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Porous electrode theory (PET) is widely used to model battery cycling behavior by describing electrochemical kinetics and
transport in solid particles and electrolyte, and modeling thermodynamics by fitting an open-circuit potential. The PET model
consists of tightly coupled nonlinear partial differential-algebraic equations in which effective kinetic and transport parameters are
fit to battery cycling data, and then the model is used to analyze the effects of variations in design parameters or operating
conditions such as charging protocols. In a detailed nonlinear identifiability analysis, we show that most of the effective model
parameters in porous electrode theory are not practically identifiable from cycling data for a lithium-ion battery. The only
identifiable parameter that can be identified from C/10 discharge data is the effective solid diffusion coefficient, indicating that this
battery is in the diffusion-limited regime at this discharge rate. A resistance in series correlation was shown for the practically
unidentifiable parameters by mapping out the confidence region. Alternative experiments in addition to discharge cycles are
required in order to uniquely determine the full set of parameters.
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Lithium-ion batteries have become ubiquitous in modern technology
including in personal consumer devices and automobiles. Batteries are
commonly modeled using porous electrode theory (PET),1 which
includes electrochemical kinetics at the solid-electrolyte interfaces in
the porous electrodes, transport through the electrolyte and in the solid
particles, and thermodynamics modeled by an algebraic function for the
open-circuit potential. The PET model is commonly referred to as a
“pseudo-two-dimensional” (P2D) model, in which one dimension is the
position between the two metal contact points on the opposite sides of
the electrode-separator-electrode sandwich and the second dimension is
the distance from the center of a solid particle. The common practice is
to fit a half dozen effective transport and kinetic coefficients in the PET
model to battery cycling data,1 and then to use the model to explore
changes in the battery design or the operating conditions.

An important consideration when fitting model parameters to
experimental data is whether the data contain sufficient information
content to uniquely specify the model parameters. Answering this
question is referred to as an identifiability analysis. Past works have
employed structural and linearized identifiability analyses to show that
multiple combinations of effective transport and kinetic coefficients can
produce nearly identical voltage discharge curves. This article takes an
alternative approach of carrying out a fully nonlinear quantitative
identifiability analysis for the PET model. This approach provides very
precise information on the uncertainty of the combinations of estimated
model parameter, and to make precise statements as to which of the
original model parameters are unlikely to be practically identifiable for
commercial lithium-ion batteries.

Numerous publications have fit various lithium-ion battery para-
meters to cycling data using different models and methods. For example,
a local linearized sensitivity analysis was applied to separate groups of
thermodynamic and kinetic PET model parameters regressed on low-
current discharge curves and current pulses respectively.2 Jokar et al.3

implemented a local linearized sensitivity analysis, which was coupled
with a genetic algorithm applied to a simplified P2D model to establish
the time periods where parameters greatly affect a voltage discharge
curve under high and low C-rates. Another study4 applied linearized

local sensitivities and a Monte Carlo-based covariance analysis to study
identifiability from discharge curves and the electrolyte concentration in
the center of the separator. A fit of a hundred PET model parameters to
experimental battery cycling data using a genetic algorithm5 found that
only a small subset of the parameters were identifiable. The identifia-
bility of parameters in the single-particle (SP) model with electrolyte
dynamics under constant state of charge (SOC), represented in terms of
probability density functions of model parameters, has been quantified
by Markov chain Monte Carlo (MCMC).6 Unidentifiability in the solid-
state diffusion parameters was alleviated by applying a sinusoidal pulse
to achieve a range of SOC. At low C-rates, the SP model has comparable
error to the P2D model.7 The MCMC method has also been applied to
quantify uncertainties in five effective transport and kinetic coefficients
in the PET model.8 Reductions in the effective transport and kinetic
coefficients over the cycle life of a Li-ion battery were plotted and shown
to follow a power law. The approach predicted voltage discharge profiles
at future cycles from experimental data collected for the first 200 cycles.

This article considers the question of whether the effective model
parameters in the PET model fit to voltage discharge curves actually
converge to their true values. Resolving this question is important when
attempting to draw a connection between changes in the effective model
parameters with cycle number and the true physicochemical changes
occurring in the battery. The nonlinearity identifiability analysis in this
article quantifies precisely what can be learned from such fitting, what
cannot be learned, about battery kinetics and transport from fitting the
model parameters to battery cycling data.

Background

Porous electrode theory (PET).—Porous Electrode Theory
(PET) was developed by Newman and collaborators at the
University of California, Berkeley.1,9–11 Each porous electrode has
an electrically conductive solid phase in close contact with a liquid
electrolyte. Lithium ions are dynamically transported between active
particles in the electrolyte described by Fickian diffusion and Ohmic
conduction. The two phases are coupled by interfacial electroche-
mical kinetics, typically modeled in the literature by Butler-Volmer
kinetics but adaptable to Marcus theory. Solid-phase transport is
assumed to be Fickian. The PET model is commonly referred to as
being “pseudo-two-dimensional (P2D),” in which one dimension iszE-mail: braatz@mit.edu
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the position between the two metal contact points on the opposite
sides of the electrode-separator-electrode sandwich and the second
dimension is the distance from the center of a solid particle (Fig. 1).

Many software implementations of PET have been developed.12–15

This article uses LIONSIMBA,16 which is a MATLAB implementa-
tion of the PET model based on the finite volume method. The finite
volume method has (1) exact handling of flux boundary conditions
and total conservation of all conserved variables (e.g., Li atoms)
throughout the control volume, and (2) relatively simple implementa-
tion compared to the finite element method, making the software
easier for users to modify. Numerical results of the LIONSIMBA
implementation agree with DUALFOIL from the Newman group and
COMSOL MultiPhysics.

Maximum likelihood estimation.—Uncertainties in parameter
estimates can be quantified by probability density functions (PDFs)
using Bayesian inference, which relates a posterior distribution P
(θ∣Y) to the experimental data Y and the prior distribution P(θ) of the
model parameters θ via
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where Y is the vector of measurements yj, P(Y∣θ) is defined below,
and P(Y) is a constant that normalizes the posterior distribution to
have its integral equal to one. When no prior knowledge is available,
then the prior distribution P(θ) is set to a constant.

For zero-mean normally distributed noise, the probability of
observing the vector of measurements Y, given a vector of model
parameters θ, is
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where Nd is the number of experimental observations and σϵ is the
standard deviation of the measurement error for the output yj. Under

the above assumptions, the calculations for determining the max-
imum-likelihood (ML) estimates can be simplified by using a
logarithmic transformation17
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This argument is commonly employed in parameter estimation and
referred to as minimizing the sum of squared residuals.17

Maximum a posteriori estimation.—Maximum a posteriori
(MAP) estimation combines experimental data with prior informa-
tion about the parameter values to obtain a better joint estimate than
ML estimation alone.17,18 The objective− 2lnP(θ∣Y) is minimized to
obtain the best estimate for the parameters θ, as in ML estimation,
but prior information on θ is used (such as past experimental values
in the literature) and P(θ) is no longer a constant. For normally
distributed parameters and zero-mean normally distributed noise:
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Figure 1. Schematic of the PET model for an LiC6/LiCoO2 cell during discharge. The parameters of interest in θ are listed under the sections whose physics they
principally affect. The vector of model parameters θ consists of the effective solid-phase diffusion coefficients (Ds,n and Ds,p, m

2/s), the effective electrolyte
diffusion coefficient (D, m2/s), and the effective reaction rate constants (kn and kp, m

5/2/(mol1/2s.))
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where i is the parameter index, NP is the number of parameters, and
μ σ ∈μ, Np are the vectors of prior parameter values and standard

deviations respectively. The latter term in Eq. 4 can be interpreted as
being a regularization term. When the prior parameter estimates are
accurate (small σμ,i) then the MAP estimates will be close to the
priors. On the other hand, if the prior knowledge is highly uncertain
(large σμ,i) then the MAP estimates can be quite different from the
prior parameter value μi.

In the absence of prior information (i.e., an infinitely large
standard deviation of parameter values), MAP estimation converges
to ML estimation:

* *θ θ= [ ]
σ →∞μ
lim . 5MAP ML

i,

Parameter identifiability analysis.—Before carrying out a model
identification for a complex system, a parameter identifiability
analysis should be performed to determine whether the model
structure, noise level, and operating regime allow the model
parameters to be estimatable from the experimental data.19

Parameters are said to be identifiable if estimatable from the
observed data. Unidentifiability of a model can be broadly classified
in two ways: structural unidentifiability, where parameter groupings
in the set of modeling equations cannot be solved uniquely and
practical identifiability, where regressing parameters against em-
pirical data leads to non-unique results.17 Practical unidentifiability
occurs when the observed data are not sufficiently informative to be
able to estimate unique values for the model parameters. In complex
physicochemical systems with limited experimental data, it is
common for some model parameters to be practically unidentifiable.

A parameter is practically identifiable if its confidence interval is
finitely bounded. If its confidence interval is infinite when increasing
and/or decreasing, then the parameter is practically unidentifiable.
Unidentifiable models may contain several different identifiable
combinations which include parameters that are individually
unidentifiable.20 Examples of different practical identifiabilities are
shown in the Example Confidence Regions section. The results of an
identifiability analysis depends on the choice of the type of
experimental data and the quantity and quality of the data in addition
to the model.

Estimating sets of model parameters in highly nonlinear battery
models with identifiability issues can be computationally expensive
and may produce misleading aphysical results. Past papers in the
electrochemical literature have characterized parameter identifia-
bility via sensitivity analyses with some cutoff sensitivity value to
determine practically unidentifiable parameters (e.g.,21). However,
such linearized methods can produce inaccurate results. Evaluating
sensitivities for several different θ* may lead to greatly different
results despite all providing great fits to the nominal solution, for
example. A more detailed assessment of the nonlinear parameter
confidence region should be made to fully understand the effect of
parameters on the model outputs.

Confidence regions.—This section summarizes methods for
computing confidence regions from models and experimental data.

Linearized confidence regions.—For linear and nearly linear
systems of equations with normally distributed noise, a confidence
region for quantifying uncertainty in estimated model parameters
can be described by a hyperellipsoid in a subset or full set of
parameters θ. The first step in construction of a confidence region is
to compute the best estimate of parameters θ*, usually by minimizing
the sum of squared residuals and maximizing the likelihood function
(that is, determining the vector of parameters that have the highest
likelihood based on the data).17 The first-order Taylor expansion
around θ* is

* * *θ θ θ θ θˆ ( ) ≈ ˆ ( ) + ( )( − ) [ ]y y F 6j j j

where the sensitivity matrix Fj given by
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can be computed with finite differences, a forward sensitivity
analysis, or an adjoint sensitivity analysis for all observed outputs
and parameters. Sensitivities are often used in optimization algo-
rithms for the numerical solution of θ, including gradient descent,
conjugate gradient, and sequential quadratic programming.22

Sensitivity analyses are also used as a means to reduce the parameter
space by establishing statistical significance with a sensitivity
cutoff.17,21,23,24

The confidence region can be approximated by the
hyperellipsoid25 (e.g., Fig. 2a),
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where χ2 is the chi-squared distribution, α is the level of
significance, ⊤ refers to the matrix transpose, and the parameter
covariance matrix is given by
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A common assumption is that measurement errors are normally
distributed and independent of each other,17 in which case the
measurement covariance matrix is diagonal with σ=ϵV ii i,

2.

Finite sample confidence regions.—While the above formulation
is appropriate for linear or nearly linear systems, local sensitivity
analyses can produce misleading results for nonlinear systems of
equations. For example, consider a hyperellipsoid linearized around
θ*. For the common assumptions that measurement errors are
normally distributed and independent, the linearized confidence

Figure 2. Example chi-squared distributions for (a) a pair of identifiable parameters, (b) one unidentifiable and one identifiable parameter, (c) a pair of (globally)
unidentifiable parameters that are locally identifiable, and (d) a pair of simultaneously unidentifiable parameters. The chi-squared minimum is a manifold of
optimal solutions where the error is minimized.

Journal of The Electrochemical Society, 2021 168 090546



region is guaranteed to be convex and centered around θ* (since Vϵ is
a positive definite matrix), leading to a global minimum at θ*. Such a
representation is not applicable to systems that are practically
unidentifiable, since these systems have infinitely many feasible
solutions for θ*.

Electrochemical systems can have highly nonlinear relationships
between the model parameters and the model predictions, which can
result in linearized statistical analysis producing inaccurate results.26

The uncertainty in the estimated parameters for nonlinear models
will not necessarily be accurately portrayed by a hyperellipsoid. A
general confidence region can be computed using a more computa-
tionally expensive approach. The chi-squared distribution is related
to the best estimate of the parameters by the log-likelihood
function.27 For normally distributed zero-mean noise, the chi-
squared distribution is
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which is equivalent to ML estimation in Eq. 3. A nonlinear
confidence region is described by all θ that satisfy the inequality17,28
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A simple algorithm for the nonlinear case is to evaluate the model
for all points in a grid of values of θ* in parameter space. To obtain a
quantitative understanding of the effects of nonlinearity on the shape
of the conference region, this equation can be computed for many
values of α, e.g., 0.01, 0.05, 0.10 would correspond to the 99%,
95%, and 90% confidence regions respectively. This method of
quantifying the uncertainty in parameter estimates is more compu-
tationally expensive than using θ

−V 1, which only requires a small
number of function evaluations to compute the sensitivity matrix,
but the extra information is valuable when the system is highly
nonlinear.

Markov chain monte carlo (MCMC).—Monte Carlo methods
are well-known techniques for randomly sampling from probability
density functions (PDFs) to compute an integral or estimate
distributions where deterministic approaches are not possible.29–31

Markov chain Monte Carlo (MCMC) is a method for uncertainty
quantification for nonlinear models.

The Metropolis-Hastings algorithm allows for efficient sampling
of the PDFs.32 Parameters are initialized at θ0 and random
perturbations to the parameters are applied.33 An objective function
f(θ), such as the sum of squared residuals or χ2(θ), is evaluated at
each iteration t. The step is either accepted or rejected, typically
based on an acceptance ratio a for a proposed step θ′.

Example confidence regions and interpreting identifiability.—
Four example confidence regions which may appear in nonlinear
models (such as porous electrode battery models1,16,34) are shown in
Fig. 2. In these examples, θ ∈ 2—other visualization methods such
as isosurfaces and subplots may be used to view higher dimensional
parameter spaces.

Figure 2a shows the confidence region for two identifiable
parameters and an optimal solution θ*. These parameters are
identifiable since θ* is finitely bounded. A linearized confidence
region is appropriate for this set of parameters.

In Fig. 2b, θ1 is unidentifiable and θ2 is identifiable. The chi-
squared minimum can be thought of as “stretching” the optimal
solution point into a line. Along this line, infinitely many θ* values
exist for increasing θ1. Following the chi-squared minimum line, a
confidence interval for θ1 would extend toward+∞ . The parameter
θ2, on the other hand, is identifiable since its confidence region is
finitely bounded. Optimizing the objective function for θ with
several different initial guesses may lead to puzzling results since

θ*1 is not unique. If the confidence region was linearized at any point
along the chi-squared minimum, the result would inaccurately look
like an elongated version of Fig. 2a.

Figure 2c shows two parameters that are globally unidentifiable
and the chi-squared minimum curve that lies within all of the
confidence regions. A banana-shaped confidence region is often seen
for highly nonlinear models17 in which an infinite number of
parameter values gives either the same or nearly the same quality
of fit. The parameter would appear to be locally identifiable, in that a
numerical optimization at any initial guess would converge to a point
on the minimum curve that would locally appear to be minimum
over θ1 for fixed θ2 and locally appear to be minimum over θ2 for
fixed θ1. Inspection of the conference regions as a function of both
parameters, as seen in Fig. 2c, shows that the two parameters are not
globally identifiable. The two extremes of the minimum curve,
where θ1 → ∞ and θ2 → ∞ respectively, show very different sensi-
tivities on θ1 and θ2. Sensitivities of the parameter estimation
objective on the parameters can be very large or nearly zero
depending on the value of the other parameter. This observation
has strong implications in parameter estimation, and implies that
only relying on local sensitivities can lead to misleading results.

The two parameters in Fig. 2d are both unidentifiable. The darkly
shaded region above the confidence interval is the chi-squared
minimum plane where infinitely many solutions in 2 exist.

Identifiability Methodology

The nonlinear identifiability analysis in this article consists
of three steps: (1) apply Bayesian estimation for θ using MCMC,
(2) find practically identifiable and unidentifiable parameters from
the probability densities, and (3) further classify the identifiable
combinations with a gridded mesh of chi-squared values. Once the
parameter space is thoroughly mapped, the set of identifiable
parameter groups are established which contain all identifiable and
some locally identifiable parameters.

Optionally, the parameter space may be reduced by fixing
unidentifiable parameters to an estimate or physically meaningful
upper/lower bound. In a similar manner, equations deemed unim-
portant due to the unidentifiable parameters may be removed from
the model for computational efficiency. For example, a very thin
porous electrode that is not diffusion limited could have the effects
of diffusion in the porous electrode removed from the model. A less
restrictive option is to add a prior value from the literature.

Practical identifiability is confirmed from the results of Bayesian
estimation. If a sufficiently large number of Markov chains indicate
that the parameter is finitely bounded, then the parameter is
practically identifiable. If the chains includes parameter values that
are arbitrarily small or large, then the parameter is practically
unidentifiable; whether the parameter is in any identifiable combina-
tions necessitates more investigation. The set of all identifiable
combinations contain every practically identifiable parameter.

Locally identifiable parameters which form identifiable combina-
tions are first assessed from their probability densities. If the
probability density for a parameter has a (1) a large peak and (2) a
lower magnitude plateau for larger or smaller values of the
parameter, then the parameter is likely in the set of identifiable
combinations while still being practically unidentifiable. The large
peak comes from identifiable combinations which involve the
parameter. The plateau is due to the identifiable combinations which
do not involve the parameter, i.e., where the parameter is unidentifi-
able. Parameters with a uniform probability density are not in any
sets of identifiable combinations.

While Bayesian estimation gives a rough idea about the
identifiability trends, mapping out the nonlinear confidence region
is required to definitively classify identifiable combinations (e.g.,
Fig. 2). Plotting the gridded nonlinear confidence region will exhibit
the regions where practically unidentifiable parameters can infinitely
increase and/or decrease. Moreover, it is helpful for classifying
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identifiable combinations at extreme points in parameter space, such
as in Fig. 2c.

Model Specifications

The transport and kinetic parameters considered in this article are
θ = [ ]⊤D D D k k, , , ,s p s n p n, , , where Ds,p and Ds,n are the effective
solid-phase diffusion coefficients of Li in the cathode and anode
respectively, D is the effective diffusion coefficient in the electro-
lyte, and kp and kn are the effective electrochemical reaction rate
constants for the cathode and anode respectively. The region of the
battery that each parameter primarily acts on is shown under the
section headers in Fig. 1. These parameters are effective, that is, they
lump the effects of multiple true material properties together.9 The
effective electrolytic diffusivity lumps together the species’ mole-
cular diffusivity and the media’s porosity, tortuosity, and constric-
tivity. The effective kinetics lump together the true kinetic para-
meters and available surface area.

To ensure that identifiability results are relevant to real lithium-
ion batteries, the physical specifications of the LCO/LiC6 battery are
provided by Ramadesigan et al.8 To gain insights into potential biases
occurring during parameter estimation, the identifiability analysis is
applied to a synthetic voltage discharge curve at a C-rate of C/10
generated in LIONSIMBA (see Fig. 3) with ϵ σ∼ ( )ϵ0, 2 , where
σϵ= 10 mV is the standard deviation of the voltage measurement
noise. The parameter estimation optimizations were performed on a
logarithmic basis of θ, which is a standard approach used to improve
numerical convergence for parameters that can change by many orders
of magnitude.

The particular MCMC variant used in this study is Delayed
Rejection Adaptive Metropolis (DRAM) implemented by Haario
et al.32 which combines Adaptive Metropolis (AM) samplers with
Delayed Rejection (DR) for numerical efficiency. Identifiability is
indirectly assessed by running multiple parallelized MCMC itera-
tions to sample from the probability density in θ. The MCMC
objective function uses ML estimation in Eq. 3.

Results and Discussion

Bayesian estimation.—The histograms of the probability densi-
ties of the model parameters θ generated using MCMC (Fig. 4)
indicate that the only finitely bounded parameter in this experimental
setup is the solid-phase effective diffusion coefficient Ds,n, meaning
that Ds,n is practically identifiable and operating in a diffusion-
limited regime at this discharge rate. The other four parameters Ds,p,
D, kp, and kn all approach the imposed upper limit of 10−7 and are

practically unidentifiable from the voltage discharge curve. Some
kinetic and diffusive parameters becoming unidentifiable for large
values is consistent with the associated phenomena not being rate-
limiting. At higher C-rates, diffusion will have a different impact on
the voltage discharge curve leading to different identifiability trends.
The same methodology outlined in this article also applies to these
conditions. The probability densities for four out of five parameters
have peak values that are significantly smaller than their true values
(shown in (Figs. 4a, 4c–4e) and quantified in Table I), meaning that a
parameter estimation procedure fit to experimental data would likely
underestimate the true values of those model parameters. In other
words, the values for the parameter estimates corresponding to the
peaks of the probability densities for four of the parameters fit to a
voltage discharge curve can be highly biased—much smaller than
the true values. This phenomena can be considered as an additional
type of limitation to the identifiability of those model parameters.
The reduced identifiability for small values of the four parameters
can be explained physically by noticing that the voltage-current
relationship is governed by the overall flow of lithium ions across
the battery, which is akin to resistances in series. Small values of
each of the four parameters can be consistent with the voltage
discharge curve, as long as some other parameter values are large
enough that the overall lithium ion flow is consistent with the data.

Of the four unidentifiable parameters, the distribution of Ds,p is
the most uniform: the probability density near 10−14 is the same
order of magnitude as the probability density near the upper bound.
Since it is nearly as probable to find Ds,p in expansive areas in
parameter space, the parameter is strongly unidentifiable. The peaks
for the other unidentifiable parameters D, kp, and kn, are similar in
scale and appearance to each other. In contrast to Ds,p, the
probability density peaks are an order of magnitude larger than the
plateau at the upper bound. From an identifiability perspective, these
parameters are likely involved in some identifiable combinations and
are locally identifiable near their Bayesian estimation peak. While
locally identifiable, the non-zero plateau signifies that these para-
meters are also practically unidentifiable.

Histograms only provide broad information into identifiability
trends. While Ds,p, D, kp, and kn are all unidentifiable to varying
degrees, the particular combinations of parameters that are identifi-
able cannot be determined directly from probability densities. A
detailed nonlinear identifiability analysis is required to answer this
question, which is provided in the next section.

Nonlinear identifiability analysis.—Bayesian estimation shows
that (1) Ds,n is identifiable and (2) D, kp, and kn are potentially
locally identifiable for a C/10 discharge. To find the identifiable

Figure 3. LCO/LiC6 discharge curve at a C-rate of C/10 with synthetic data and model fit.
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combinations of parameters, Ds,n is set to its Bayesian estimation
peak and each of the suspected locally identifiable parameters are
individually set to their peak. All other parameters that are not fixed
can be set to an arbitrarily large number (10−3) to represent the case
where they are practically unidentifiable.

Pairwise combinations of parameters that are identifiable should
be determined from plots of the confidence regions. Three identifi-
able combinations are shown in Fig. 5: (a) Ds,n & D, (b) Ds,n & kp,
and (c) Ds,n & kn. The finitely bounded confidence regions means
these identifiable pairwise combinations satisfy the nominal solution.
The optimal solution of each identifiable combination (Table II)
occurs near the Bayesian estimation peak, indicating that these pairs
of parameters are locally identifiable. For each choice of two
parameters, the three other parameters in θ have a negligible effect
on the objective function, and therefore will have sensitivities
approaching zero. Optimal parameter estimates may belong to any
of these identifiable pairwise combinations, but the sensitivities
evaluated at θ* will be vastly different. These results highlights the

point that local derivatives sensitivity and confidence region
calculations can be misleading when applied to lithium-ion batteries
fit to voltage discharge curves. Many papers have applied local
sensitivity analyses (e.g.,2–4) to estimate a set of locally identifiable
parameters, but such analyses should not be used to make conclu-
sions on the parameter space at large.

A past study8 found that, for the same set of five parameters
considered in this article, capacity fade could be predicted for future
cycles while only regressing Ds,n and kn. Large uncertainties
observed for Ds,p, D, and kp were addressed by fixing their values
to be constants, and reductions in the estimated Ds,n and kn with
cycle number were observed to follow a power law. Although the
approach8 was successful in accurately predicting future voltage
discharge curves, the above nonlinear identifiability results indicate
that the observed reductions in Ds,n and kn with cycle number may
not necessarily be attributable to degradation in the negative
electrode.

Useful insights can be obtained by plotting the isosurfaces for
the three locally identifiable parameters D, kp, and kn (Fig. 6). The
isosurfaces enable a higher dimensional understanding of the
identifiability relationship between the three parameters. The isosur-
face can be interpreted as stacking 2D confidence regions to show
how the confidence region varies with an additional parameter. As in
Fig. 5, the unidentifiable parameter Ds,p is set to a large value, and
the identifiable parameter Ds,n is set to its Bayesian estimation peak.
The isosurface looks similar for all values of Ds,p above the lower
bound (not shown for brevity), below which the isosurface does not
exist.

The isosurface has noted symmetry when approaching the
lower bounds of D, kp, and kn which mirror the similarities seen
in their probability densities (Figs. 4c–4e). These results are
expected: if the confidence regions where the parameters are
locally identifiable are similar then it follows that their probability
densities should look similar. Moreover, the three-fold symmetry

Figure 4. Probability densities of the θj determined by MCMC: (a) Ds,n is the only parameter that can be finitely bounded, and is the only practically identifiable
parameter. (b) Ds,p has a nearly uniform probability density and is practically unidentifiable. (c)–(e) D, kp, and kn have a large peak, likely meaning they are
contained in some identifiable combinations, and plateau toward their upper bound, meaning they are practically unidentifiable. The parameter vector θ was
bounded between 10−20 and 10−7 to prevent unidentifiable parameters from becoming too large.

Table I. Bayesian estimation results from MCMC.

Bayesian Confidence
estimation peak interval (95%)

Ds,p 1.01e–13 [1.49e–15, + ∞a)]
Ds,n 3.54e–14 [2.58e–14, 6.76e–14]
D 3.71e–10 [2.57e–10, + ∞a)]
kp 5.76e–12 [3.73e–12, + ∞a)]
kn 1.28e–11 [7.83e–12, + ∞a)]

a) An upper limit of 10−7 was set for all parameters in MCMC. If the
upper bound was reached, it was subsequently verified when
approaching +∞.
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of the isosurface (as shown in Fig. 1 (available at stacks.iop.org/
JES/168/090546/mmedia)) speaks to the similar effects that
varying these three parameters has on the voltage discharge curve:
diffusion and rate constants affect how quickly Li moves across the
length of the battery in particular sections. Like resistances in series

(resistance to Li-ion flow is inversely proportional to D and k), these
parameters must be simultaneously tuned so that Li moves at the
appropriate rate through the battery. Modeling a functional relation-
ship for the locally identifiable parameters as resistances in series
gives the relationship

Figure 5. Local confidence regions of two parameters in θ, where the three parameters excluded from each plot are set to 10−3. Three identifiable combinations
exist, each containing two parameters: (a) Ds,n & D, (b) Ds,n & kp, and (c) Ds,n & kn. The confidence interval is χ ( ) =0.95 5.992

2 .

Table II. Local statistics for the three identifiable combinations from the results of Fig. 5 and an unidentifiable combination (Ds,n and Ds,p). Each
combination contains two parameters in θ; the other three parameters are made arbitrary large since they are practically unidentifiable.

θ1 θ2

Optimal solution Local confidence interval (95%)

θ1 θ2 θ1 θ2

Ds,n D 3.32e–14 3.47e–10 [2.76e–14, 4.21e–14] [2.78e–10, 4.46e–10]
Ds,n kp 3.47e–14 5.03e–12 [2.89e–14, 4.59e–14] [4.01e–12, 6.63e–12]
Ds,n kn 4.18e–14 1.01e–11 [3.49e–14, 5.49e–14] [8.54e–12, 1.26e–11]
Ds,n Ds,p 3.88e–14 1.98e–15 — —

Figure 6. Isosurfaces of the 3D confidence regions showing two perspectives (a) and 2D slices for three values of constant D (b). The isosurface is equivalent to
stack of 2D confidence regions where the curved lines correspond to the 95% confidence interval. The shape qualitatively resembles the sum of resistances in
series (Eq. 12) between locally identifiable parameters. The red and blue sections are the lower and upper bound of the confidence regions respectively. An
interactive version of the figure is available at https://marcberliner.github.io/PET-isosurface/. The kp axis is reversed for visual clarity.
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where βD, βkp, βkn are positive fitting constants. The chi-squared
minimum manifold can be estimated by regressing Eq. 12 against the
isosurface data. The numerical values of the fitted constants in
Table III are close to the lower bounds for D, kp, kn in Tables I
and II, which is consistent when considering the contours of the
isosurface and rate-limiting behavior of the parameters. The values
of D, kp, kn all asymptotically approach some value when
χ2(θ)− χ2(θ*) is fixed. When two of the three practically unidentifi-
able parameters are driven to+ ∞ , the other parameter asymptoti-
cally approaches its corresponding fitting constant, for example,

β= [ ]
→∞

Dlim 13
k k

D
,p n

and likewise for kp and kn.
While D, kp, and kn are all locally identifiable, their large

uncertainties when fit to voltage discharge curves imply that physical
meaning cannot be inferable from the practically unidentifiable
parameters. Large biases can occur by propagating error from the
other unidentifiable parameters onto the locally identifiable para-
meter, which can result in the values of D, kp, kn estimated from
voltage discharge curves to be lower than their true values (Fig. 6).
Each individual parameter is only locally identifiable when the other
two parameters are made large (e.g., see the top portions of the plots
in Fig. 6) and subsequently has little to no effect on the total
resistance in series, and each locally identifiable parameter asymp-
totically approaches its lower bound to match the appropriate
resistance to lithium-ion flow. The true solution is near the point
of highest curvature in the isosurface in Fig. 6, which is incorrectly
estimated in both MCMC and the nonlinear contour plots. Since the
practically unidentifiable parameters are dependent on each other,
only the total resistance to lithium-ion flow is unique and identifi-
able.

Removing practical unidentifiabilities.—Some approaches to
deal with unidentifiable parameters are (1) setting such parameters
to constant values, (2) adding a prior term to the objective function,
(3) model reduction (or removing the equations involving the
parameters), and/or (4) collecting more informative datasets. Any
approach for reducing θ to an identifiable combination can be used to
ensure that the parameter estimation has a unique global minimum.

1. Fixing parameters to constants. A simple method of
removing unidentifiabilities is to fix the parameters to constants.
The constants can be estimated from computational chemistry
calculations or empirical studies in the literature for the same or
closely related systems. Parameters which are not in any identifiable
combinations simply can be fixed to any value contained within its
confidence interval. The number of degrees of freedom in the
parameter estimation optimization is reduced, which reduces the
associated computational cost. With locally identifiable parameters,
it is necessary to ensure that fixing the parameters to constants do not
make the parameter estimation problem numerically poorly condi-
tioned. In particular, all of the fixed parameters must be contained
within the nonlinear confidence interval (such as the isosurface in
Fig. 6a).

A drawback of fixing parameters to constants is that the estimates
for parameters may vary from different sources. For example,
estimates for Ds,p and Ds,n span numerous orders of magnitude
depending on the electrochemical technique or specific material
properties.35 As such, this approach has an arbitrariness that is
unsettling.

We can mimic the process of fixing constants to prior value
estimates of θ (Table IV) in the literature, to assess the potential of
this approach for addressing the lack of practical identifiability of
some parameters. Fixing the three poorly identifiable parameters to
prior values during the parameter estimation results in much poorer
fits compared to the five-parameter Bayesian estimation (an increase
in the objective function of 54% to 2840%, see Table V), which
quantifies the potential limitations of fixing parameters to a constant.

2. Prior penalty term. This approach is described in the
Maximum A Posteriori Estimation section. Priors explicitly account
for the level of uncertainties in the prior estimates of the parameters
and allows for more flexibility in the parameter estimation optimiza-
tion compared to constants. If a prior parameter estimate has large
uncertainty, then the identifiability issue is resolved while having
nearly identical quality of fit to data as not using the prior at all. If
the uncertainty in a prior parameter estimation is low, then the
parameter estimation will appropriately bias its estimated parameter
toward the prior. Due to the prior term being convex quadratic, the
solution space for MAP estimation (Eq. 4) will be finitely bounded
and tend to be easier to converge numerically than ML estimation
(Eq. 3).

Figure 7 shows the pairwise posterior distributions obtained with
MCMC under MAP estimation. The effective diffusivity Ds,n, which
is identifiable with ML estimation, is likewise identifiable and its
probability density is largely unaffected by the prior despite its
peak being more than an order of magnitude away from the
prior value. The PDFs of the other four practically unidentifiable
parameters—Ds,p, D, kp, and kn—have a Gaussian PDF compared to
the plateau in Figs. 4b–4e, which is a direct result of the prior term
penalizing deviation from the mean. The normalized objective
function from MAP estimation is 1.13, which is much lower than
rigidly fixing parameters to constants.

3. Model reduction. Removing equations from the model is
another method of alleviating practical unidentifiabilities. An added
benefit of this method is that the simulation will run more quickly
since fewer equations are required to be solved. Parameter

Table III. Fitting constants in Eq. 12.

βD βkp
βkn

4.08e–10 4.06e–12 8.55e–12

Table IV. Values of prior means and standard deviations on a
logarithmic basis. Reported transport and kinetic parameters are
concentration dependent—a constant value was obtained from a
weighted-average of the data.

μlog i10 σμlog i10 , References

Ds,p −15.26 0.2513 36
Ds,n −11.63 0.2841 37
D −9.490 0.1496 38
kp −12.49 0.3007 39
kn −9.736 0.3283 40

Table V. Global minima for the identifiable combinations. The
baseline for the normalized objective function is the five-parameter
Bayesian estimation result.

Identifiable Normalized
combination objective function

Ds,n & D 24.9
Ds,n & kp 1.54
Ds,n & kn 29.4
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estimation will be quicker as well; similar to the method where
parameters are constant, there are fewer degrees of freedom. In
closed systems such as a battery simulation, it is important to
carefully remove equations so the conversation equations are still
maintained throughout the control volume.

4. Collecting more informative datasets. Identifiability pro-
blems can also be addressed by gathering more experimental data,
such as by operating under very different conditions or collecting
additional types of measurements. For lithium-ion batteries, non-
linearity identifiability analysis shows that the kinetic and transport
parameters are not fully identifiable only using data from discharge
curves under standard operations. For instance, discharge data for a
reaction-limited cell cannot yield identifiable diffusion parameters.
Equivalent circuit models (ECM) have widely been used with
electrochemical impedance spectroscopy (EIS) to estimate diffusion
coefficients in batteries41,42 which fit impedance data over a range

of frequencies. Short constant current pulses have been used to
estimate rate constants in batteries in the absence of mass transfer
limitations.42,43 This methodology can additionally be used to design
sets of experiments to produce data sets which probe a broad set of
parameters of interest for optimal identifiability.

Conclusions

A nonlinear identifiability analysis was performed on the kinetic
and transport coefficients of the pseudo-two-dimensional (P2D)
model using a voltage discharge curve at constant discharge of
C/10. Bayesian inference was performed on the set of parameters via
the Metropolis-Hastings Markov chain Monte Carlo (MCMC)
algorithm. Histograms produced from MCMC served as a preli-
minary screening of globally (un)identifiable parameters and were
used to establish global 95% confidence intervals. The effective

Figure 7. Pairwise posterior distributions determined by MCMC. Histograms of the variables are shown on the diagonal, and scatter plots of variable pairs are
shown on the off-diagonal.
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solid diffusion coefficient was shown to be practically unidentifiable,
whereas the other four are practically unidentifiable. Local identifia-
bility of the unidentifiable parameters was further investigated
visually using 2D and 3D confidence regions with contour plots
and isosurfaces respectively. The confidence region of the locally
unidentifiable parameters was shown to qualitatively depict resis-
tances in series, effectively meaning only their summed resistance
could be uniquely identified.

Various methods of dealing with identifiabilities, such as fixing
parameters, adding priors, and removing equations in the model
were discussed. Regressing on other experiments such as electro-
chemical impedance spectroscopy or current pulses can lead to a
greater set of identifiable parameters. As the effective solid diffusion
coefficient in the anode is the only identifiable model parameter in
this system, this battery is in the diffusion-limited regime and
requires orthogonal data sources to uniquely estimate the other
parameters. It is important to contextualize the results in terms of the
specific experimental data, set of modeling equations, and para-
meters used in the identifiability analysis. Different conditions will
likely result in different conclusions—both of which can be accurate
within the context of each specific problem.
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