Journal of The Electrochemical Society, 2021 168 090504

CrossMark

Methods—PETLION: Open-Source Software for Millisecond-Scale
Porous Electrode Theory-Based Lithium-Ion Battery Simulations

Marc D. Berliner,* Martin Z. Bazant,**® and Richard

D. Braatz®**

Daniel A. Cogswell,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America

This article presents PETLION, which is an open-source, high-performance computing implementation of the porous electrode
theory (PET) model in Julia. A typical runtime for a dynamic simulation of full charge or discharge is 3 ms on a laptop while
allocating about 1 MB of total memory, and the software is seen to be two orders of magnitude faster than comparable software for
some applications. At moderate spatial resolutions, the computation times are similar to those of reduced-order and reformulated
models in the literature. Multiple numerical solvers and methods for their initialization are compared in terms of numerical
convergence and computational times, for a wide variety of operating conditions. PETLION is shown to quickly and robustly
simulate complex battery protocols such as the Galvanostatic Intermittent Titration Technique (GITT), and to achieve high
performance when incorporated into real-time PET-based nonlinear model predictive control.

© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-
NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction

in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse

please email: permissions @ioppublishing.org. [DOI: 10.1149/1945-7111/ac201c]

Manuscript submitted May 3, 2021; revised manuscript received July 22, 2021. Published September 2, 2021.

Lithium-ion batteries have become ubiquitous in modern tech-
nology including laptops, cell phones, and automobiles. The 2019
Nobel Prize in Chemistry, awarded to Goodenough, Whittingham,
and Yoshino for the development of Li-ion batteries,' highlights the
enormous environmental and societal impact that this technology has
and will continue to have on the world. Combined with renewable
energies such as wind and solar, Li-ion batteries have the potential to
create a society free of fossil fuel. Global adoption of electric
vehicles (EV) has been rapidly rising over recent years. According to
the International Energy Agency, in 2018 there were more than 14
times the amount of EVs on the road compared to just 5 years prior.”
This trend will only increase, as government incentives to reduce
emissions make EVs an attractive alternative to internal combustion
engine vehicles. For wide adoption, batteries must be safe, cheap,
allow for large driving ranges, and charge quickly with minimal
degradation.’

Developing accurate, computationally efficient methods for
predicting capacity fade in battery management systems (BMS)
motivates this work. Batteries are commonly modeled using porous
electrode theory (PET).* This model is widely used to simulate
battery cycling behavior by describing electrochemical kinetics and
transport in solid particles and electrolyte and modeling thermo-
dynamics by fitting an open circuit voltage. The model consists of
tightly coupled, nonlinear partial differential-algebraic equations.
The common practice is to fit a half dozen effective transport and
kinetic coefficients in the PET model to battery cycling data, and
then to use the model to explore changes in the battery design or the
operating conditions.

With the rise of EVs, quickly and accurately estimating battery
parameters for fleets of EVs is crucial to assess and mitigate battery
degradation. Fitting battery parameters to cycling data with the PET
model quickly becomes challenging due to the large number of
physical parameters, the computational cost of solving the model
numerous times in series, and parameter identifiability problems
when estimating even a small subset of parameters. For these
reasons, researchers often employ simplified models such as the
Single Particle Model (SPM), the Equivalent Circuit Model (ECM),
reduced order models (ROMs), or mathematical reformulations of
the modeling equations.®” While directly lowering the computa-
tional cost, these methods involve replacing the original model

*Electrochemical Society Student Member.
**Electrochemical Society Member.
“E-mail: braatz@mit.edu

equations with alternative equations that can have reduced accuracy
when the operating conditions stray from nominal ranges, e.g., at
high currents.

This article provides an open-source, high-performance com-
puting (HPC) implementation of the PET model in Julia which is
performant and robust for many operating conditions. The next
section summarizes the differential-algebraic equations that define
the PET model, and the finite volume method (FVM) implementa-
tion of the PET model in MATLAB known as LIONSIMBA that
serves as the numerical foundation for our Julia implementation.
Readers interested in a detailed description of the governing
equations, structure, and parameterization of the model are referred
to a previous publication.® Then we discuss the options implemented in
PETLION, validates PETLION against LIONSIMBA, and reports
the results of simulations for CC-CV charging, the Galvanostatic
Intermittent Titration Technique (GITT), and model predictive control.
Then the efficiency of the residuals and Jacobian functions are
evaluated over a range of discretizations and varying temperature
dynamics. Then different techniques are described for initializing a
semi-explicit system of DAEs and its effect on the PET model
stability. Then the efficiency of various stiff differential-algebraic
equation (DAE) solvers available in Julia are compared for the PET
model. Lastly, PETLION, LIONSIMBA, PyBaMM, DUALFOIL, and
COMSOL MultiPhysics are compared.

Background

Porous electrode theory and software implementations.—
Porous Electrode Theory (PET) was developed by Newman and
collaborators at the University of California, Berkeley.*>*'" The
main component of PET is the porous electrode, where the solid-phase
active material and conductive matrix has pores filled with liquid
electrolyte. Fickian diffusion and Ohmic conduction dynamically
transport lithium ions between active particles in the electrolyte. The
PET model is commonly referred to as a “pseudo-two-dimensional”
(P2D) model, in which one dimension is the position along the length
of the battery x between the two metal contact points on the opposite
sides of the electrode-separator-electrode sandwich and the second
dimension is the distance from the center of a solid particle r (Fig. 1).
The two phases are coupled by interfacial electrochemical kinetics,
such as Butler-Volmer or Marcus-Hush-Chidsey kinetics.'' Solid-
phase transport is assumed to be Fickian or approximated with a
polynomial for small applied currents. The states of the PET model are
the electrolyte and volume-averaged solid concentrations ¢, and ¢*#,
the ionic flux j, the electrolyte and solid potentials @, and ®,, the

https://orcid.org/0000-0002-2511-1853
https://orcid.org/0000-0001-8027-9635
https://orcid.org/0000-0002-8200-4501
https://orcid.org/0000-0003-4304-3484
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1149/1945-7111/ac201c
mailto:braatz@mit.edu
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ac201c&domain=pdf&date_stamp=2021-09-02

Journal of The Electrochemical Society, 2021 168 090504

> Load

e

Y

[| Electrolyte
) LiCoO2

<Nega’cive electrode>< Sep.

3é
>€

Positive electrode -

Figure 1. Schematic of the PET model for an LiC¢/LiCoO, cell during discharge.

applied current /, as well as the temperature 7 for non-isothermal
simulations.

The PET model is a set of partial differential and algebraic
equations (PDAE). Many software implementations of PET have
been developed.'>™"> LIONSIMBAS® is a MATLAB implementation
of the finite volume method (FVM) for the P2D lithium-ion battery
model. Advantages of the FVM are (1) its exact handling of flux
boundary conditions and total conservation of all conserved vari-
ables (e.g., Li atoms) throughout the control volume and (2) its
relatively simple implementation compared to the finite element
method (FEM), which makes the code easier to understand and
modify. The software implementation converts the PDAE system
into a set of ordinary differential and algebraic equations (DAEs)
with time ¢ as the independent variable.'®'” The FVM is imple-
mented in the x dimension, with N cells for the cathode, separator,
and anode. For the r dimension for solid particle concentration, the
user can choose between an 8th-order accurate finite difference
method (FDM) or a spectral method. The number of equations in the
DAE system resulted from the above discretizations is listed in
Table A-1. In the LIONSIMBA paper,® the software was thoroughly
validated by comparisons to DUALFOIL'® and COMSOL
MultiPhysics."”

Several other battery simulation tools for the PET model are
available in the literature. DUALFOIL'® is an open-source battery
simulation software from the Newman group written in Fortran.
DUALFOIL employs Newman’s BAND(j) subroutine which first
creates a local linearization of the nonlinear governing PDEs and
subsequently puts the equations in finite-difference form.>* The
system of equations is then solved at each time step using Newton’s
method. DUALFOIL offers constant current, power, and voltage
operation, cell-averaged temperature, and foil mode, which treats the
anode as a non-porous Li-metal electrode. PyBaMM?' is an flexible,
open-source, multi-scale battery simulator developed in Python that
is in active development at the time of publication. PyBaMM offers
several options to the user, including multiple geometries, the PET
and Single Particle models, FVM and FEM discretizations, and
several ODE and DAE solvers. COMSOL MultiPhysics'® is a
commercial software for solving PDEs using the finite element
method that offers an additional battery simulation module.
COMSOL provides a graphical user interface to change simulation
options, modify the geometry, and view results. COMSOL offers
several battery modules in 1D, 2D, and 3D, including lithium-ion,

lead-acid, nickel-metal hydride (NiMH), vanadium redox flow, and
soluble lead-acid flow. The Model Comparison section includes
further comparisons of the computational times for these software
packages.

Differential-algebraic equation (DAEs)—In many physical
systems, including for Li-ion batteries, the governing laws such as
the conservation of charge are algebraic. DAEs allow for these
algebraic constraints to be incorporated directly to the system of
equations. DAEs can be specified in fully implicit form,

F(y®), y@),1,0) =0, [1]
or in mass matrix form,
M 0)y@) = [, y(@); 0), [2]

where y is the vectors of states, y is the derivatives of y with respect
to time ¢, 6 is a vector of model parameters, F and f are vectors of
algebraic functions, and M is the square mass matrix. If the mass
matrix M is nonsingular, then the latter equation can be rewritten in
the form of an ordinary differential equation (ODE). For many
systems such as lithium-ion batteries, the mass matrix M is singular,
and the more general DAE formulation is required. If the mass
matrix M is diagonal with each element being a 0 or a 1, then the
DAE is semi-explicit.

Usually the first step in the numerical solution of a DAE is the
determination of a consistent set of initial conditions for the
algebraic and differential variables. Typically, the initial value of
the state vector, y(0; €), must be solved for using known y(0; 9), or
a combination of both algebraic and differential variables must be
determined given some subset of the variables defined by the
physical operation of the system. The set of equations that define
consistent initial conditions for DAEs typically include implicit
equations that cannot be solved analytically, necessitating the
application of nonlinear root-finding to determine the initial alge-
braic and/or differential states.

PETLION Package

PETLION was created to be an open-source, high-performance
computing model that is simple to use and modify for even non-Julia
users. While implementing the PET model in a lower-level language,

Journal of The Electrochemical Society, 2021 168 090504

(a) w....—*".‘ ¢ -\.V‘-,._.._.ﬂ.
— ,."‘“.”_‘._. - e e e e o e
‘C 1200 -
= /
o /
S [
S /
g 1000 7 e _.__.___.’-0——"—.
S 000009 o 4
=
[
(]
(&)
C
8 800 —— PETLION
[0} @® LIONSIMBA
=
o
3
o 600
W
0.00 0.25 0.50 0.75 1.00
Time (hr)
31 f
(b)
30 |
O 29
()]
S
-]
© 28
S
@
g' ——— PETLION
o 27 @® LIONSIMBA
|_
2% |
25 | | | |

0.00 0.25

0.50 0.75 1.00

Time (hr)

Figure 2. Comparison of the transient electrolyte concentration ¢, (a) and mean temperature 7' (b) evaluated in PETLION and LIONSIMBA. The lines from top
to bottom are interfacial ¢, values at the anode-current collector, separator-anode, cathode-separator, and current collector-cathode.

such as C++ or Fortran, is likely to be more efficient than in a more
user-friendly language, such as Julia, MATLAB, or Python among
others, the learning curve for beginners can be steeper.”? High
performance models written in MATLAB and Python often neces-
sitate the functions to be converted to a faster, low-level language
(also known as the “rwo-language” problem*+**) which can hinder
code modification and debugging—1Julia avoids this issue since its
compiled code speed is comparable to C++. Julia was ultimately
chosen for its open-source license, its relative ease of use, fast speed
after compilation, and the growing ecosystem for tools like neural
ODEs and physics-informed neural networks. The PETLION
GitHub download page® contains installation instructions and
examples for running and modifying the parameters and equations.

Model validation.—PETLION uses the same modeling equations
as LIONSIMBA, which has been validated with other codes, so
PETLION can be validated by just comparing the simulation results

to LIONSIMBA. The relative and absolute errors of the DAE solver
were set to 107> and 107%, respectively. Simulation results are
compared in Fig. 2 for a 1C discharge for the PET model with full
Fickian diffusion, temperature dynamics, and 10 discretizations per
section for a total of 341 DAEs. The electrolyte concentration ¢, and
mean temperature 7 profiles for the codes overlap for all time ¢. The
relative errors for all of the PETLION output states are all within the
specified tolerances (Table I).

Using PETLION.—PETLION allows for straightforward eva-
luation of complex battery protocols. Numerous options are avail-
able in this package, including the ability to easily change
chemistries and parameters, run constant or variable current, voltage,
and power simulations; user-defined functions for current, voltage,
and power may be (dis)continuous and/or functions of the battery
states. Optionally available are 1D temperature dynamics throughout
the cell and current collectors, the ability to choose between

Journal of The Electrochemical Society, 2021 168 090504

401
4.22
cv
3.81 starting
a21 Desired point

voltage

4.20— ¢ — . ——— —

3.4r 4.19
32t 418
417 |] ! !
3.0} 1490 500 510 520 530 540

0 100 200 300 400 500 600

Time (hr)
(b)
401
4.22
3.8
a2} Desired Ccv
voltage = starting
cutoff point

Voltage (V)

3.4r
321
417 . : : .
3.0}t 490 500 510 520 530 540

0 100 200 300 400 500 600
Time (hr)

Figure 3. 4C CC-CV simulation with a voltage cutoff at 4.2 V using (a) a
discrete callback mechanism and (b) a continuous callback mechanism. The
discrete callback leads to an incorrect starting point for the CV simulation.
The continuous callback corrects this and starts the CV step at 4.2 V. The
bullets indicate model time points, and the dotted line is the desired CV
cutoff value of 4.2 V.

Table I. Relative error comparison of PETLION with LIONSIMBA.
All output state errors are <107°.

\% Ce cive T j D, [0X

s

Relative 7.11 9.36 7.33 8.04 5.81 8.46 8.88
error (1076)

Butler-Volmer or Marcus-Hush-Chidsey reaction kinetics, and the
inclusion of aging effects due to growth of the solid-electrolyte
interface (SEI) on the anode. Running arbitrary current functions is
an important feature for battery models. In real-world driving

situations, the applied current is often discontinuous, quickly
switching from discharge to charge due to sudden stops or
regenerative breaking. Currently, PETLION does not support for-
ward or adjoint parametric sensitivity analyses.

The rest of this section provides a series of examples for
demonstrating the running of PETLION.

Example 1: stopping conditions, CC-CV charging.—Many bat-
tery protocols require a stop condition to terminate the simulation,
such as reaching a maximum or minimum voltage or state-of-charge
(SOC). Oftentimes models employ a discrete callback mechanism:
after each iteration, the stop conditions are checked and the
simulation is terminated if any stop condition is reached. This way
is simple and efficient but does not guarantee that the model run
terminates at the desired stop conditions within machine precision.
To illustrate the issue with discrete callbacks, consider a 4C CC-CV
simulation with a voltage cutoff at 4.2V shown in Fig. 3a and
simulated with the code below. The zoomed-in region showcases the
final time points of the CC step and the beginning of CV. The
discrete nature of the callback mechanism means the model will
overshoot the final time point and the final states will be wrong—in
this example, the result is running the CV step at an incorrect
constant voltage of 4.207 V instead of the 4.2 V that was specified.
In many applications, simulations must continuously run the same
cell over hundreds of cycles, such as for simulating long-term
degradation, which can magnify such errors and cause unpredictable
and random behavior when simulating changes from one experiment
to the next.

Load the model and parameters with aninitial SOC of 0
p = Params (LCO; SOC = 0)

4C CC charge until 4.2V

model = run_model (p, I =4, V_max =4.2)

CV hold for 100 s

run_model! (model, p, 100, V =:hold)

By default, PETLION implements a continuous callback mechanism
that interpolates the final states with respect to the stopping condition.”
The continuous callback mechanism quickly and accurately ensures that
consecutive simulations will not propagate error, unlike a discrete
callback. Figure 3b shows the CV step beginning correctly at 4.2 V with
corrected final states using the continuous callback.

Example 2: Galvanostatic Intermittent Titration Technique
(GITT).—GITT is a common electrochemical experimental procedure
for determining diffusion coefficients and open circuit voltages (OCVs)
using short current pulses followed by relaxation periods.?® The
few lines of code below simulate 20 periods of 1C pulses followed by
2 hour rests to fully charge a cell (see Figure 4). The zoomed-in region
shows a quick jump in voltage from the current pulse, followed by a
slow rise before the current is shut off and the voltage subsequently
falls. This dynamic matches experimental behavior for GITT with
lithium-ion batteries, e.g., as reported in Ref. 26.

Load the model and parameters with an initial SOC of 0
p = Params (LCO; SOC = 0)
model = model_output ()
GITT: 20 1C pulses followed by 2 hour rests
foriinl:20

run_model! (model, p, 3600/20, I =1)

run_model! (model, p, 2 * 3600, I = :rest)
end

#The discrete callback mechanism is an option implemented in PETLION, so that
users can compare to other codes, but is not recommended for the reasons discussed
in the previous paragraph.

Journal of The Electrochemical Society, 2021 168 090504

Example 3: PET-based nonlinear model predictive control
(NMPC).—Quick and accurate optimal operation of batteries is
important for advanced battery management systems (ABMS). Some
researchers have investigated the direct or indirect use of the PET
model within real-time NMPC algorithms, as a potential way to
better incorporate physics and battery degradation (e.g., see’”*® and
citations therein). Models embedded in real-time NMPC algorithms
must be able to robustly and quickly handle discontinuities.
Nonlinear models may have difficulties when encountering a
discontinuity if the states before and after the discontinuity are
very different—PETLION is capable of handling discontinuities in
current, voltage, and power functions.

A staircase NMPC algorithm was implemented to optimize 80
constant currents in which each lasts ten seconds. The C-rates are
bounded between 0 and 4, and their values are determined by a
numerical optimization for maximizing the cell’s SOC in 800 s while
keeping the temperature under 40 °C. The NMPC algorithm was
evaluated under two scenarios: (1) a nominal simulation with an
ambient temperature of 25 °C and (2) a disturbance simulation with
an ambient temperature of 26 °C. The NMPC results are shown in
Fig. 5 and the code to simulate each model evaluation is

Load the model and parameters with aninitial SOC of 0
and enable temperature

p = Params (LCO; temperature = true, SOC = 0)

model = model_output ()

Set the NMPC parameters

N =280
tf =800
I_vector = ... # Vector of C-rates with length N

Run the model at an ambient temperature of 25°C
p. 0 [T_amb] = 25+ 273.15
for I in I_vector
run_model! (model, p, tf/N, I =1)
end

The control algorithm charges the cell at the maximum current
until the temperature reaches its maximum, whereafter the tempera-
ture is carefully regulated. The disturbance simulation has a larger
heat flux from the environment than the nominal simulation, leading
to a slightly lower SOC after 800 s.

Residuals and Jacobian

The computational speed of the software depends on the accuracy
and speed of computing Jacobians used in the simulation code. The
residuals and sparse Jacobian functions were generated and saved to
disk locally via ModelingToolkit.jl, which is a high-performance
symbolic framework for scientific computing® that supports a full

computer algebra system (CAS). ModelingToolkit integrates itself
seamlessly with Julia—even code for a complex model such as
PETLION requires little to no modifications to work with
ModelingToolkit. This is in contrast to CasADi,*° another popular
equation-based modeling tool, which has limited CAS support and
that may necessitate rewriting and/or specifically writing functions
to work with CasADi expressions and syntax. Debugging code with
ModelingToolkit is efficient since it is written in and outputs
functions in native-Julia, compared to CasADi which is written in
C++ but is often accessed in high-level programming languages
such as MATLAB or Python.

The Jacobian was also evaluated using sparse forward-mode
automatic differentiation (AD) with a greedy distance-1 graph
coloring algorithm to reduce the number of total function
evaluations.”! Since Julia is compiled at run time, the first time
loading and evaluating these functions can be RAM-intensive and
slow, often requiring tens of seconds to minutes. After the initial
compilation, the subsequent evaluations are significantly faster.
When the model code is actively being updated (e.g., when
prototyping a new model) the AD Jacobian option is recommended
over the symbolic Jacobian because it has shorter initial compilation
times.

The memory allocations for the residuals and Jacobian functions
are 0 and 48 bytes, respectively, leading to highly performant
simulations. Table II reports the runtimes for calculating the
residuals and Jacobian, with the corresponding number of equations
per discretization being reported in Table A-I. The runtimes for both
the symbolic residuals and Jacobian are on the order of one to tens of
us, with approximately linear relationship between the runtime and
the number of discretization points, indicating that these main
functions are very well optimized. The AD Jacobian is several
time slower than the symbolic Jacobian, resulting in total simulation
time increasing by about 30%—-50% (see Table III for an example).

DAE Initialization

The first step in solving the DAE:s is to initialize the vectors of
states for the stack of algebraic terms, y(0; @), and differential terms,
v(0;). While an implicit DAE initialization code solves for y(0; 6)
and y(0; €) simultaneously, the initialization process for a DAE in
semi-explicit form can be nested into two steps:'” (1) solve only
algebraic equations for y(0; 8) and (2) analytically calculate y(0;)
using the constant mass matrix and optimized values for y(0;).
This two-step initialization is beneficial because the size of the
Jacobian is smaller when excluding the differential terms and it will
reduce error since the differential components can be solved within
machine precision. The most expensive part of this procedure is the
LU decomposition of the Jacobian, so reducing the number of
equations in the residuals function by ~4.5x (see Table A-I) will
give a performance boost. Mitigating error in the DAE initialization
step is important to avoid propagating error throughout the

Table II. Runtime for each residual and sparse Jacobian iteration for (non-)isothermal simulations for a range of discretizations. The forward-
mode automatic differentiation (AD) Jacobian uses a greedy distance-1 graph coloring algorithm to reduce the number of function evaluations. All
tests are performed on a 2019 MacBook Pro 2.4 GHz 8-Core Intel i9 computer with 32 GB of RAM.

Discretizations per Section, N

Function Method/Runtime
5 10 15 20 25 30

Residuals Isothermal (us) 1.629 3.133 4.841 6.138 7.782 9.950
(Symbolic) Non-isothermal (ys) 1.751 3.217 4.965 6.478 8.085 10.08
Jacobian Isothermal (us) 4.659 9.873 14.50 17.96 22.18 26.48
(Symbolic) Non-isothermal (ys) 6.390 12.48 18.69 23.35 29.34 34.77
Jacobian Isothermal (us) 25.13 52.02 80.16 101.1 126.7 152.1
(AD) Non-isothermal (ys) 50.25 103.5 157.3 207.8 262.5 312.0

Journal of The Electrochemical Society, 2021 168 090504

Voltage (V)

2.04

2.06 2.08 2.10

1.00

0.75

0.50 -

Current (C- rate)

0.25 -

20 30 40

Time (hr)

0.00

20 30 40

Time (hr)

Figure 4. GITT simulation results for (a) the voltage with a zoomed-in region showing the dynamics over a single 1C pulse and (b) the applied current.

simulation and for solver instability, which is discussed in detail in
the Numerical stability subsection. The initial guess for initialization
is taken from a known equilibrium position: the OCV if starting a
new run, or the final states of a previous run if continuing a
simulation.

Boovaragavan et al.>* proposed a technique to calculate the initial
algebraic states in the electrodes using the shooting method. Three
ODEs for j(x), ®,(x), and ®;(x) are solved spatially between the
endpoints of each electrode with an analytical solution available for
®,(x) in the separator (the paper includes ¢ as a reformulated
algebraic state). The pros and cons of this method compared to the
initialization methods in PETLION are discussed below.

Initial state estimation.—Four nonlinear root-finding methods
were evaluated: trust region,33 Newton’s method, Quasi-Newton’s
method,** and Anderson acceleration.®® Of these four methods, only
the trust region and Newton’s method successfully found the roots

for each simulation. Newton’s method reached the desired absolute
or relative tolerance cutoff 6.8x faster on average than the trust
region method. While trust region methods are designed for high
stability, that high stability comes a limit on how fast the solution
can be reached, which requires more iterations to converge.
Newton’s method is known to be unstable for poor initial guesses,
however, initializing from a known equilibrium is very stable over a
wide range of C-rates (see Numerical stability subsection).

The region-wise shooting method approach of Boovaragavan
et al.’*> was also investigated as an alternative to nonlinear root-
finding. The ODE function and residuals were generated as
described in the Residual and Jacobian ection. A single stiff ODE
solve using the Rosenbrock23 algorithm takes about 300-400 us
compared to 110 us with Newton’s method with 10 discretizations/
section (see Table III). The final time for initialization in the region-
wise shooting method is several times this value because the
shooting method requires a few evaluations of the ODE to find the

Journal of The Electrochemical Society, 2021 168 090504

Voltage (V)

4.00
(@)
3.75
@
S 350
=
'
Q
€ 325
[0}
=
3
3.00
2.75 + | — Nominal, 25°C Ambient Temperature =
Disturbance, 26°C Ambient Temperature —
-
0 200 400 600 800
Time (s)

40 |-

35

Average Temperature (°C)

25

0 200 400 600 800
Time (s)

(b)

4.00

3.75 -

325

3.00

Time (s)

0.8

0.4 -

State- of- Charge (-)

02

0.0

0 200 400 600 800
Time (s)

Figure 5. Model-based optimal control results for (a) the current, (b) the voltage, (c) the average temperature with maximum temperature shown by a dotted line,

and (d) the state-of-charge (SOC).

correct initial states and additionally, these evaluations must be
performed for each electrode. While the region-wise shooting
method is slower than Newton’s method for moderate discretiza-
tions, the method can be advantageous for very fine discretizations
because its runtime is independent of the mesh size. As discussed in
the DAE Solver section, such fine discretizations are not needed to
achieve high accuracy in lithium-ion battery simulations.

Numerical stability—Accurate consistent initialization for
DAEs is an important part of maintaining the numerical stability
in a simulation code, especially when running simulations under
more extreme conditions, e.g., at very high charging rates. These
considerations are especially important when embedding the model
into optimization algorithms to solve such systems engineering
problems as state-of-charge (SOC) and state-of-health (SOH)
estimation and real-time model-based optimal control.

Poor initializations can result in a failure to start the simulation,
or in error propagation throughout the model evaluation which may
lead to failure. Oftentimes with large systems of equations, the DAE
initialization can be inconsistent, i.e., the model fails to converge
somewhat randomly through various starting conditions. Figure 6
showcases this issue for a fully implicit initialization with the
function IDACalcIC from Sundials which uses a modified Newton’s
method.*® Numerous full (dis)charge experiments are evaluated
from —4 C to 4 C and their success or failure to initialize is
denoted. Using a nominal set of parameters for an LCO/LiCg battery,
the fully implicit initialization fails between 2.72 C to 2.87 C.
Additionally, when updating the cathode porosity €, < 0.9¢,, the
model fails in a different range of C-rates (2.41 C to 2.45 C).
The sporadic failures become even more problematic when the
parameters are ill-posed, as is often the case when the model
is embedded in an optimization. Using the semi-explicit DAE

Table III. Breakdown of the model evaluation time for an example isothermal 1C discharge simulation at N = 10 discretizations. The details of the
PETLION Jacobian are provided in the Residuals and Jacobian section. All models use default options except for printing which is disabled.

Model Note Evaluation Time
DAE Initialization Solver Overhead Total

PETLION Symbolic Jacobian 0.110 ms 2.78 ms 0.070 ms 2.96 ms
PETLION AD Jacobian 0.112 ms 4.39 ms 0.068 ms 4.57 ms
LIONSIMBA Jacobian provided® 6.51 ms 149 ms 35.3 ms 191 ms
LIONSIMBA Jacobian on runtime 6.51 ms 149 ms 308 ms 463 ms
PyBaMM “fast” Direct integration 65.4 ms 31.9 ms 15.4 ms 113 ms
PyBaMM “‘safe” Step-and-check integration 62.4 ms 152 ms 12 ms 226 ms

a) The LIONSIMBA Jacobian cannot be reused when the parameters or variable current/power functions are modified.

Journal of The Electrochemical Society, 2021 168 090504

[Success
[Failed to initialize

Fully Implicit DAE Initialization

Semi-Explicit DAE Initialization

Nominal ’ I ‘ ’ ‘
params.

-4 -2 0 2 4 -4 -2 0 2 4

2.72C to 2.87C

Nominal ’ I ‘ ’ ‘
params., 1

-4 -2 0 2 4 -4 -2 0 2 4
€ < 0'9617 C-rate 2.41 C\to 2.45C C-rate

Figure 6. Numerical stability of the DAE initialization for a full (dis)charge using (left) modified Newton’s method for fully implicit DAEs (right) Newton’s
method for semi-explicit DAEs. For some range of initial C-rates, the fully implicit method fails to initialize whereas the semi-explicit method is successful in all

cases.

initialization with Newton’s method successfully initializes for all
conditions.

DAE Solver

The PETLION model equations are formulated as a semi-explicit
DAE, which were fed to several stiff DAE solvers in Julia,?
including the Sundials IDA with KLU linear solver (“Sundials™),>
Rodas5, Rosenbrock23, and Radau5. The input to Sundials is a fully
implicit DAE, which needs to be fed a sparse Jacobian with the KLU
linear solver. Rodas, Rosenbrock23, and Radau5 use the mass matrix
form. The current implementations of Rodas and Rosenbrock23 in
Julia can be fed sparse Jacobians, whereas Radau5 uses a dense
Jacobian (its Fortran code is incompatible with sparse Julia types).
The model runs were benchmarked using 10 linearly spaced C-rates
ranging from —2 C to 2 C with full Fickian diffusion (see Fig. 7).
The time required for computing a consistent DAE initialization was
not included in the runtime comparison since the same initialization
was fed to all four solvers.

The most efficient solver by far is Sundials, which is more than
an order of magnitude faster than the others, followed by Rodas5,
Rosenbrock23, and Radau5. The slowness of Rosenbrock23 and
Rodas5 for larger numbers of DAEs is consistent with past reports
that these methods perform best with <100 DAEs.? Radau5 is slow
because it cannot work with the sparse matrices from Julia, which
leads to poor scaling with increased discretizations. Given that the

Jacobian in this model is quite sparse, significant performance
penalties occur when evaluating Jacobian steps in the Radau5 solver.

Solver Tolerances. The speed and accuracy of the simulations
depend on the specified absolute and relative tolerances. The states
span many orders of magnitude, ranging from 1,000-10,000 for
concentrations, 1 for potentials, and 10~ '=10~ for ionic fluxes. Due
to these different scales, the relative tolerance is a better descriptor
of model accuracy than the absolute tolerance.

There exists no analytical solution to the PET modeling equations,
so a high-resolution simulation with a fine mesh (N = 30 discretiza-
tions/section, relative and absolute tolerances of 10713) is treated as
the “exact” solution. This “exact” solution is used as a baseline for
comparison against a coarser mesh and lower tolerances which would
be relevant in applications. Figure 8 shows the error for a coarse
simulation with N = 10 and absolute tolerance of 10~® undergoing a
full 1C charge. The high-resolution simulation agrees very well with
the coarse mesh simulation. The error with a relative tolerance of 107>
begins quite oscillatory, but these oscillations become less pronounced
over time. With a tighter relative tolerance of 107°, the oscillations
occur but are much smaller in amplitude. Tightening the relative
tolerance even further continues to slightly dampen these oscillations,
but these differences are visually indistinguishable from a relative
tolerance of 107°. Despite its jagged appearance, the 107> relative
tolerance has a similar average error compared to 1076, 893 x 107°
and 7.87 x 107> respectively. For many use scenarios, a relative

Radau5 ./.
1s Rodas5
- | —@— Rosenbrock23
o L | —©— Sundials
£ !
l_
&
= 100ms
() |
= I
©
> I
(NN
.
()
= 10ms s
(@) [
w L . o ®
r o
o
©
1 ms -_o 1 1 1 1 1 1
5 10 15 20 25 30

Discretizations per Section

Figure 7. Runtime comparison of various DAE solvers available in Julia. The simulations are isothermal with Fickian diffusion and N = 10. The break in the

Radau5 line is due to solver failure.

Journal of The Electrochemical Society, 2021 168 090504

1035k
Relative Tolerance = 10~ °
= = Relative Tolerance = 10~

% 1040 ~
©
=)
>
:5 10° 45 |
=
L
o l
=
E 10° 50 L
(0]
c

1055}

0.00 0.25 0.50 0.75 1.00
Time (hr)

Figure 8. Comparison of the relative errors in the voltage for coarse simulations of a full 1C charge. The coarse simulations have N = 10 discretizations/section
and an absolute tolerance of 1076, for two values for the relative tolerance. The high-resolution simulation used as the baseline for computing the errors has

N = 30 discretizations/section and absolute and relative tolerances of 10~ '3.

tolerance of 10~ is acceptable especially when considering the large
speedup compared to tighter tolerances.

Model Comparison

PETLION is designed for fast serialized model evaluations. The
above sections detail the performant residuals and Jacobian func-
tions, DAE initialization, and DAE solvers. Additionally, overhead
from operations such as reading/writing data from the disk and
assigning values to variables contributes to the total evaluation time
of a model. PETLION reduces the overhead to a minimum with
additional memory-saving options to prevent any unneeded outputs
from the model.

DUALFOIL and COMSOL are robust P2D solvers but have slow
runtime which makes them impractical for parameter estimation,
MPC, or real-time control purposes. A major reason DUALFOIL is
slower than other tools is because of the time-stepping algorithm
used to integrate the system of equations. The PET model is
particularly stiff during the first few seconds after an applied current
or voltage and then becomes much less stiff over time, resulting in
much faster runtime when using an adaptive time stepper whose At
spans many orders of magnitude. The DUALFOIL time-stepping
algorithm does not update Ar very frequently—often appearing as
pseudo-constant for most of the simulation—which increases the
simulation time. DUALFOIL also requires finer spatial discretiza-
tions due to the method of formulating the system of equations. The
BANDY(j) subroutine linearizes the nonlinear governin(g PDEs and
then discretizes them with a finite difference method, requiring a
larger number of spatial discretization points to satisfy the local
linearity approximation. The linearized system of equations is solved
at each time step using Newton’s method, which is a highly accurate
way of solving the equations, but computationally expensive due to
the frequent LU decompositions of the Jacobian matrix. COMSOL
numerically solves differential equations using the finite element
method (FEM) which divides the domain into multiple small, simple
elements. FEM is particularly well-suited to solve structural analysis
problems, but computational fluid dynamics typically employ finite

difference or volume methods which are better suited to handle high
fluxes. In battery simulations, finite elements need finer discretiza-
tions to match the accuracy of finite difference or volume at much
coarser discretizations. In addition, FEM can be unstable in time for
larger At which increases the number of steps to integrate the system
of equations. Torchio et al.® evaluated DUALFOIL and COMSOL
speeds for isothermal conditions and found each simulation took tens
of seconds to minutes even for moderate discretizations. The current
versions of PETLION, LIONSIMBA, and PyBaMM are several
orders of magnitude faster than both DUALFOIL and COMSOL.
PETLION, LIONSIMBA, and PyBaMM are tools with speeds
that make them suitable for parameter estimation or control
purposes. Table III shows the breakdown for evaluation time for
an example 1C discharge at N = 10 discretizations. In PETLION,
solving the DAE contributes to >90% of the total evaluation time
while DAE initialization and overhead are about 5% and 1%
respectively. The AD Jacobian causes the solver time to increase
by nearly 60% compared to the symbolic Jacobian, but does not
significantly impact the initialization time. When the model equa-
tions are changing rapidly (e.g., when prototyping model equations),
an AD Jacobian may be preferable because creating new symbolic
functions is more time-consuming. When performance is important,
the symbolic Jacobian is preferable. In LIONSIMBA, the Jacobian
function must be recreated upon any parameter or variable current/
voltage/power function updates which contributes to significant
overhead time. When LIONSIMBA is embedded in parameter
estimation or MPC experiments, the total evaluation time is
significantly burdened by the overhead. Even when providing the
Jacobian, PETLION is still >60x faster than LIONSIMBA for this
example. In PyBaMM, there are two solver modes: “safe” which
checks for battery stop conditions on every iteration of the DAE
solve (V (1) < Viin, SOC(t) < SOC in, €tc..) and is suitable for drive
cycles which do not encounter events, and “fast” which does not
make these checks and is suitable for full charge or discharge cycles
which typically encounter events. The “safe” mode performs step-
and-check integration which leads to additional slowness from
Python, while the “fast” performs direct integration that avoids

Journal of The Electrochemical Society, 2021 168 090504

Non- isothermal
— — — - Isothermal
—— LIONSIMBA (Jac. on runtime)

= e — ———— PyBaMM ("safe" mode)
GEJ —— PyBaMM ("fast" mode)
= — — o — —° PETLION
c 100ms fg@e— — ~©— — &= —
RS
©
=
©
>
L
< 1oms |
o 8 8
= 8
8
6
g 8
tms e | | | | |
5 10 15 20 25 30

Discretizations per Section

Figure 9. Model runtime of PETLION, LIONSIMBA, and PyBaMM averaged over 10 linearly spaced C-rates between —2C to 2C. Fickian diffusion, Sundials,
and Newton’s method for semi-explicit DAE initialization (PETLION only) are implemented. Absolute and relative tolerances are 10™%and 1073 respectively.

this slowdown. PETLION and LIONSIMBA also use an integration
scheme comparable to “safe” by default (which also contributes to
slowness in LIONSIMBA). PETLION has an option to disable
checks, however since Julia is compiled, disabling or enabling stop
condition checks does not have a noticeable effect on PETLION’s
runtime. For this example, PETLION is 38 x and 76x faster than
PyBaMM'’s “fast” and ‘“safe” modes respectively.

The total evaluation time for PETLION, LIONSIMBA, and
PyBaMM in a parameter estimation setting were evaluated for
numerous discretizations (see Fig. 9). At its coarsest discretization
with 91 DAEs, PETLION is capable of evaluating a full-order model
isothermally in under 1 ms. Even the non-isothermal fine-mesh
discretization at N = 30 (1,011 DAE:s) is comg)arable to the runtimes
of reformulated models in the literature.®*”~® Polynomial approx-
imations to the solid surface concentration (which are optionally
available) reduce this runtime even further to a few hundred us,
although with reduced accuracy at higher C-rates. >°

On average for isothermal/non-isothermal conditions, PETLION
is 206x/229x faster than LIONSIMBA, 35x/68x faster for
PyBaMM'’s “fast” mode, and 80x/159x faster for PyBaMM’s
“safe” mode. In PETLION and LIONSIMBA, the non-isothermal
speeds are roughly 1.1-1.3x slower than the isothermal speeds at the
same discretization, but PyBaMM modes show >2x slowdowns for
the same comparison. The full model runs of PETLION only
allocate memory on the order of single megabytes in large part
due to the extremely efficient residuals and Jacobian functions. This
substantial increase in the computational efficiency would directly
translate into similar increases when the PET model is incorporated
into parameter estimation, SOC and SOH estimation, model
predictive control, and other algorithms.

One potential source of the speed differences of LIONSIMBA
and PyBaMM is the language. MATLAB and Python are primarily
interpreted languages compared to Julia which is compiled.
Interpreted languages can be more flexible and simple to use
than compiled languages but have performance penalties.
MATLAB can have efficient performance, particularly with its
A\D linear solver and when using vector and/or matrix operations,
but certain aspects of the language can act as bottlenecks.
MATLAB shares arrays between functions using pass-by-value,
meaning copies of arrays are created and stored separately in
memory. Julia and Python use the more memory-efficient pass-by-
reference which shares the pointer to these arrays in memory and is

less expensive. Additionally, “for” loops in interpreted languages
can cause significant overhead since the contents of the “for” loop
must be reinterpreted upon each iteration. While a common
strategy to speed up a MATLAB code is to use matrix algebra in
place of “for” loops, iteratively solving stiff DAEs with an
unknown number of steps requires at least one “for” loop so
“for” loops cannot be completely avoided in MATLAB and
Python. As Julia is a compiled language, “for” loops do not incur
the same performance penalty seen in MATLAB and Python.

Conclusions

PETLION is highly computationally efficient battery modeling
software developed in the Julia programming language for high-
performance computing capabilities. The code in PETLION was
validated against LIONSIMBA with relative errors <107 and can
run a constant current simulation of a full-order model with 301
DAE:s in 3 ms on a laptop computer with about 1 MB of memory
allocation. The software is illustrated for several examples, including
CC-CV, GITT, and nonlinear model predictive control. The resi-
duals and Jacobian generated in this model are highly performant
functions which both contribute to negligible memory allocations
per iteration. Several stiff DAE solvers available in Julia were
compared over many discretizations of the PET model, and by far
the best for this problem is the Sundials IDA with KLU linear solver.
DAE initialization was investigated for speed and robustness, and
Newton’s method was found to be the fastest method while ensuring
convergence of the model for all conditions.

PETLION is open-source and freely available to download on
GitHub.”® With such high increases in model runtime efficiency,
PETLION reduces the costs of performing PET-based systems
engineering calculations, which can be used for developing both
faster and more sophisticated algorithms. Further improvements,
such as forward and/or adjoint sensitivity analyses, will only
enhance its performance for complex calculations.

Acknowledgments

This work was supported by the Toyota Research Institute through
the D3BATT Center on Data-Driven-Design of Rechargeable
Batteries. The authors thank Richard B. Canty for designing the
PETLION logo.

Journal of The Electrochemical Society, 2021 168 090504

Appendix

Table A-I. Number of differential, algebraic, and total equations in the PET model with Fickian diffusion.

Mode Equations General Number of Discretization Points Simplified Formula®
Differential N, + Ny + N, + N,N,, + N,N,,, 23N

Isothermal Algebraic 3N, + N; + 3N, + 1 TN + 1

Total 4N, + 2N; + 4N, + N,N.p, + ;N + 1 30N + 1

Differential 2N, + 2N; + 2N, + N, + N, + N,N,, + N,N, 26N + 20

Non-isothermal Algebraic 3N, + N; + 3N, + 1 TN + 1

Total 5N, + 3N; + 5N, + N; + N; + N,N., + N,N., + 1 33N + 21

a) This formula is the number of discretization points when the discretizations satisfy A-1.

DAE Discretization—There are up to 7 sections of the battery which
are independently discretized in the x- and r-directions. For isothermal
simulations, the number of discretization points in the x-direction are N,
for the cathode, N for the separator, and N, for the anode. For non-
isothermal simulations, N, discretization points are needed for the
positive current collector and N, for the negative current collector.
‘When Fickian diffusion is enabled, the number of discretizations in the
r-direction are N, , for the cathode solid particles and N, ,, for the anode
solid particles. The software allows any values over 2 for these numbers.
In the simulations in this article, the number of discretization points were
set to:

szNs =Nn =N,
= [A1]

ORCID

https://orcid.org/0000-0002-2511-1853
https://orcid.org/0000-0001-8027-9635
https://orcid.org/0000-0002-8200-4501
https://orcid.org/0000-0003-4304-3484

Marc D. Berliner
Daniel A. Cogswell
Martin Z. Bazant
Richard D. Braatz

References

1. P. V. Kamat, ACS Energy Lett., 4, 2757 (2019).

2. IEA, Global EV Outlook 2019—Analysis. [Online]. Available: https://www.iea.org/
reports/global-ev-outlook-2019..

3. M. A. Hannan, M. M. Hoque, A. Mohamed, and A. Ayob, Renew. Sustain. Energy
Rev., 69, 771 (2017).

4. M. Doyle, T. F. Fuller, and J. Newman, J. Electrochem. Soc., 140, 1526 (1993).

5. J. Newman and W. Tiedemann, AIChE J., 21, 25 (1975).

6. P. W. C. Northrop, B. Suthar, V. Ramadesigan, S. Santhanagopalan, R. D. Braatz,
and V. R. Subramanian, J. Electrochem. Soc., 161, E3149 (2014).

7. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi,
J. Electrochem. Soc., 156, A260 (2009).

8. M. Torchio, L. Magni, R. B. Gopaluni, R. D. Braatz, and D. M. Raimondo,
J. Electrochem. Soc., 163, A1192 (2016).

9. T. F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc., 141, 982 (1994).

10. T. F. Fuller, M. Doyle, and J. Newman, J. Electrochem. Soc., 141, 1 (1994).

11. M. C. Henstridge, E. Laborda, N. V. Rees, and R. G. Compton, Electrochimica
Acta, 84, 12 (2012).

12. K. W. Baek, E. S. Hong, and S. W. Cha, International Journal of Automotive
Technology, 16, 309 (2015).

13

14.

15.
16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

35.

36.

37.

38.

39.

. C. M. Doyle, “Design and Simulation of Lithium Rechargeable Batteries.” Ph.D.

dissertation, University of California, Berkeley (1995).

W. Fang, O. J. Kwon, and C.-Y. Wang, International Journal of Energy Research,

34, 107 (2010).

W. B. Gu and C. Y. Wang, J. Electrochem. Soc., 147, 2910 (2000).

J. Unger, A. Kroner, and W. Marquardt, Computers & Chemical Engineering, 19,

867 (1995).

J. E. Cuthrell and L. T. Biegler, AIChE J., 33, 1257 (1987).

Newman, J., FORTRAN Programs for Simulation of Electrochemical Systems:

Dualfoil (1998), http://www.cchem.berkeley.edu/jsngrp/fortran.html.

L. Cai and R. E. White, Journal of Power Sources, 196, 5985 (2011).

J. Newman, Industrial & Engineering Chemistry Fundamentals, 7, 514
(1968).

V. Sulzer, S. G. Marquis, R. Timms, M. Robinson, and S. J. Chapman, Journal of

Open Research Software, 9, 14 (2021).

K. Shah, A. Subramaniam, L. Mishra, T. Jang, M. Z. Bazant, R. D. Braatz, and V.

R. Subramanian, J. Electrochem. Soc., 167, 133501 (2020).

W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython (O’Reilly Media, Newton, Massachusetts) (2012).

S. J. Mellor and M. J. Balcer, Executable UML: A Foundation for Model-Driven

Architecture (Addison-Wesley, Boston, Massachusetts) (2002).

M. D. Berliner and R. D. Braatz, PETLION, 2021. [Online]. Available: https://

github.com/MarcBerliner/PETLION.jl..

D. W. Dees, S. Kawauchi, D. P. Abraham, and J. Prakash, Journal of Power

Sources, 189, 263 (2009).

S. Kolluri, S. V. Aduru, M. Pathak, R. D. Braatz, and V. R. Subramanian,

J. Electrochem. Soc., 167, 063505 (2020).

A. Pozzi, M. Torchio, R. D. Braatz, and D. M. Raimondo, Journal of Power

Sources, 461, 228133 (2020).

. C. Rackauckas and Q. Nie, Journal of Open Research Software, S, 15 (2017).

. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, Mathematical
Programming Computation, 11, 1 (2019).

. J. Revels, M. Lubin, and T. Papamarkou, (2016), arXiv:1607.07892.

. V. Boovaragavan and V. R. Subramanian, Electrochemistry Communications, 9,
1772 (2007).

. A.R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods (SIAM, New
York, NY) (2000).

. C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (SIAM, New

York, NY) (2003).

H. F. Walker and P. Ni, SIAM Journal on Numerical Analysis, 49, 1715
(2011).

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward, ACM Transactions on Mathematical Software (TOMS), 31,

363 (2005).

V. Boovaragavan, S. Harinipriya, and V. R. Subramanian, Journal of Power

Sources, 183, 361 (2008).

P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, J. Electrochem.

Soc., 158, A1461 (2011).

V. R. Subramanian, V. D. Diwakar, and D. Tapriyal, J. Electrochem. Soc., 152,

A2002 (2005).

https://orcid.org/0000-0002-2511-1853
https://orcid.org/0000-0001-8027-9635
https://orcid.org/0000-0002-8200-4501
https://orcid.org/0000-0003-4304-3484
https://doi.org/10.1021/acsenergylett.9b02280
https://www.iea.org/reports/global-ev-outlook-2019
https://www.iea.org/reports/global-ev-outlook-2019
https://doi.org/10.1016/j.rser.2016.11.171
https://doi.org/10.1016/j.rser.2016.11.171
https://doi.org/10.1149/1.2221597
https://doi.org/10.1002/aic.690210103
https://doi.org/10.1149/2.018408jes
https://doi.org/10.1149/1.3065083
https://doi.org/10.1149/2.0291607jes
https://doi.org/10.1149/1.2054868
https://doi.org/10.1149/1.2054684
https://doi.org/10.1016/j.electacta.2011.10.026
https://doi.org/10.1016/j.electacta.2011.10.026
https://doi.org/10.1007/s12239-015-0033-2
https://doi.org/10.1007/s12239-015-0033-2
https://doi.org/10.1002/er.1652
https://doi.org/10.1149/1.1393625
https://doi.org/10.1016/0098-1354(94)00094-5
https://doi.org/10.1002/aic.690330804
https://www.cchem.berkeley.edu/jsngrp/fortran.html
https://doi.org/10.1016/j.jpowsour.2011.03.017
https://doi.org/10.1021/i160027a025
https://doi.org/10.5334/jors.309
https://doi.org/10.5334/jors.309
https://doi.org/10.1149/1945-7111/abb37b
https://github.com/MarcBerliner/PETLION.jl
https://github.com/MarcBerliner/PETLION.jl
https://doi.org/10.1016/j.jpowsour.2008.09.045
https://doi.org/10.1016/j.jpowsour.2008.09.045
https://doi.org/10.1149/1945-7111/ab7bd7
https://doi.org/10.1016/j.jpowsour.2020.228133
https://doi.org/10.1016/j.jpowsour.2020.228133
https://doi.org/10.5334/jors.151
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
http://arxiv.org/abs/1607.07892
https://doi.org/10.1016/j.elecom.2007.04.003
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/1.9780898718898
https://doi.org/10.1137/10078356X
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1016/j.jpowsour.2008.04.077
https://doi.org/10.1016/j.jpowsour.2008.04.077
https://doi.org/10.1149/2.058112jes
https://doi.org/10.1149/2.058112jes
https://doi.org/10.1149/1.2032427

