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ABSTRACT: The design of biomanufacturing platforms based on
viral transduction and/or propagation poses significant challenges
at the intersection between synthetic biology and process
engineering. This paper introduces vitraPro, a software toolkit
composed of a multiscale model and an efficient numeric technique
that can be leveraged for determining genetic and process designs
that optimize transduction-based biomanufacturing platforms and
viral amplification processes. Viral infection and propagation for up
to two viruses simultaneously can be simulated through the model,
considering viruses in either the lytic or lysogenic stage, during
batch, perfusion, or continuous operation. The model estimates the
distribution of the viral genome(s) copy number in the cell
population, which is an indicator of transduction efficiency and
viral genome stability. The infection age distribution of the infected cells is also calculated, indicating how many cells are in an
infection stage compatible with recombinant product expression or viral amplification. The model can also consider the presence of
defective interfering particles in the system, which can severely compromise the productivity of biomanufacturing processes. Model
benchmarking and validation are demonstrated for case studies of the baculovirus expression vector system and influenza A
propagation in suspension cultures.
KEYWORDS: biomanufacturing, viral transduction, simulation, continuous manufacturing, baculovirus expression vector system,
influenza A

1. INTRODUCTION
Viral transduction through recombinant virus infection is a
primary route for gene transfer to producer cells in
biomanufacturing. Several types of viruses are used in academic
research and industrial practice within transduction-based
biomanufacturing platforms.1 Retroviruses, the most notable
example of which are lentiviruses, have been used for
producing, among others, virus-like particle (VLP) vaccines2

and membrane proteins3 in mammalian cells. Transduction-
based expression systems based on baculovirus,4 adenovirus,5

or herpes simplex virus6 have been developed for manufactur-
ing complex products, such as recombinant adeno-associated
virus, a primary vector for in vivo gene therapy.7

Biomanufacturing processes that use phages as transduction
vectors have also been explored.8 Viruses used in transduction-
based biomanufacturing can either propagate in the cell culture
(e.g., baculovirus) or be replication-deficient (e.g., lentiviral
vectors). In other biomanufacturing processes, the viral
propagation machinery is solely exploited to amplify viruses
of interest to high titers rather than to transfer recombinant
genes to the host. For instance, the production of inactivated
or live-attenuated virus vaccines for many diseases, including
smallpox, polio, measles, and mumps, is based on viral

infection and propagation.9 Furthermore, scalable manufactur-
ing processes for oncolytics and bacteriophages exploit master
cell banks and seed virus stocks to produce high titers of the
virus through viral amplification.10,11 In this article, we refer to
infection-based biomanufacturing indiscriminately for pro-
cesses involving only viral transduction, both viral transduction
and propagation, or only propagation.

Developing infection-based biomanufacturing systems suit-
able to large-scale production poses genetic and process
engineering challenges due to the complex dynamics of viral
infection, virus−host interaction, and recombinant product
expression. Synthetic biology tools allow us to engineer the
viral and/or host genomes to increase the yield of infection-
based manufacturing platforms.1,12−14 In literature studies, the
production of recombinant viruses in mammalian hosts was
increased by downregulation of proapoptotic genes15,16 or by
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overexpression of a vesicle-trafficking protein that increased the
cell secretory capacity.17 Recombinant product yield in the
baculovirus expression vector system (BEVS) was boosted
through genetic engineering of baculovirus vectors, exploiting
transcription and translation enhancers and rational design of
the expression cassettes.14,18,19 The optimization of an
infection-based manufacturing system from a process engineer-
ing perspective is also a crucial task to achieve high
productivity. The optimal multiplicity of infection (MOI)
and time of infection (TOI) in batch production depend on a
trade-off between preserving a high viable cell density and
supplying a high level of genetic template for the product of
interest. For manufacturing complex products such as VLPs
and viral vectors, cotransduction of multiple viruses carrying
different recombinant genes is often necessary. This scenario
presents additional challenges since a larger design space has to
be optimized. Further complications arise from the formation
of defective interfering particles (DIPs),20 especially for
continuous or perfusion processing. DIPs are viruses that
lack genetic information essential for self-replication or for
recombinant product manufacturing. In cells coinfected by
standard virus (STV) and DIPs, the latter can quickly replicate,
interfering with STV propagation. DIPs constitute a serious
challenge in biomanufacturing since they can become
predominant over STVs and halt the production of the desired
product.

Mathematical simulation is a powerful tool for enhancing the
process21 and genetic22−24 design of biomanufacturing plat-
forms. So far, applications of mathematical modeling to
enhance infection-based biomanufacturing systems have
mainly focused on influenza A.24−26 Frensing et al.27 developed
a model for influenza A propagation in continuous bioreactors
using ordinary differential equations (ODEs) and successfully
predicted the insurgence of viral titer oscillations due to STV/
DIP competition (Von Magnus effect28). Duvigneau et al.24

developed a mathematical model to guide the genetic
engineering of A549 cells for increasing the yield of influenza
A propagation. The model describes the main extracellular and
intracellular steps of influenza A amplification in a cell culture
through differential equations. Duvigneau et al. linked the
effect of overexpression of genes CEACAM6, FANCG, NXF1,
PLD2, and XAB2 in A549 to the macroscopic kinetic
parameters of their model. Training and validation data sets

were collected through experiments involving lentiviral trans-
duction of A549 cells to overexpress the relevant genes. The
model correctly predicted the effect of overexpression of
different gene combinations on product yield in the validation
data set. Recently, Rüdiger et al.29 demonstrated that a model
based on partial differential equations (PDEs) tracking the
infection age of infected cells can reproduce experimental data
from STV/DIP influenza A systems better than lumped
parameter models, such as those developed by Frensing and
coauthors and Duvigneau and coauthors.

Overall, there is a substantial need for a general framework
for simulating infection-based biomanufacturing systems to
support the process and genetic design of novel platforms. The
underlying mathematical model framework needs to effectively
resolve the coupling between extracellular and intracellular
events and to be able to account for the presence and
competition among different types of viruses. Since the kinetics
of viral infection (e.g., binding, replication, and budding
kinetics) and recombinant product expression strongly vary
with the infection age, models to be leveraged for process
design and platform engineering should account for the
infection age distribution of the cell population through a
system of PDEs.20,24,30 Fast and accurate numeric schemes are
needed for this class of PDE models. This paper presents
vitraPro, a computational framework for simulation of viral
transduction and propagation that addresses these needs. A
multiscale mechanistic model and a novel numerical technique
are introduced to simulate viral transduction and propagation
in batch, continuous, and perfusion biomanufacturing in the
presence of up to two viruses (standard or defective). The
framework can simulate any virus/host combination. Two case
studies on the BEVS illustrate the use of the computational
framework for simulating biomanufacturing platforms based on
viral transduction with, respectively, one and two recombinant
viruses. The BEVS is chosen as a representative viral system
since the baculovirus infection and propagation kinetics are
well understood from the literature.31 A third case study
validates the framework with data from the literature on
influenza A propagation in the presence of DIPs. The following
sections of the paper detail how the computational framework
can support the design and optimization of an infection-based
biomanufacturing platform from both synthetic biology and
process engineering perspectives.

Figure 1. Overview of the biomanufacturing process. The model simulates a production bioreactor in batch, perfusion, or continuous mode; shake-
flask experiments can also be simulated. The cell growth bioreactor and the harvest and bleed tanks are not simulated but are reported here to
clarify the input/output structure of the model when run in continuous or perfusion mode.
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2. RESULTS AND DISCUSSION
2.1. A Framework for Simulating Viral Transduction

and Propagation in Biomanufacturing. This section
summarizes the main features of vitraPro, a novel computa-
tional framework for simulating viral transduction or
propagation to support the development of biomanufacturing
platforms (Figures 1−3). More detailed information is
reported in Section 3 and in the Supplementary Methods in
the Supporting Information. The computational framework is
made up of a mechanistic model and an efficient numerical
scheme for solving the model equations. The model simulates
viral transduction and/or propagation in batch, perfusion, and
continuous cell cultures (in bioreactors or shake flasks; Figure
1) with up to two viral species, including systems with two
STVs or one STV and one DIP. Given as input a design for an
infection-based biomanufacturing platform, the model esti-
mates through in silico simulations critical variables and key
performance indicators (Figure 2 and Table 1). For each virus
in the system, the model computes the distributions of
infection age and viral genome copy number in the cell culture
(Figure 2). The distribution of viral genome(s) copy number
predicted by the model directly maps to the copy number of
template genome(s) for the product of interest. At the same
time, the infection age distribution allows us to infer how many
cells are actively expressing genes of interest and, possibly,
producing progeny, considering that recombinant product
expression and progeny budding occur only during certain
phases of viral infection.6,32 Hence, the combined information
from the distribution of infection age and the distribution of
viral genome copy number allows us to estimate the
concentration of cells in the system that are producing the
recombinant product and/or progeny virus and the gene copy
number available in each cell for product expression.
Furthermore, the model can aid in understanding and
forecasting how vector and host designs and process
conditions correlate to DIP generation and propagation.

The phenomena considered by the model equations (Figure
3) are viral binding to host cells, viral genome trafficking to the
nucleus, degradation, viral replication, progeny production,
DIP generation, and viral coinfection dynamics. The model
offers a reconciliation between the intracellular and extrac-

ellular compartments, which are solved simultaneously with a
fast (Table S1) numeric approach that minimizes the
detrimental effect of numeric diffusion (see Section 3.2).
The distributions of infection age and viral genome copy
number computed by the model are leveraged for computing
the kinetics of the steps of viral infection that are affected by
the infection age and the viral genome copy number, such as
viral binding, progeny release, and host viability decay (Figure
4). In the presence of multiple viruses within a cell, the
respective infection ages and genome copy numbers are used

Figure 2. Overview of the model structure. Given as inputs the manipulated variable profiles, the initial value of the system states (Table 1), and the
model parameters (Table S2), the time evolution of the states is produced as output. The model features 5 ODEs, here represented as standalone
squares, and 11 PDEs. Based on the mesh size Δτ, the PDEs are converted into sets of ODEs, here represented as sets of contiguous squares. The
concentration of cells infected by only one virus (I1 and I2) and the respective amount of surface-bound virus (BI d1

and BI d2
) and nuclear viral genome

(NI d1
and NI d2

) are distributed with respect to one infection age (respectively, τ1 and τ2). The concentration of coinfected cells (C) and the respective
amount of surface-bound virus (BC,Vd1

and BC,V d2
) and nuclear viral genome (NC,Vd1

and NC,Vd2
) are distributed with respect to both τ1 and τ2.

Table 1. Model: Manipulated Variables and System Statesa

symbol UOM description

manipulated variables
D h−1 dilution rate: batch: D = 0; perfusion/

continuous: D > 0
r [−] bleeding ratio: perfusion: 0 ≤ r < 1; continuous:

r = 1
Sin nmol

mL−1
substrate concentration in the feed

Tin cell mL−1 uninfected cell concentration in the feed
system states
BI dj

(t, τj) virus
mL−1

virus j attached to Ij(t, τj), for j = {1, 2}

BC,V dj
(t, τ1,

τ2)
virus

mL−1
virus j attached to C(t, τ1, τ2), for j = {1, 2}

C(t, τ1, τ2) cell mL−1 coinfected cells
Ij(t, τj) cell mL−1 cells infected by virus j, for j = {1, 2}
NIdj

(t, τj) vg mL−1 viral genome j in the nucleus of Ij(t, τj), for j = {1,
2}

NC,V dj
(t, τ1,

τ2)
vg mL−1 viral genome j in the nucleus of C(t, τ1, τ2), for j

= {1, 2}

S(t) nmol
mL−1

substrate

T(t) cell mL−1 uninfected cells
Vj(t) virus

mL−1
extracellular virus j, for j = {1, 2}

W(t) cell mL−1 nonviable cells
aAll system states are expressed as concentrations over the overall
system volume. With reference to Figure 1: D = (F1 + F2)/
V1 = (F3 + F4)/V1, r = F3/(F3 + F4), Sin = (S1 + S2)/(F1 + F2), and
Tin = T1/(F1 + F2). τj = infection age with respect to virus j = {1, 2}.
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to simulate the competition between the two viruses for
replicating within the host and producing progeny (eqs S14−
S24). This architecture allows the simulation of systems with
any host/virus combination. Both RNA and DNA viruses with
either single-stranded or double-stranded genomes can be
considered, as well as viruses infecting hosts through either
endocytosis or membrane fusion. Although the model
applications are more interesting for systems that involve
active viral replication and propagation, the computational
framework also can be leveraged for platforms in which no viral
replication occurs (e.g., stable integration with lentivirus).

The next sections showcase applications of the computa-
tional framework in biomanufacturing systems based on the
BEVS and influenza A propagation in the presence of DIPs.

2.2. Case Study 1: Viral Transduction and Propaga-
tion in the BEVS. This case study focuses on the BEVS to
discuss the simulation with vitraPro of infection-based
biomanufacturing platforms that exploit only one type of
(standard) recombinant virus, assuming that no other standard

or defective viruses are present in the system. The BEVS is an
established platform for manufacturing high-value products,
such as recombinant protein vaccines,33 VLPs,34 and viral
vectors.35 In the BEVS, recombinant baculoviruses deliver the
genes for a product of interest to producer cells, usually from
the Sf9/Sf21 lines derived from Spodoptera frugiperda.36 Figure
5 shows simulations for 10 days of operation in the BEVS with
the continuous setup reported in Figure 1. Simulations for
three different scenarios are reported, with inoculation at,
respectively, MOI = 0.001, 0.1, and 1 plaque-forming unit
(PFU) per cell. Case study S1 shows the simulation of batch
operation in the BEVS with analogous inoculation conditions
(Figure S1 in the Supporting Information). All simulations are
obtained using the kinetic parameters for baculovirus infection
and propagation estimated in a recent study, which carried out
a comprehensive parameter validation with several exper-
imental data sets.31 For MOI = 1, the infective virus from the
inoculum quickly infects a large portion of the cell population
and is depleted (Figure 5A−C). Cell infection resumes only

Figure 3. Extracellular and intracellular phenomena considered by the model: cell growth, apoptosis and cell lysis, virus binding, virus transport to
the nucleus, viral genome replication, viral budding, and degradation of extracellular virus and viral genome. Viral degradation due to rerouting to
lysosomes during trafficking to the nucleus is also considered by the model, although it is not reported here for conciseness. The legend of the
symbols denoting the system states is reported in Table 1.

Figure 4. Baculovirus infection kinetics: dependency on cell infection age of (A) viral uptake (k̅b,IV; eq 3, with viral titer V = 5 PFU per cell), (B)
viral replication (k̅r; eq 11), and (C) viral progeny production (k̅r; eq 6). (D) Effect of the viral genome copy number in the cell nucleus on the cell
death rate (k̅d,I; eq 4). The full list of parameters for the baculovirus infection kinetics is summarized in Table S3.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.4c00227
ACS Synth. Biol. 2024, 13, 3173−3187

3176

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00227/suppl_file/sb4c00227_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00227/suppl_file/sb4c00227_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00227/suppl_file/sb4c00227_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig4&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00227/suppl_file/sb4c00227_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00227?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00227?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


when the cells infected by the viral inoculum start producing
the progeny virus, approximately 18 h post-infection (hpi).
Due to receptor down-regulation induced by baculovirus
infection,36 the rate of viral uptake significantly decreases after
infection (Figure 4A). Accordingly, the PFU titer in the system
starts increasing only when a small number of uninfected cells
are present in the system (Figure 5C). Modest glucose
consumption is registered for MOI = 1 (Figure 5D) since
baculovirus infection induces cell cycle arrest, reducing (and,
eventually, halting) substrate consumption.36 For MOI = 0.1
and 0.01, only a small fraction of the cell population is infected
by the viral inoculum. Uninfected cells continue to grow
(Figure 5A) and consume a significant amount of glucose
(Figure 5D) for several days until the progeny virus starts
budding (Figure 5B). For inoculation at MOI = 0.001, all the
glucose in the system is depleted around 2 days after
inoculation due to cell growth, despite the continuous glucose
feed supplied to the system.

The simulation results also provide insights into the
infection age of the cells in the system, breaking down the
total concentration of infected cells (Figure 5B) into an
infection age distribution (Figure 5E). Two days after viral

inoculation, the infection age distribution for MOI = 1 shows a
peak corresponding to the cells infected by the inoculum and a
shorter peak associated with the cells infected by the viral
progeny. Few cells present an infection age intermediate
between these two peaks since a low amount of infective virus
is present in the system after that the viral inoculum has been
uptaken by the cells until the progeny virus starts budding. For
MOI = 0.01 and 0.001, the peaks corresponding to the
infection wave generated by the viral inoculum are much
shorter than those for MOI = 1. The cells infected by the
progeny virus, instead, present wider distributions of infection
age. Compared to 2 days after inoculation, the infection age
distribution moves forward in the infection age axis 4 and 6
days after inoculation, and newly infected cells with low
infection age appear in the distribution. The corresponding
distribution of viral genome copy number in the nucleus of
infected cells (Figure 5F) shows that, at the end of viral
replication (≈18 hpi), the infected cells achieve approximately
a level of viral DNA within the range of 5 × 104−5 × 105

copies per cell, as found in the literature.37 About 1 week after
inoculation, a steady state is achieved. For all of the considered
MOIs at inoculation, the same steady state is reached,

Figure 5. Case study 1: viral transduction and propagation in the BEVS. Model simulations for three runs of continuous operation with the BEVS,
in a bioreactor inoculated with recombinant baculovirus at, respectively, MOI = 0.001, 0.1, and 1 PFU per cell: (A) uninfected cell concentration,
(B) infected cell concentration, (C) virion concentration, (D) glucose concentration, and distributions of (E) infection age and (F) viral genome
copy number for the infected cells at 2, 4, 6, and 10 days post-inoculation. Plots (E) and (F) report discrete distributions with a bin size Δτ = 0.1
hpi. The additional model outputs from Table 1 are not reported for the sake of conciseness. Complete simulation settings are summarized in Table
S6.
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including for the distribution of infection age and of nuclear
viral genome for the infected cells.

The benchmarking results of Figures S2−S5 demonstrate
that the computational framework presented in this work
provides more accurate insights into the dynamics of viral
infection and propagation compared to state-of-the-art models
for viral systems from the literature. Literature models that do
not account for the infection age distribution27,38 fail to
adequately describe continuous and batch experiments in the
BEVS since they cannot properly reproduce the viral infection
dynamics (Figures S2 and S3). Furthermore, the novel
numerical methodology introduced in this work is successful
in accurately tracking the baculovirus infection dynamics
(Figures S4 and S5). On the contrary, finite difference
approaches, traditionally used for computing infection age
distributions in viral systems models from the literature,20,29

fail to accurately track the infection front, due to strong
numeric diffusion, for both continuous (Figure S4) and batch
(Figure S5) operation.

2.3. Case Study 2: Viral Cotransduction and Prop-
agation in the BEVS. The genes necessary for recombinant
product manufacturing are oftentimes transferred to producer
cells through separate viruses.6,35,39 The model presented in
this work can be used for simulating viral transduction and
propagation in the presence of two recombinant viruses to
investigate the impact on the productivity of different process
designs and of genetic modifications to vectors and hosts.
Figures 6 and 7 show a model simulation for a continuous
biomanufacturing process based on cotransduction of producer

cells by two recombinant viruses (we here refer to
cotransduced and coinfected cells interchangeably). Rather
than directly using suspended virions, viral inoculation is
carried out by introducing infected cells into the bioreactor, as
often done in biomanufacturing.40 The two viruses, denoted as
viruses 1 and 2, are two baculoviruses that differ only in the
recombinant cassette carried within the same genomic
backbone. Cells infected by virus 1 and virus 2 are inoculated
at, respectively, 1:100 and 0.5:100 ratios with respect to
uninfected cells. The inoculated cells have an infection age of
40 hpi; hence, they start to release the progeny virus soon after
inoculation. For the first day after inoculation, the uninfected
cells are slowly infected by the progeny of the inoculated
infected cells (Figures 6A−D). Most cells infected during the
first phase of the process are infected by only either virus 1 or
virus 2 (Figure 6B). One day after inoculation, the infection
age distribution of the cells infected by only one virus displays
a peak at 64 hpi associated with the viral inoculum and a
distributed wave of more recently infected cells (Figure 6E).
About 1 day after inoculation, the first wave of infected cells
starts to produce the progeny virus, which quickly infects the
whole cell population. Hence, most cells infected later than 1
day after inoculation are coinfected by both virus 1 and virus 2
(Figures 6B,E and 7A,B). Ten days after inoculation, the
coinfected cells (Figure 7C) present the steady-state
distribution of infection age expected for baculovirus infection,
with a significant decay of viability starting around 24 hpi
(Table S4). Interestingly, coinfected cells 10 days after
inoculation show a very small difference in infection age

Figure 6. Case study 2: viral cotransduction and propagation in the BEVS. Concentrations of (A) uninfected cells, (B) infected cells, (C) virions,
and (D) viral genome in coinfected cells (average). (E) Infection age distribution (bin size Δτ = 0.2 hpi) of cells infected by only one virus at 2, 4,
6, and 10 days post-inoculation. The complete model output from Table 1 is not reported for the sake of conciseness. Complete simulation settings
are summarized in Table S6.
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between virus 1 and virus 2, indicating that they are coinfected
simultaneously, and soon after that, they enter the bioreactor,
due to the high viral titer (Figure 6C). The corresponding
genome distribution for virus 1 in coinfected cells 10 days after
inoculation is reported in Figure 7B. The intracellular viral
genome concentration reaches the highest level around 18 hpi,
as found in the case study with only one virus (Figure 5E).
Cells in infection stages typically associated with recombinant
product expression (infection age greater than 15−20 hpi)32

have approximately 50% more viral DNA copies than the
average of the entire population of coinfected cells (Figure
6D).

All simulations discussed in this section and the previous
section neglect the formation of DIPs and the loss of
recombinant cassettes in the baculovirus genome. These
phenomena become significant for the BEVS only for higher
passage numbers than those considered so far (15−20 passages
in batch operation41 or approximately 10−15 days after viral
inoculation for continuous operation42). For longer process
durations, DIPs and genome loss can destabilize the steady-
state conditions that have been shown for continuous
processing in the BEVS; furthermore, DIPs can completely
hinder the establishment of a steady state in certain
biomanufacturing processes.27 The next section discusses the
simulation of STV/DIP competition through the model
presented in this work.

2.4. Case Study 3: Influenza A Propagation in the
Presence of DIPs. Viral propagation of most DNA and RNA
viruses leads to the formation of DIPs, namely virions lacking a
large portion of the viral genome and thus incapable of self-
replication.28,43 DIPs can replicate at a faster rate than STVs in

STV/DIP coinfected cells, probably due to their shorter
genome.44 As a result, STV/DIP coinfected cells produce a
larger DIP than STV progeny, and DIPs can quickly become
predominant during serial passage or continuous processing
within viral systems. Influenza is one of the viruses for which
DIPs have been characterized most extensively.27,29,45,46 DIPs
have been identified as promising candidates for influenza
antiviral therapy.47 However, the formation of DIPs is an
adverse event during the production of live attenuated
influenza vaccines in immortalized cell cultures since DIPs
cause severe titer oscillations that are detrimental to
productivity.27 Rüdiger et al.29 recently reported experimental
data for influenza A propagation in suspension-adapted
Madin−Darby canine kidney (MDCK) cells in the presence
of DIPs. In batch experiments, MDCK cells were inoculated
with different combinations of MOIs of influenza A (H1N1)
STVs and DIPs DI244,48 containing a deletion of the gene
coding for the polymerase basic protein 2 (PB2). Twelve
experiments were carried out with a full factorial design, using
three levels for the STV MOI (0.001, 3, and 30 PFU/mL) and
four levels for the DIP MOI (0, 0.001, 3, and 30 PFU/mL).
Experimental measurements were collected for viral titers of
STVs and DIPs (plaque assay), viable cell density (VCD),
fractions of infected and apoptotic cells, and the intracellular
viral RNA copy number for STV and DIP, quantified through
real-time reverse transcription qPCR (RT-qPCR).

The data reported by Rüdiger et al.29 are used for validation
of the model introduced in this work. Details on modeling and
parameter estimation for this case study are reported in Section
3 and in the Supplementary Methods (Supporting Informa-
tion). The model implementation for the considered influenza

Figure 7. Case study 2: sample distributions of infection age and viral genome for coinfected cells. Two days post-inoculation: distributions of (A)
infection age and (B) virus 1 copy number. Ten days post-inoculation: distributions of (C) infection age and (D) virus 1 copy number. All figures
report discrete distributions with a bin size Δτ = 0.2 hpi. The viral copy number is not reported for bins with a cell concentration lower than 0.1 cell
mL−1.
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A STV/DIP system has 19 equations and 24 adjustable
parameters (Table S5). While 13 parameters are directly
retrieved from the literature, the remaining 11 parameters are
estimated from experimental measurements of infectious STV
and total DIP titer (Figure 8), intracellular viral genome copy
number (Figure S6), and VCD (Figure S7). Only 8 of the 12
experiments reported by Rüdiger et al.29 are used for parameter
estimation; the remaining 4 experiments are retained as the
validation data set. Successful identification of the estimated
model parameters is achieved (Table S7). An excellent
estimation is achieved for the STV and DIP titers for all of
the experiments (Figure 8 and Table S8). The STV and DIP
titers are the key variables for this process, since they represent
the products of interest for the manufacturing of, respectively,
influenza vaccines and DIP antiviral therapy. The model is
successful in predicting also the VCD (Figure S7) and the
intracellular level of standard and defective viral genome
(Figure S6). For the latter, the measurement error can be very
significant since the intracellular level of viral genome is
inferred through RT-qPCR and VCD signals with a standard
deviation of, respectively, 55 and 40%.49 Measurements of the
infected cell concentration are further used for validation
(Figure S8). The worst fit for all measurements is achieved in
the experiments at an STV MOI equal to 0.001, for which a
small measurement error in the inoculated MOI has the largest
effect on the experimental dynamics. Furthermore, constant
offsets in viral titers and intracellular viral genome measure-
ments, more noticeable at low titers, are expected due to
background noise.29 Hence, the model is successful in

predicting the impact of DIPs on STV propagation in all of
the experiments, both at the extracellular level and at the
intracellular level.

The most advanced model in the state of the art of influenza
A STV/DIP systems (and, to the best of our knowledge, of
viral transduction and/or propagation systems) has been
presented by Rüdiger et al.,29 in the same article that reports
the experiments here considered.29 The model by Rüdiger et
al.29 contains 132 differential equations and 73 parameters,
which summarize and improve a set of models proposed in
recent years.27,49−52 Table S8 compares the residual sum of
squared errors (RSS) and the Akaike information criterion
(AIC) for the model presented in this work with those for the
model by Rüdiger et al.29 RSS and AIC are calculated on
experimental measurements of the key performance indicators
for the process: viral titer of (i) STV and (ii) DIP, intracellular
viral genome level of (iii) STV and (iv) DIP, and (v) VCD.
Rüdiger et al.29 discussed model validation also for
experimental measurements of three mRNA transcripts that
intervene during influenza propagation. mRNA measurements
are not included in the RSS and AIC computation here, since
mRNA and other noncrucial intermediates are lumped
together in our model, to reduce the computational burden.
The model introduced in this work achieves a better fit than
the model by Rüdiger et al.29 in terms of both RSS and AIC.
This result is even more significant considering that the
Rüdiger model has 113 differential equations and 49
parameters more than our proposed model. Furthermore,
Rüdiger et al. estimated 8 more parameters on the same

Figure 8. Case study 3: influenza A propagation in the presence of DIPs. Model predictions vs experimental measurements for the titers of
influenza A STV (infectivity assay) and DIP (real-time quantitative PCR) in 12 batches. Each batch is inoculated at the reported STV MOI,
measured through infectivity assays, and DIP MOI, measured through infectivity assays on MDCK cells genetically modified to express PB2
(“active DIP titer” approach53). Data from batches (A)−(D), (F), (H), (J), and (L) are used for parameter estimation, while (E), (G), (I), and (K)
are used only for model validation. Experimental data are from Rüdiger et al.29
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experimental data set and used all 12 experiments for
parameter estimation. The Supporting Information provides
a detailed discussion of the distinctive features of our model
that allow this performance. In essence, the computation of the
two-dimensional infection age and viral genome copy number
distributions (Figure 2), as introduced in this work, allows us
to capture the intracellular STV and DIP competition at an
unprecedented level of detail, whereas Rüdiger et al. had to
heavily rely on heuristic parameters fitted to experimental data
to describe the intracellular STV/DIP competition. The novel
numerical approach is an enabling feature of the proposed
simulation framework, since it allows the propagation of
several distributed states in a low computational time and with
high accuracy (Table S1). Instead, Rüdiger et al. used a finite
difference method that can cause significant errors in the
computation of the infection front due to large numerical
diffusion.30

2.5. Applications in Genetic Engineering and Process
Design. In infection-based biomanufacturing, viruses are
either the product of interest, such as for live attenuated
vaccines,9 oncolytic viruses,10 and bacteriophages,11 or they are
exploited as transduction agents to express a recombinant
product, such as for baculovirus,4 adenovirus,5 or herpes6

vectors. In both cases, the computational framework
introduced in this work can be leveraged to enhance the
genetic and process design of the biomanufacturing platform.

Genetic engineering of the viral and host genomes can
significantly improve the yield of infection-based biomanu-
facturing processes.1,12,14−19 The computational framework
presented here can indicate bottlenecks in the reaction-
transport network of viral infection and propagation that
could be enhanced through genetic engineering for improving
the process. The model parameters (Table S2) are directly
related to factors identified in the literature as critically
affecting the process yield, such as specific cell growth rate,
viral binding kinetics, latent infection period, and viral budding
kinetics.11 As previously demonstrated for influenza A
propagation,24 certain genetic modifications to a biomanufac-
turing platform can be correlated to the macroscopic kinetic
parameters of the model and used to estimate the effect of a
genetic modification on the process yield. This approach can
significantly reduce the experimental effort necessary for
platform engineering, although it can be adopted only for
genetic modifications whose effects on the kinetic parameters
of the model are well understood. Since the kinetics of viral
infection and progeny production are affected by infection age
and viral genome copy number for any virus used in
biomanufacturing (Figure 4),6,13,29,32,38,54 the estimation of
infection age and viral genome distributions provided by our
model offers useful insights to guide genetic engineering.
Notably, the promoters used to express recombinant products
are active only during certain infection age intervals in several
transduction-based biomanufacturing processes.32,55 In the
BEVS, the commonly used p10 and polh promoters are active,
approximately, only 15−20 to 35−50 hpi.31,32,35,39 The model
presented in this work estimates the concentration of cells at
infection ages compatible with recombinant product expres-
sion (Figures 5E and 7A,C) and the copy number of the
recombinant genome in those cells (Figures 5F and 7B,D).
Hence, the model can be exploited to maximize the
concentration of producer cells and their productivity through
synergistic genetic and process optimization. On the contrary,
the approximation of infection age and viral genome

distribution with the respective averages can be significantly
inaccurate (Figures 5E,F, 6D,E, and 7) and bias the estimations
of key performance indicators, such as transduced gene copy
number, recombinant product expression, and, if relevant, viral
progeny production.

From a process engineering perspective, optimization of the
operating variables in infection-based biomanufacturing is a
challenging task. Due to the high cost necessary for producing
the viral inoculum, low-MOI inocula are resorted to in large-
scale batch bioreactors. As a result, the whole cell population in
the bioreactor becomes infected only through viral prop-
agation, possibly several days after viral inoculation.40 Mean-
while, uninfected cells grow and consume nutrients present in
the system. Specific challenges originate in continuous and
perfusion processing, which are innovative approaches for
scaling up infection-based biomanufacturing, but require
consistently maintaining target viral titers, VCD, nutrient
levels, and high product yield during viral propagation.56,57

The novel simulation framework presented in this work
captures this delicate interplay between operating variables,
allowing us to predict the dynamics of viral propagation in
continuous (Figures 5−7) and batch (Figures 8 and S1)
manufacturing better than previously proposed models
(Figures S2 and S3 and Table S8), even for inoculation at
very low MOIs (≪1). Hence, model simulations can support
the optimization of the process conditions in terms of MOI,
cell density at the TOI, feed conditions, and media design to
increase productivity. For instance, model simulations
indicated that the lower productivity per cell, often registered
in BEVS-based biomanufacturing at low MOIs,58 can be
influenced by nutrient depletion (Figure S1D), even for
continuous processing (Figure 5D). Additionally, model
simulations can determine the optimal MOI ratio between
multiple viral vectors in cotransduction processes and support
the genetic and process design of platforms involving
multicistronic vectors or inducible gene expression.

2.6. Simulation Settings. A vitraPro simulation is
initialized by specifying the initial conditions for the system
states, the manipulated variables profiles, the numeric settings,
and the model parameters. The simulation settings used for the
case studies are reported in Table S6. The model features 16
equations and 64 parameters to describe the most general
scenario of cotransduction from two different recombinant
viruses (Table S2). The number of parameters reduces to 23
for cotransduction from viruses of the same type that differ
only in the recombinant cassette (Table S4, Case study 2) and
to 24 to simulate systems with an STV and a DIP of the same
type of virus (Table S5, Case study 3). When only one virus is
in the system, the model is reduced to 7 equations and 22
parameters (Table S3, Case studies 1 and S1). For viruses and
cell lines commonly used in biomanufacturing, most model
parameters can be directly retrieved from the literature. As
shown in Case study 3, data sets for parameter estimation and
model validation can be collected through experiments
measuring the VCD, infected cell concentration, infective
virion titer, and intracellular viral genome (through PCR or
RT-PCR). The model parameters used in the case studies
represent reference ranges for most infection-based biomanu-
facturing platforms (Tables S3−S5). The simulator is expected
to be stable for any set of physically relevant values of the
model parameters.

On the numeric side, satisfying computational times are
achieved in all case studies by using a third-order Runge−
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Kutta numeric scheme for integration of the ODEs resulting
from PDE discretization (Table S1). A fifth-order Runge−
Kutta scheme is also implemented in vitraPro, and it can be
used for simulating stiff systems. For nonstiff ODEs, the third-
order scheme is recommended for faster computations since it
requires fewer function evaluations for a given integration step
(the integration step cannot exceed Δτ for the Courant−
Friedrichs−Lewy condition, as detailed in Section 3.2). For
PDE discretization (Section 3.2), the node size of the infection
age mesh (Δτ) should be approximately 1 order of magnitude
lower than the characteristic time of the fastest infection-age-
dependent process. The maximum infection age in the mesh,
τmax, should correspond to negligible viability, recombinant
product expression, and progeny release. In case these choices
of Δτ and τmax lead to a number of nodes that are
computationally intractable, approximated results can be
obtained through a coarser mesh. Adjustments might also be
needed for the convergence tolerances and scaling settings for
simulation conditions very different from those used in the
case studies.

2.7. Model Limitations. The following limitations should
be considered when using the simulation framework. The
dynamics of substrate consumption and limitation to growth
are implemented for only one (generic) nutrient, which is the
nutrient that is present at a limiting level in the system. The
model can be extended to consider multiple nutrients and
metabolites. Furthermore, a distribution with respect to the
infection age might exist for the cell growth rate and specific
substrate consumption, which are considered to be constant.
However, any model parameter can be converted into
functions of infection age and intracellular viral genome
level. Although the implementation of such relations in the
model would be straightforward, caution must be posed to
avoid overfitting and identifiability issues. Case study 3
demonstrates that the current implementation of the model
can already explain experimental data with very satisfactory
performance. On the contrary, more parameters might be
needed to simulate coinfections from two very different viruses
that result in strongly nonlinear coinfection kinetics. The
intrinsic model limitation to a maximum of two viral species
can be tackled by lumping together viruses that present similar
kinetics or conducting more simulations, varying the
combinations of the multiple viruses that are lumped together
into a single viral species. These considerations also apply
when more than one type of DIP is present in the system.
Unfortunately, the explicit implementation of additional viral
species and their infection age as an additional independent
variable would make the model too computationally expensive.
Finally, the possibility that infected cells can become
uninfected due to cell growth and lysosomal degradation is
not explicitly considered. Stochastic modeling is needed for
properly simulating these phenomena. However, the model
considers that these phenomena can reduce the intracellular
level of the viral genome, even significantly. In this regard, the
viral replication rate should be imposed equal to the cell
growth rate for viruses that stably integrate into the host
genome.

3. METHODS
3.1. Mathematical Modeling. The model developed in

this work describes viral infection and propagation for up to
two viral species in a well-mixed cell culture, operated in batch,
continuous, or perfusion mode (Figures 1−3). The model is

based on mass balances over the system volume for the species
listed in Table 1. The system volume is considered constant in
all equations. In this section, all distributed states are
introduced as continuous distributions, while the main text
reports all distributions in a discrete form. Continuous
distributions are represented using lowercase letters for
symbols, while discrete distributions are denoted by the
corresponding uppercase letters of the same symbol with
unchanged subscripts and superscripts. Nondistributed states
are always reported as uppercase letters. Section 3.2 details
how continuous distributions are converted into discrete
distributions. The remainder of this section describes the
model for systems presenting only one viral species (used in
Case studies 1 and 2). The complete model for systems with
two viral species is given in the Supporting Information. The
models give completely equivalent results when only one virus
is present in the system, although the model for systems with
only one virus has a much lower computational demand. The
balance for the uninfected cell concentration T(t) [cell/mL] is

=
+

+T
t

T S
K S

k TV k T D T rTd
d

( )T T T
S

b, d, in

(1)

where μT is the growth kinetic constant for uninfected cells, S
[nmol/mL] is the substrate concentration in the system, KS is
the Michaelis−Menten constant for substrate limitation to cell
growth, kb,T is the kinetic constant for viral binding to
uninfected cells, kd,T is the death kinetic constant for
uninfected cells, D is the dilution rate of the system, Tin is
the uninfected cell concentration in the feed, and r is the
bleeding ratio. Table 1 clarifies the physical meaning of D and
r. The terms on the right-hand side of eq 1 account for, from
left to right: cell growth, viral infection, cell death, and inlet
and outlet from the system. The balance for i(t, τ) [cell mL−1

hpi−1], the continuous distribution of the concentration of
infected cells with respect to the infection age τ, is
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where μI is the growth kinetic constant of i, kb,T is the binding
kinetic constant for uninfected cells, k̅d,I is the death equivalent
kinetic constant for infected cells, and δ(·) is the Dirac delta
function, which ensures that the contribution from newly
infected cells is considered at the boundary (τ = 0). The terms
on the right-hand side of eq 2 account for, from left to right:
cell growth, infection of uninfected cells, cell death, and outlet
from the system. For most viral species, infected cells undergo
cell cycle arrest (μI = 0). The binding equivalent kinetic
constant for infected cells (k̅b,I) depends on τ,
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where βb and τb are suitable coefficients that describe the viral
binding downregulation with the progress of the infection age,
which is experienced for most viral infections.59,60 The death
equivalent kinetic parameter depends on both the infection age
and the viral genome copy number:31
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where kd,I is the death kinetic constant for infected cells, τd is
the infection age at which an increase of death rate is registered
for infected cells, and n/i is the viral genome copy number in
the nucleus of cells, as further discussed. Equation 4 establishes
a dependence of the death rate of infected cells i(t, τ) from the
intracellular level of the viral genome. The balance for
extracellular virions V(t) is
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where kd,V is the degradation kinetic constant for extracellular
virions, and k̅v is the progeny release equivalent parameter. The
terms on the right-hand side of eq 5 represent, from left to
right: virion production from infected cells, viral infection of
uninfected cells, viral infection of already-infected cells,
degradation of extracellular virions, and outlet from the
system. The progeny release per cell depends on the infection
age:

=
< >l

m
ooo
n
oook

k
( )

0, for

, for
v

v
on

v
off

v v
on

v
off

(6)

where kv is the progeny release rate, and τv
on and τv

off define,
respectively, the upper and lower bound of the infection age
interval during which the viral progeny is released. Equation 6
represents an effective way of lumping together several steps of
the intracellular pathway that occur between the infection of a
cell and the onset of progeny release. For simplicity, the
presence of only one substrate S is considered in the default
implementation of the model. The mass balance for S(t) is
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where Sin is the substrate concentration in the feed, YS,T is the
specific substrate consumption for T, YS,Id1

is the specific
substrate consumption for i1, YS,Id2

is the specific substrate
consumption for i2, YS,C is the specific substrate consumption
for c, and ϕS is a parameter describing the kinetics of substrate
consumption at low substrate levels, which is fixed to ϕS = 0.01
nmol mL−1 in this work. A balance is also developed for
tracking the concentration of nonviable cells W(t) in the
system:

= + +W
t

k T k i W k rDd
d

d ( )T Id,
0

d, lys (8)

where klys is the lysis kinetic constant for nonviable cells.
Species W considers all nonviable cells lumped together
independently of whether they were infected or not.

The model calculates the concentration of two intracellular
species: b(t, τ), the virus bound to the surface of infected cells,
and n(t, τ), the viral genome in the nucleus of a cell. Both b(t,
τ) and n(t, τ) are computed with respect to the whole volume
of the system, namely with the unit of measurement [#mL−1

hpi−1]. This choice allows tracking the number of viruses
uptaken by every cell more accurately and also leads to greater

numeric robustness. Notably, under the deterministic model-
ing assumptions followed here, cells infected at the same time
instant will inherently present the same b(t, τ) and n(t, τ)
profiles with the progress of time (until cell death). Hence,
distributions b(t, τ) and n(t, τ) directly map to the distribution
of cells with respect to infection age i(t, τ). Normalization of
b(t, τ) and n(t, τ) by i(t, τ) allows us to convert the
concentration of the intracellular species into distributions
expressed in a per cell basis [#/cell]. The model assumes
irreversible viral attachment; hence, a cell is considered
infected as soon as a virus bounds to its surface. Species b
can represent viruses either bound to receptors or directly
attached to the cell membrane. The model parameters that
govern viral binding inherently account for the trade-off
between binding and unbinding rates. The balance for b(t, τ) is

+ = + + +b
t

b
V k T k I b k rD k( ( ) ) ( )T I i Ib, b, d,

(9)

where the terms on the right-hand side of the equation
represent, from left to right: viral binding to uninfected cells,
viral binding to infected cells, internalization of surface-
attached viruses through kinetic constant ki, outlet from the
system, and death of infected cells. The last term is included to
remove from the mass balance the amount of virus bound to
the surface of infected cells that die since b represents the
cumulative amount in the system of virus bound to (viable)
infected cells. The model considers trafficking to the nucleus as
a single lumped step. This simplification is introduced to
reduce the computational burden of the model, especially for
its two-dimensional implementation. This modeling choice
does not significantly degrade the model's predictive perform-
ance, as long as ki is taken as the kinetic parameter for the rate-
determining step within the pathway of trafficking to the
nucleus. The balance for n(t, τ) is

+ = + +n
t

n
k b n k k k rD( )i I Nd, d, r (10)

where the terms on the right-hand side represent, from left to
right: trafficking to the nucleus, contribution due to cell death
(as for b), degradation of the viral genome in the nucleus (with
kinetic parameter kd,N), viral replication, and outlet of infected
cells from the system. Parameter η represents the fraction of
internalized virus that reaches the nucleus and also accounts
for rerouting to lysosomes. The effective replication kinetic
parameter k̅r(τ) is calculated as
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where kr is the viral genome replication kinetic constant, and
τr

on and τr
off define, respectively, the upper and lower bound of

the infection age interval during which viral amplification
occurs. Equation 11 represents an efficient way of lumping
together several steps of the intracellular pathway for viral
amplification. Notably, k̅r should be set to be equal to the cell
growth rate for viruses that integrate into the host genome.
The set of eqs 1, 2, 5, and 7−10 represents the model for
systems with one viral species. The list of model parameters is
summarized in Table S3.

3.2. Numerics. A decoupled integration-reallocation
numerical scheme is introduced in this work. The model
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equations are integrated with the method of lines by
discretizing the PDEs into ODEs along the infection age
coordinate(s) (Figure 2). During integration, infection ages are
assumed not to vary. Separately, a reallocation routine
accounts for the increase of infection age, as further discussed.
The numerical scheme is first described in detail for the
simplified model for systems with one viral species, outlined in
the previous section. The infection age τ is discretized into L
nodes. All nodes have a size Δτ, except for node L, which
corresponds to the interval [τmax, ∞) in the original space of
the continuous variable τ. The maximum infection age τmax,
arbitrarily selected, is an infection age associated with very low
cell viability as well as negligible recombinant product
expression and progeny release. Mesh nodes l = 1, 2, 3, ...,
and L have infection age τl = 0, Δτ, 2Δτ, ..., and τmax. The
distributed states b(t, τ), i(t, τ), and n(t, τ) are discretized with
respect to τ into the sets of L states denoted as, respectively,
B(t, τl) = Bl, I(t, τl) = Il, and N(t, τl) = Nl, for l = 1, 2, ..., L. The
model PDEs (eqs 2, 9, and 10) are converted into the sets of
ODEs:
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where δl1 is the Kronecker delta function. Equations 12−14 do
not account for the I , B , and N contributions in eqs 2, 9, and
10 but present otherwise the same contributions of the original
PDEs. The integrals in eqs 5,7, and 8 are converted into sums
across all mesh nodes. The ODE/PDE system of eqs 1, 2, 5,
and 7−10 becomes the system of ODEs of eqs 1, 5, 7,8, and
12−14, which are integrated with a Runge−Kutta scheme with
adaptive time stepping. Both third-order and fifth-order
Runge−Kutta schemes are available in the simulator. At
every integration step i, the cumulative sum of the integration
steps (si) is updated with the ith integration step hi as

= +s s hi i i1 (15)

where s0 is initialized to 0. At the end of each integration step i,
if the condition

=si (16)

is met, then Il, Bl, and Nl (for l = 1, 2, ..., L) are reallocated
along the mesh to account for the increase of infection age,
with the following procedure. Defining the value of the states
Il, Bl, and Nl in every mesh node at the end of integration step i
as, respectively, Il,i,fin, Bl,i,fin, and Nl,i,fin, the corresponding initial
value of the states for integration step i + 1 (respectively, Il,i+1,in,
Bl,i+1,in, and Nl,i+1,in) is calculated as
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The integration step counter i is then reinitialized to 0. At the
end of every integration step i in which Condition 16 is not
met, Il,i+1,in, Bl,i+1,in, and Nl,i+1,in correspond, for every mesh node
l, to, respectively, Il,i,fin, Bl,i,fin, and Nl,i,fin. The described
integration-reallocation steps are iteratively repeated during
the simulation. In the simulation routine, the integration step
hi is automatically constrained not to exceed Δτ, to respect the
Courant−Friedrichs−Lewy condition.

The model for systems with two viruses is solved with an
analogous approach. The continuous variables τ1 and τ2 are
both discretized into L mesh nodes (respectively, τ1

l and τ2
l , for

l = 1, 2, ..., L). All nodes have a size Δτ, except for τ1
L and τ2

L,
which correspond to the interval [τmax, ∞) in the original space
of τ1 and τ2. The distributed states are discretized with respect
to τ1 and τ2, as shown in Figure 2. To simplify the notation, the
τ1
l and τ2

l notation is dropped and, instead, it is postulated that
τ1 and τ2 can only assume discrete values when they refer to
discrete distributions (denoted by uppercase letters). Accord-
ingly, the integrals over the infection age(s) in the model
equations (eqs S9 and S10) are converted into sums across all
mesh nodes. The PDEs corresponding to distributed states
(eqs S2, S3, S6, and S15−S22) are converted into sets of
ODEs, as outlined for the model for systems with one virus.
The ODEs resulting from the discretization are solved together
with the other ODEs of the model (eqs S1, S9, and S10), with
an integration-reallocation approach. The reallocation for
states distributed with respect to only τ1 or τ2 (i.e., I1, I2, BI d1

,
BI d2

, NI d1
, and NI d2

) is carried out with a procedure analogous to
eqs 17−19. States distributed with respect to both τ1 and τ2
(i.e., C, BC,Vd1

, BC,Vd2
, NC,Vd2

, and NC,V d2
) are reallocated along both

τ1 and τ2 simultaneously, resulting in diagonal movements
along the mesh (Figure 2). Boundary conditions analogous to
eqs 17 and 19 are imposed also for the states distributed to
both infection ages. Finally, the viral binding downregulation
experienced for most viral infections (eq 3) is exploited to
reduce the computational burden. A parameter τb,max ≤ τmax is
defined based on the viral binding decay profile with respect to
the infection age for the considered viral system. In all
equations distributed with respect to one or more infection
ages, the contributions from viral binding are not computed in
mesh nodes, where the infection age is equal to or greater than
τb,max. Furthermore, the nodes of the 2D infection age mesh in
which |τ1 − τ2| ≥ τb,max cannot be accessed by any species. The
corresponding states are set to 0 for every value of t, and the
associated ODEs are not computed. This approach for
reducing the number of equations of the model is not used
if DIPs are present in the system since, typically, DIP-infected
cells can always be reinfected, independently from the infection
age with respect to DIPs.

3.3. Simulations. The results presented here were
generated with a MATLAB implementation of the model
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and the numerics introduced in this work. The simulation
settings are summarized in Table S6 for all case studies. The
model for systems with one virus is used in Case studies 1 and
S1, while the model for systems with two viruses is used in
Case studies 2 and 3. The Supporting Information provides
additional information about the simulation settings and
parameter estimation strategies used in the case studies.
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