ⟨l⟩ is the mean nanotube length.
This expression holds only for films of densities above the
percolation threshold and with a uniform distribution of
nanotube end-sites. For a more detailed derivation from single-
SWCNT behavior, including broader case analysis, see ref 10.
At steady state the exciton transport expression (eq 2) is

therefore described by a nonlinear, nonhomogenous ordinary
differential equation (ODE) of simplified form,10
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Note that all parameters are extracted from individual/
aggregate SWCNT photophysics and the distribution of
nanotube orientations in the film. The ODE is subject to
Robin boundary conditions describing Type II exciton
dissociation at each interface, z = 0,T for a film of thickness T,
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where kd, the dissociation rate constant, we take to infinity in
the rapid-dissociation limit, checking that the flux converges.
Analytic Solution to Photoadsorption of the Solar Spectrum in

SWCNT Films. The first obstacle to analytic evaluation of (3) is
N(z), the exciton generation rate, which is the photon
absorption rate. A valid form of N(z) that enables facile
solution to the exciton transport ODE is the usual inhibitor to
analytic or even deterministic solutions to exciton-transport-
limited nanomaterial photovoltaic models. Herein we report an
analytic expression with material-specific physical constants that
captures that light absorption behavior.
N(z) is the product of the absorption cross-section per

nanotube σl(ϵ, l,̂ ω), the number density ρ⟨l⟩, and the solar flux
at depth z Jν(ω, ϵ|z),

ω ρ σ ω ωϵ ϵ ϵ| = · ̂ · |ν⟨ ⟩N z l J z( , ) ( , , ) ( , )l l (5)

N(ω, ϵ|z) carries a frequency ω and polarization ϵ
dependence, the latter of which demands a SWCNT
orientation l ̂ dependence. N(z) is then a quadruple integral
over the nanotube orientation distribution p(θ, ϕ), linear in-
plane polarization ϵ (we assume normally incident light), and
light frequency ω,
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where ρ⟨l⟩ is the nanotube density (length of nanotube per
volume of film), Jν is the photon flux, and σl is the single-
SWCNT absorption cross-section, per length of nanotube.
To proceed, we focus on devices with isotropic in-plane light

absorption and no reflection of light off the back electrode. This
parametric space is the most relevant to technological interests;
in the former case it includes isotropic and vertically aligned
films, which we previously showed present dominant efficiency
relative to films with anisotropic in-plane alignment. In the
latter case, a transparent back electrode takes advantage of
SWCNTs near-infrared (nIR) absorption by allowing the solar
cell to complement existing visible PVs or coat building
materials. Those approximations make the polarization and
nanotube orientation integrals trivial. We then solve the
differential equation describing the light field attenuation as it
passes through the film,
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where J0(ω) is the incident solar flux. That produces the final
integral over frequency space

∫ρ ω σ ω ρ σ ω ω= − · ·⟨ ⟩
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Figure 1. (A) Cartoon of a SWCNT solar cell of thickness T, with
diameters exaggerated. (B) Numerical solution to the steady-state
behavior of the vertically aligned film, with the external quantum
efficiency (EQE) plotted (colormap) versus the film thickness T and
the density ϕ as a fraction of the close-packed density, at two different
mean nanotube lengths ⟨l⟩. Longer tubes exhibit less end-quenching,
increasing EQE and allowing the film to be thicker to capture more
light while still collecting excitons at the electrodes.
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To solve that integral, we recognize several simplifications.
First we can very closely approximate the nanotube absorption
spectrum as a series of Gaussian functions for each absorption
peak, with magnitude Sa,
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where μa is the energy of the transition, and σa is the peak width
( σ=FWHM 2 2 ln 2 a). Next, we find that because the
SWCNT absorption peaks lie on only the red side of the
solar spectrum peak, the spectrum can be sufficiently
approximated as a Gaussian as well,

ω
ω μ

σ
≅ · −

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥J J( ) exp

( )

2
J

J
0 0

2

2
(10)

Those simplifications make N(z) an insoluble convolution of
a Gaussian and an exponential decay of a Gaussian (see SI). We
can observe, however, that while the Exponential-Gaussian term
is in general not well captured by the first-order Taylor
expansion, its product with the Gaussian term is because either
the function extrema are close or the Gaussian-Exponential
reduces to unity. That observation simplifies the integral,
allowing us to solve it as
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where γa can be understood as the area of overlap of the solar
flux and absorption peak a,
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The sum must include two peaks for each SWCNT chirality,
corresponding to the E1u and E2u transitions. For a solid film of
(6,5) SWCNT,7 the empirical constants are S1 = 1.64 × 10−10

m2/m, γ1 = 293 nm, S2 = 0.13 × 10−10 m2/m, and γ2 = 74 nm.
This biexponential analytic expression closely matches the

numerical solution (Figure 2A). The curve can be understood
as light absorption on two length-scales, one for each portion of
the frequency spectrum absorbed. Because there are two
absorption peaks with different absorption cross sections, near-
IR absorption being stronger, light at nIR frequencies is, relative
to initial intensity, attenuated rapidly while visible light is
absorbed more gradually, providing a long tail to our generation
rate. That effect is emphasized by the greater incident solar
intensity at the visible vs nIR frequencies. We can also see
evidenced that our first-order Taylor expansion of the
Gaussian-exponential is sufficient, with essentially no benefit
to a third-order expansion.
Analytical Solution to the Exciton Transport Model. With an

analytic expression for N(z) we are able to nondimensionalize
the ODE (eq 3). The problem symmetry yields the
characteristic exciton concentration and Cartesian length,

ρ γ
≡

· ·⟨ ⟩c
J S

k n
l

0
0 1 1

1 1 (13)

≡ =z
D

k n
Lz

D0
1 1 (14)

Figure 2. Comparison of analytic and numerical solutions. (A) Solution to the photon absorption rate, comparing the numerical result (black) to the
analytic solutions with one or two absorption peaks and first- or third-order Gaussian-exponential Taylor expansion. Solutions for 20% and 80%
close-packed density are shown, with insets zoomed for clarity. While it is necessary to include absorption from both SWCNT electronic transitions,
we can see that a third-order Taylor expansion of the frequency integrand is unnecessary. (B) Nondimensional exciton concentration profiles
comparing the numerical and analytic solutions at different densities for a film of thickness z ̃ = 4. (C) Film EQE as a function of film thickness at
different densities.
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where peak 1 (implied in S1, γ1) is the dominant absorption
mode, and k1n1 is the product of the single-nanotube first-order
quenching rate constant and the concentration of impurities
including nanotube ends. Multiple impurities with different rate
constants can be treated with a weighted sum. The character-
istic variables c0 and z0 reflect the physical trade-offs of the
system. The nondimensional concentration is a ratio of the
exciton generation rate to the dominant exciton quenching rate,
which compete to increase and decrease, respectively, the
exciton concentration. The nondimensional Cartesian coor-
dinate normalizes the film thickness as η ≡ T/LD, which
balances the film thickness against the effective exciton diffusion
length in the film. A thicker film or lower diffusion length
reduces the number of excitons that reach the electrodes.
Substituting nondimensional concentration c ̃ ≡ c/c0 and

Cartesian dimension z ̃ ≡ z/z0 into the exciton balance, we are
left with
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We then compare the magnitude of terms, finding that those
much less than unity are negligible to yield the far simplified
exciton balance
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Solving with the method of undetermined coefficients and
taking the rapid-dissociation limit, we find the concentration
profile is a balance of four competing exponentials,
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The result we again check against the numerical solution
(Figure 2B), finding excellent agreement to validate our
approximations. Our biexponential light field decay due to a
weak and strong absorption peak manifests in a pronounced tail
in exciton concentration toward the back electrode; nIR light
(the stronger peak, τ1) is rapidly collected, while visible light
(the weaker peak, τ2) is more weakly absorbed to generate
excitons deeper in the film.

Figure 3. (A) Photovoltaic external quantum efficiency (EQE) as a function of film thickness η and parameter grouping α. Note that a nonlinear
color bar was used for visual clarity. At a given α there is an optimal thickness η* that maximizes the EQE, indicated by the black line overlay. (B) the
EQE-maximizing thickness T* = η*LD versus density ϕ and exciton diffusion length LD. (C) Maximum achievable EQE versus density ϕ and exciton
diffusion length LD, showing the monotonic increase in both. In both panels B and C, α is the product of the axes. (D) Master curve (black) of
optimal device thickness, nondimensionalized with the exciton diffusion length η* ≡ T*/LD, versus α, the product of diffusion length and normalized
density and the sole system parameter. Measuring a SWCNT film’s α dictates the optimal device thickness for that material. Blue dashed curves
indicate the bounds of higher and lower thickness that yield an EQE above 99.5% of the maximum. The broad EQE tolerance suggests that in lieu of
measuring α, choosing η between 0.6 and 1.4, i.e., T* ≅ LD will provide essentially optimal performance.
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In the exciton-transport-limited approximation, we can
estimate the EQE from the boundary solutions
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We can optimize eq 22, setting its derivative equal to zero to
find the maximum as (Figure 2C),
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Crucially, there is only one film parameter in this expression,
α, the product of film density and the effective exciton diffusion
length in the film. The optimal thickness therefore depends on
only this single variable, and all possible films collapse to a
single η−α space, as in Figure 3A.
Discussion. Examining the efficiency variation with thickness

and α (Figure 3A), we can observe that EQE monotonically
increases with α; higher α materials, which have higher
densities and exciton diffusion lengths, are unambiguously
better (Figure 3C). In particular, there is a sharp drop in
efficiency for α below 10 nm, indicating that a mean exciton
diffusion length of over 100 nm for a 10% close-packed film or
10 nm for a 100% close-packed film is a crucial material
property that must be achieved to advance SWCNT Solar Cell
technology. Additionally, at a given α there is an optimal η*,
indicated by the black line in Figure 3A. The optimum
represents a balance between a thicker film collecting more
light but increasing the distance that excitons must travel to
reach the electrodes. At higher densities (ϕ) more light is
collected per unit thickness, increasing the maximum EQE and
reducing the optimal thickness required to achieve it. At longer
diffusion lengths (LD) excitons are collected more efficiently,
allowing the film to be thicker to achieve the same efficiency or
to increase the EQE at the same thickness. These cooperative
effects are captured in the product α, with the only difference
being that LD’s thickness-increasing attribute is balanced by η’s
normalization to LD, which is clear in Figure 3B; as LD increases
and the density decreases, the optimal thickness rises. From this
examination we can finally address the practically achievable
morphology trade-off between increasing density and increasing
diffusion length, such as encountered when choosing between
isotropic and vertically aligned films using current techniques:
because the product of ϕ and LD is the driver of EQE, they
should match. This is demonstrated in the symmetry of Figure

3C. Roughly, EQE is maximal when ϕ is about 1/1000th of LD
in nm.
In hindsight the reduction of the system to α is intuitive: the

rate of light absorption (exciton generation) is dictated by the
film density, while the rate of exciton collection is dictated by
the diffusion length (and film thickness). Higher density and
higher LD increase the rate of charge collection cooperatively.
Having reduced the system to this single parameter, we can
construct the master curve Figure 3D. To employ this curve, an
experimentalist only needs to measure her SWCNT film’s α,
ideally having increased it as much as possible (Figure 3C).
Above very low α (10 nm), The EQE has a plateau-like cross-
section (Figure 2C) that makes it drop off suddenly far from
η*, but fairly invariant close to η*. As a result, there is a high
degree of EQE-tolerance in the region around η*, exemplified
by the blue bounds in Figure 3D within which the EQE is
≥99.5% of the maximum possible EQE. That tolerance means
that even if experimenters do not measure their α, they can
comfortably approximate 0.6 ≤ η* ≤ 1.4 or, equivalently, T* ≅
LD. In other words, near-maximal performance can be achieved
by setting the device thickness equal to the exciton diffusion
length in the charge-collecting axis.
Under the simplifications we have made, that result has quite

broad applicability to any excitonic photovoltaic material with
bell-shaped absorption modes. The rule of thumb breaks down
at two extremes: very high and very low α. The latter case is
physically realistic; it is sparse films, or materials with very low
optical absorptivity. In those cases, the optimal thickness
becomes many times the diffusion length due to the poor light
collection. The other limit of very high α can be imagined as
extremely high light absorption, where the exciton diffusivity
becomes irrelevant and the film should be as thin as possible,
i.e., η* ≪ 1, T* ≪ LD. This case is not physically realistic with
existent materials however; SWCNT already have very high
optical absorptivity compared to most photovoltaic materials,
and density is constrained to a maximum of close-packed
density. As a result, our maximum α considered in Figure 3D is
unlikely to be exceeded by any other material.
In summary, we find that the characteristic spatial length

scale describing SWCNT PVs is the exciton diffusion length,
=L D k n/D z 1 1 , where Dz is the exciton diffusivity in the

charge-collecting axis and k1n1 is the first-order quenching rate
constant, i.e., the balance of exciton reaction and diffusion.
Nondimensionalizing device thickness as η ≡ T/LD, the
efficiency-maximizing thickness η* depends on a single
grouping of parameters, α = ϕ·LD, where ϕ is the SWCNT
number density normalized to close-packed. That generates a
master η*(α) curve (Figure 3D) that any device can be placed
on, empowering device-makers to know their optimal thickness
simply by measuring their material’s α. We further find that
close to the optimum, external quantum efficiency (EQE) is
only weakly variant with η, yielding the rule of thumb 0.6 ≤ η*
≤ 1.4, or equivalently T* ≅ LD, the thickness equals the
diffusion length, which provides an EQE within 0.5% of the
maximum. Finally, our solution is enabled by a new method of
approximating absorption of the solar flux that is applicable to
any film with bell-shaped, isotropic absorption peaks. The light
absorption (carrier generation) gradient is generally the most
difficult component of photovoltaic performance to solve due
to the convolution of nonlinear incident intensity and
absorption spectrum over frequency and polarization. Our
treatment as a whole applies to any exciton-transport-limited
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film with those absorption properties, with an analytic vs
numerical error less than 1% of the resulting EQE.
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