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Bayesian optimization for material discovery
processes with noise†‡

Sanket Diwale, a Maximilian K. Eisner, b Corinne Carpenter,a Weike Sun,a

Gregory C. Rutledge*a and Richard D. Braatz *a

An augmented Bayesian optimization approach is presented for materials discovery with noisy and

unreliable measurements. A challenging non-Gaussian, non-sub-Gaussian noise process is used as a case

study for the discovery of additives for the promotion of nucleation of polyethylene crystals. NEMD (non-

equilibrium molecular dynamics) data are used to validate and characterize the statistical outcomes of the

candidate additives and the Bayesian optimization performance. The discovered candidates show nearly

optimal performance for silicon for the class of tetrahedrally coordinated crystals and a material similar to

graphene but more compliant for the class of hexagonally coordinated crystals. The Bayesian approach

using a noise-augmented acquisition function and batched sampling shows a sub-σ level of median

accuracy and an improved robustness against noise.

1 Introduction

Global competitiveness in advanced materials depends on
shortening the development cycles for the discovery of new
materials. Given the vast monetary and time cost associated
with experimental characterization and empirical discovery of
new materials, data-driven and simulation-based techniques
allow for the rapid discovery and development of promising
new material candidates.

Molecular simulations and finite-element methods have
long been used for gaining insights into the characteristics
and formation mechanics of new material candidates.
Embedding these simulations within iterative learning and
optimization schemes allows for a computational and data-
driven approach to the discovery of new materials. This direct
approach, however, faces several challenges.

Firstly, material formation mechanics are inherently
stochastic, and thus multiple (stochastic) molecular
simulations are required to obtain statistical material
characteristics with sufficiently high confidence. Secondly, each
molecular simulation incurs a high computational cost and
can take anywhere from a few hours to a few days. Embedding
such a simulation directly into an iterative learning or
optimization scheme can become prohibitively expensive.

Another challenge posed from the numerical optimization
perspective is that the number of potential degrees of
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Design, System, Application

The work addresses the data-driven discovery of materials using molecular dynamics and Bayesian optimization. Molecular dynamics provide an inherently
stochastic environment for statistical characterization of material properties in simulation. However, the computational cost of such simulations makes it
prohibitively expensive to include directly in an iterative learning or optimization scheme. Bayesian optimization addresses this challenge by providing a
near-optimal strategy for minimizing the number of iterations required for such a data-driven scheme. We also use a united atomic force field model for
material candidates that allows a low-dimensional parametric search space to be used both for molecular simulations and the Bayesian optimization
scheme. A polymer melt crystallization process using nucleating agents serves as a case study for the materials discovery problem. A search for agents
maximizing the expected nucleation rate is conducted using the Bayesian optimization scheme. A significant challenge in applying Bayesian optimization
to noisy processes is that noise can behave as an adversary to the optimization scheme and lead to loss of convergence or significant performance
degradation. The work presents a method to augment the Bayesian optimization scheme in the presence of such noise to improve convergence and
robustness properties. When applied to the polymer crystallization problem, the algorithm shows a median convergence error of less than one standard
deviation of the noise and a worst-case error of less than three standard deviations. A search within a class of tetrahedral nucleating agents suggests a close
to optimal performance for silicon. In contrast, a search within a class of hexagonal agents shows that a crystal similar but more compliant than graphene
would provide an optimal nucleation rate for polyethylene nucleation.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 7
/1

9/
20

22
 1

0:
19

:4
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d1me00154j&domain=pdf&date_stamp=2022-06-02
http://orcid.org/0000-0001-8111-5106
http://orcid.org/0000-0001-8149-6658
http://orcid.org/0000-0003-4304-3484
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1me00154j
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME007006


Mol. Syst. Des. Eng., 2022, 7, 622–636 | 623This journal is © The Royal Society of Chemistry and IChemE 2022

freedom that define the class of potential molecular
formulations is large and include both continuous and
discrete variables. These optimizations become especially
challenging to solve when the molecular simulations and the
resulting objective functions are inherently stochastic. We
show in this work that an atomic force field model can be
effectively used to parameterize the search space for
materials and used with a Bayesian optimization scheme to
minimize the number of experiments or simulations required
for a materials discovery problem in the presence of noise.

Bayesian optimization addresses the challenges of
experimental sample minimization and noise modeling by
using a stochastic model to assign information-theoretic
value and confidence to the acquired experimental samples.
A simultaneous learning and optimization approach is taken
to address the exploration-exploitation tradeoff to minimize
the number of samples required to discover optimal
candidates reliably.

The work in Bayesian optimization may be divided into two
parts. The first part considers optimization with noise-free
observations of the objective values.1–6 The second considers
optimization in the presence of noisy observations.7–17

The primary role of Bayesian uncertainty in such
optimization algorithms is to serve as a surrogate for the
information-theoretic uncertainty induced by the lack of
observed data in the search space. The surrogate allows for the
development of decision rules for sampling the objective in an
iterative optimization scheme to balance between exploration
(to reduce information-theoretic uncertainty) and exploitation
(to optimize the intended objective value in the optimization).

By acquiring new samples of data to reduce information-
theoretic uncertainty, the optimization scheme progressively
learns a better model for the objective function while the
exploitation terms in the decision rule bias the exploration
towards the regions with good objective values.

The introduction of noise in the observations is known to
significantly degrade the performance in Bayesian
optimization12,17 and presents an active area of research.12–17

The degradation can be attributed to the fact that the Bayesian
uncertainty in the presence of noise is used for the dual purpose
of representing observation noise as well as information-
theoretic uncertainty. The dual use of a single uncertainty
model thus creates ambiguity for the decision rules where a
high uncertainty value due to noise may obscure the knowledge
of high information-theoretic uncertainty, leading to inefficient
exploration and the loss of convergence properties.

In recent years, Bayesian optimization has been
introduced to many fields, including in robotics,7–11 software
testing,12 personalized medicine,18 automated machine
learning,19 reinforcement learning,20,21 and materials
discovery,22–25 where noisy measurements can significantly
degrade the algorithm's performance12 and thus require
further algorithmic and theoretical improvements to support
practical applications.

In particular, works for materials discovery using Bayesian
optimization22–25 have focused on the use of Bayesian

optimization algorithms designed assuming either noise-free
or Gaussian noise assumptions. We present here a practical
materials discovery problem example, where such noise
assumptions are invalidated and result in significant
performance degradation of the previously used Bayesian
optimization algorithms. We further show how simple
modifications to the decision rules used in the algorithm
may improve the robustness of the optimization to the
observed noise.

For the materials discovery problem, we consider the
process of polymer (polyethylene) nucleation in the presence
of a nucleating agent. The process output, given as the
observed nucleation time, follows an exponential probability
distribution and presents a concrete, challenging, real-world
example of a non-Gaussian and non-sub-Gaussian noise
process to tackle by Bayesian optimization. Such a noise
process falls outside the currently explored theoretical and
empirical understanding of Bayesian optimization15,26–30 that
has largely focused on noise-free, Gaussian noise, and sub-
Gaussian noise. We highlight some of challenges posed to
Bayesian optimization by such noise, and characterize and
discuss convergence when dealing with such noise. A noise-
augmented approach is shown to perform with a greater
degree of robustness and better convergence performance
than the traditional Bayesian optimization schemes designed
for noise-free or Gaussian noise scenarios.

The type of stochastic models used for Bayesian
optimization can be varied and includes probabilistic
graphical models,31 Bayesian neural networks,32,33 Parzen
tree estimators,34 and Gaussian process models.7–11 The use
of Gaussian process models in Bayesian optimization is by
far the most common, owing to the decades of empirical and
theoretical exploration of their properties for Bayesian
optimization.15,26–30,35 Gaussian process-based optimization
also empirically offers the best performance in low-
dimensional parameter spaces due to the higher degrees of
freedom involved in training tree- or neural network-based
models.33 For this reason, Gaussian processes are used as the
underlying model in this work.

In the following, section 2 describes the polymer nucleation
process, and the material discovery problem addressed in this
work. Section 3 briefly introduces Bayesian optimization for
noisy processes and section 4 discusses theoretical aspects of
the algorithm. Section 5 hosts a discussion on the acquisition
functions used as a sampling decision rule to choose iterates in
Bayesian optimization and introduces the generalized noise-
augmented acquisition function used in this work. Section 6
presents numerical results and discussion on the application of
the noisy Bayesian optimization algorithm to the materials
discovery problem in polymer nucleation. Section 7 highlights
some key takeaways from the work and future directions for
investigation.

The results show the robustness of the proposed algorithm
to a non-Gaussian noise with a median convergence error of
less than one standard deviation of the noise and a worst-case
error of less than three standard deviations.
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2 Polymer nucleation: a case study

In polymer crystallization from melts, additives referred to as
nucleating agents are used to enhance the crystalline growth
rate by lowering the activation energy for nucleation and
subsequent crystallization. The nucleating agent's quantity
and choice directly control the degree of crystallinity and
morphology introduced into the polymer. The agent's effect
in crystalline growth is characterized by the nucleation time
(also called the induction time τ) that denotes the time
instant at which heterogeneous nucleation occurs at the
interface between the nucleating agent and the polymer
precursor. The induction time at such an interface follows an
exponential-like probability distribution36 of the form

p τð Þ∼κ τð Þe−
Ð τ
t0
κ tð Þdt

(1)

where κ(·) is a time-varying nucleation rate for the process, and
t0 is the initial time at which the nucleation process begins.
The time-varying nucleation rate κ(t) captures the effects of a
time-varying temperature profile onthe nucleation.36

Under the simplifying assumption of time-invariant
temperature and nucleation rate κ, (1) simplifies to a
standard exponential distribution,

p(τ) ∼ κe−κτ, (2)

with a mean induction time τmean = 1/κ and a variance of 1/κ2.
The nucleation rate for a particular agent depends on its

physical and chemical properties and has been studied for
n-alkanes for tetrahedrally coordinated agents like silicon37

and for graphene-like materials.38 A united-atom force field
(UAFF) model has been used37,38 to study the dependence of
κ and the induction time on four parametric properties of
nucleating agents:

1. σSW, the atomic diameter of the agent
2. εSW, the depth of two-body interaction potential
3. λSW, relative strength of three body interactions
4. εAD, the depth of interaction potential between the

agent and crystallizing material.
The first three parameters refer to the Stillinger–Weber

(SW) potential39 used to model the nucleating agent, where
σSW provides a length scale, εSW is a cohesive energy scale,
and εAD is an adhesive energy scale between the nucleating
agent and the polymer. These properties are readily available
for reference materials such as graphene and silicon from
the literature, which have been used to normalize parameter
values with respect to reference materials.37,38 We denote
normalized values with a * superscript.

By considering the molecular design space to be
parameterized by a vector of normalized UAFF parameters,

x ¼ σ*SW; ε*SW; λ*SW; ε*AD
� �

;

we can denote the nucleation rate per mole of an additive to

be denoted as κ(x). By systematically varying the values of x
over a grid, a response surface κ(x) for the dependence of

nucleation rate on the above parameters using non-
equilibrium molecular dynamic (NEMD) simulations can be
obtained.37,38 These response surfaces provide an estimate of
the ground truth for a case study in the application of
Bayesian optimization to the noisy, materials (additive)
discovery problem in n-alkanes using tetrahedral and
hexagonal coordinated additives, considered in section 6.

Using NEMD data,37,38 an estimate for the response
surface is constructed using an elastic learning framework40

to predict the mean induction time τmean(x) as a function of
x. This modeling step is not required for the Bayesian
optimization scheme. However, this step allows us to define
an underlying ground truth to compare convergence results
in the Bayesian optimization approach. The model also acts
as an inexpensive function evaluation substitute to the
significantly more expensive NEMD simulation required to
make predictions for an arbitrary candidate x. Using such a
substitute allows faster function evaluations and enables
running several variations of the Bayesian optimization
scheme for a comparative study of their properties in a
pragmatic time frame. In a real application, when such a
comparative study of variants is not intended, the function
evaluations would be directly computed from the output of
the expensive NEMD run.

The elastic net provides an exponential indefinite
quadratic model of the form (3) for the mean induction time
estimate mean as a function of x,

(3)

We consider two separate case studies for the additive
discovery problem. The first considers additives in the class
of tetrahedral (silicon-like) crystals, and the second for
hexagonal (graphene-like) additive crystals with NEMD data
from Bourque et al.37,38 Table 1 shows the parameters
learned from the two data sets.

Bourque et al.37 restricts the data exploration to only three
out of the four parameters, leaving out dependencies on ε*SW.
To maintain consistency with the available NEMD data, we
restrict the Bayesian optimization for the tetrahedral case to

Table 1 Model parameters for the mean induction time models

Case Q A b

Tetrahedral Q1 (−382.66 0 0 −10.72) 172.64
Hexagonal Q2 (−14.69 0 0 −0.106) 9.457

Q1 ¼

227:88 0 −0:28 −6:53
0 0 0 0

−0:28 0 0 0:83

−6:53 0 0:83 10:45

0
BBB@

1
CCCA

Q2 ¼

17:27 1:56 −2:27 −9:34
1:56 0 0 −1:86
−2:27 0 0 2:59

−9:34 −1:86 2:59 8:84

0
BBB@

1
CCCA
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the same three parameters. Furthermore, the search space is
restricted to the bounded domain of parameters considered in
the NEMD data to avoid extrapolation from the data available.
The bounded domain intervals are shown in Table 2.

The mean induction time model (3) is then used with (2)
to obtain an estimate for the probability distribution for
induction time as a function of x. A random sample is drawn
from this distribution to provide a noisy realization for the
induction time measurement for a candidate x for the
Bayesian optimization scheme.

In order to compare the results from Bayesian
optimization to the estimate of the underlying ground truth,
we run a numerical optimizer on the model (3) to find the
minimizer for the mean induction time as

optmean ¼ 4:02 ns Tetrahedral case

7:34 ns Hexagonal case

�
(4)

and

x ̂opt ¼
0:98; − ; 0:9; 0:869ð Þ Tetrahedral case

1:05; 0:44; 0:31; 1:115ð Þ Hexagonal case

�

The Bayesian optimization is used in section 6 as an
alternative method to find the optimal additive candidate x
that minimizes the mean induction time without having the
need to construct an a priori model of the form (3) or having
access to an extensively gridded NEMD data set as obtained
from Bourque et al.37,38 With a noisy measurement of
induction times, the convergence error of the optimization
scheme needs to be evaluated in relation to the variance of
the measurement noise. We use the noise standard deviation
at the estimated optimal candidate from (4) as a reference to
compare the convergence error against. For an exponential
distribution, the standard deviation is equal to the mean,
and thus we assign the reference standard deviation

ση = optmean (6)

The following sections describe the Bayesian optimization
algorithm and its application to the noisy materials-discovery
problem and the case studies described above.

3 Noisy Bayesian optimization

This section describes the Bayesian optimization approach to
the noisy materials-discovery problem.

Let  be a set of candidate materials, parameterized by a
vector x. Let f(x) be a noisy process with an unknown
distribution, which can be sampled via experiment for any given
x. The Bayesian optimization seeks to find a minimizer to

xopt ¼ arg min
x∈

 f xð Þ½ � (7)

Since f (x) is an unknown stochastic process, a stochastic
process model f̂k(x) is learned from a sampled data set of
noisy observation tuples k = {(xi,yi): i = 1,…,k}, where yi is a
noisy outcome of the distribution f (xi).

Several learning methods including probabilistic
graphical models,31 Bayesian neural networks,32,33 Parzen
tree estimators,34 and Gaussian process models7–11 have
been used to construct a stochastic model f̂k(x) in Bayesian
optimization. Gaussian process models are used in this
work, due to the simplicity of the learning method, better
empirical performance,33 and existing theoretical
foundations15,26–30,35 that contextualize the convergence
results.

The Gaussian process model41 provides a Bayesian
posterior mean and variance prediction at any query point x,
conditioned on the evidence observed from the data set k

and a prior mean function μ0(x) and prior covariance
function K(xi,xj). The posterior mean prediction from the
model is given by

μk xð Þ ¼ μ0 xð Þ þ
Xk
i¼1

αiK x;xið Þ

with coefficients αi given by the members of the k vector,

α = [K(X,X) + σ2nk]−1 (y − μ0(X)) (9)

with

K X ;Xð Þ ¼

K x1;x1ð Þ … K x1; xkð Þ
K x2;x1ð Þ … K x2;xkð Þ

⋮ ⋮ ⋮
K xk;x1ð Þ … K xk;xkð Þ

0
BBB@

1
CCCA (10)

(11)

and σ2n being the assumed noise variance of an additive
Gaussian measurement noise and k being an identity matrix
of size k. The posterior covariance is given by

X
k

x;sð Þ ¼ K x;sð Þ −K x;Xð Þ K X;Xð Þ þ σ2nk
� �−1

K X;sð Þ (12)

for any x, s ∈ .
An additional step of selecting an optimized prior for

the Gaussian process, by choosing a particular mean

Table 2 Bounds on the search domain

Case σ*SW ε*SW λ*SW ε*AD

Tetra. [0.8, 0.95] — [0.9, 1.3] [0.6, 1]
Hexa. [1.05, 1.33] [0.28, 0.44] [0.31, 0.74] [0.8, 1.2]

(5) (8)
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function μ0 and prior covariance function K within a
parameterized space of mean and covariance functions, is
often undertaken in Gaussian process learning, given the
data set k. The parameters used to parameterize this
space of function choices for μ0, K are called
hyperparameters and are learned using a Bayesian or
maximum likelihood approach.41

The optimization of hyperparameters based on k is,
however, known to cause over-fitting problems and loss of
convergence guarantees in Bayesian optimization.26,30 As a
result, most Bayesian optimization schemes with convergence
guarantees rely on either using fixed hyperparameters15,26 or
a scheduling or error-based adaptive approach to
hyperparameter selection.27–29

The second element of Bayesian optimization is a decision
rule, selecting the next batch of iterates to be sampled via
experiment. Given the stochastic model f̂k, an acquisition
function A(x| f̂k) assigns a merit value to each potential
sampling location x in the search space. This value is meant
to trade off the value of exploring the search space against
the value of exploiting current model knowledge based on
k. Exploration allows finding new potential optimal
candidates that the model f̂k cannot yet predict due to the
lack of relevant data in k while exploiting the existing
model f̂k allows choosing sample points that are most likely
to provide optimal candidates within the limitations of
model. Some examples of such acquisition functions are
shown in Table 3 and discussed in detail in section 5.

Let q be the batch size of candidates to be acquired at
each iteration of the optimizer. The next batch of candidate
samples for experiments are then selected as maximizers of
the acquisition function A,

xkþ1;…; xkþq ¼ arg max
skþi∈;i¼1;…;q

A skþ1;…; skþqj f ̂k
� �

: (13)

The sampled experimental data {(yk+i,xk+i): i = 1,…,q}
acquired from the proposed candidates are appended to the
data set to obtain k+q = k ∪ {(yk+i,xk+i): i = 1,…,q} and the
learned stochastic model is updated with the new data set to
provide a model f̂k+q. Estimates for the optimal value f̂ optk+q and
optimal candidate xoptk+q are then obtained from the updated
model f̂k+q within its trust region, typically chosen as the set
of points where sufficient sampling has occurred. We
consider the observed set of points {x1,…,xk+q} as the trust
region for the model, and estimate optimal candidate as the
point with the minimum expected value forthe stochastic
model f̂k+q,

xoptkþq ¼ arg min
x∈ x1;…;xkþqf g

 f ̂kþq xð Þ� �

f ̂
opt
kþq ¼  f ̂kþq xoptkþq

� �h i
(14)

The updated model f̂k+q is then used to compute the next
batch of candidate samples using the acquisition function as
done in (13), and the iterations are repeated until
convergence is detected.

Fig. 1 shows a flowchart for the Bayesian optimization
algorithm described above with q = 1 chosen for simplicity. A
termination condition (aka convergence) is said to be reached
if a predefined maximum number of iterations is reached or if
the maximum value for the acquisition function falls below a
threshold value and no change in the optimal candidate value
is observed over several iterations. The Bayesian optimization
is then said to be complete, and the last updated optimal
candidate xoptk+q is declared as the optimal candidate.

A few limitations to the Bayesian optimization approach
may be kept in mind when designing such an algorithm. The
first relates to the dimension of the search space. It is known
from theory26 that near-optimal bounds for the convergence

errors are on the order of 
1

k1=d

	 

in a d-dimensional search

space after k iterations of the algorithm. Thus, as the
dimension of the search space d increases, the log of the
error by a multiplicative factor d. This can make the
application of the Bayesian optimization approach to large
dimensional search spaces difficult in practice.

The second limitation relates to the increasing
computational complexity (n3) of kernel-based learning
methods such as Gaussian process models with increasing
size n of the training set. This limitation may be overcome by
usinga parameterized model, such as a generalized linear
model or a neural network with a fixed set of basic functions
or feature mappings. The use of a generalized linear model
may, however, limit the expressiveness of the model, and the
use of a neural network may not be amenable to practical
training with the small sizes of the training sets expected
from a Bayesian optimization algorithm. A practical approach

Table 3 Example acquisition functions

Acquisition function Form

Expected improvement (EI) [max( f̂ optk − f̂k(x), 0)]
Lower confidence bound (LCB)  f ̂k xð Þ� �

− βk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var f ̂k xð Þ� �q Fig. 1 Bayesian optimization flowchart. ((k) is used to denote the

learning method of choice being applied to a data set k).
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may be to use a randomized feature map that approximates a
kernel, as proposed by Ueno et al.22

The third limitation is the lack of a priori bounds on
the number of iterations required to find a good quality
solution. The algorithm typically provides an asymptotic
convergence bound, but the exact number of required
iterations remains subject to trial and error and empirical
observation. Section 4.1 presents a detailed discussion on
characterizing the convergence error and provides a sketch
for proof towards establishing a convergence bound in the
presence of noise. An important insight that may be gained
from the discussion is that obtaining a low convergence
error with high probability requires repeated sampling at
the observed candidates in the optimization algorithm. An
acquisition function that promotes such repeated sampling
is thus important for the reliable operation of the
algorithm in the presence of noise. Section 4.2 discusses
the empirical characterization of convergence in such noisy
scenarios.

4 Convergence analysis
4.1 Theoretical analysis

Given a declaration of an optimal candidate xoptk and f̂ optk after
acquiring k data samples as in (14), the ability of the
algorithm to converge to the true (but unknown) optimal
values of xopttrue and f opttrue can be measured in terms of the
convergence errors,

δf kopt = | f̂ optk − f opttrue| & δxkopt = ‖xoptk − xopttrue‖. (15)

The convergence error δf kopt is called the instantaneous
regret after acquiring k samples. Similarly, the cumulative

sum δ f 1:kopt ¼
Xk
i¼1

δ f iopt is called the cumulative regret. An

algorithm is said to have the desirable asymptotic property of

no-regret if the limit lim
k→∞

δ f 1:kopt=k ¼ 0.

In most cases, the true optimal values are unknown. Thus
the convergence errors in (15) cannot be directly measured.
Instead, only a probabilistic bound on the expectation of
these regrets can be made, based on the model assumptions
and number of observed samples in the data set.

One such bound,26 for the noise-free case of Bayesian
optimization in a d-dimensional search space is

E δ f kopt
h i

∼
1

k1=d

	 

(16)

where the big-notation is used to describe the asymptotic
behavior of the expected instantaneous regret. Eqn (16)
shows that, if the underlying true function is at least twice
differentiable and continuous (C2 function), with noise-free
measurements, the expected regret asymptotically converges
towards zero faster than the function k−1/d.

With noisy measurements, an additional challenge is
encountered due to the errors incurred in learning the error-free

true mean values. In the noise-free case, kernel-based learning
methods like the Gaussian process learning, provide an error-
free prediction of the mean value at the observed candidate
points {x1,…,xk}. However, for the noisy case, the measurements
yi are polluted with noise and the prediction error

ηf (x) = [ f̂k(x)] − [ f (x)] (17)

is non-zero at the observed locations in k. An error in the
mean value prediction directly affects the value computed by
the acquisition function and causes an error in the optimal
estimates obtained from (14). Thus noise in the measurement
can act as an adversary in the Bayesian optimization scheme
and lead to a loss of convergence properties.

The convergence of a Bayesian scheme in the presence
of noise thus relies on drawing multiple samples around
the already sampled locations in k to reduce the
prediction error ηf. A significant degradation in the
convergence properties for Bayesian optimization can be
observed empirically13,42,43 with noisy measurements, when
using the standard expected improvement (EI) or lower
confidence bound (LCB) acquisition functions (Table 3).
While convergence to the optimum can still be guaranteed
with Gaussian noise,15 the convergence is shown empirically
to be much slower with the standard EI or LCB acquisition
functions.42 The noise-augmented EI and knowledge-
gradient (KG) acquisition functions are known to have much
better empirical convergence rates with noisy
measurements.12,43

Furthermore, the convergence of Bayesian optimization
schemes in the presence of a non-(sub) Gaussian noise
distribution such as considered in section 2 is not yet
established theoretically. The additional challenge posed by
such distributions when using a Gaussian process model is
the structural mismatch in the learned stochastic process
(Gaussian) and the real underlying stochastic process ( f ).
With finite repeated sampling at a given location x, the
prediction error ηf (x) may still remain large, thus leading to
slower convergence or adversarial effects of the noise in
Bayesian optimization. These difficulties are shown
empirically in section 6. However, Section 6 shows
empirically that a combination of batched sampling and a
generalized noise-augmented EI acquisition function can
still be used to provide an improved convergence and
robustness in Bayesian optimization with such structural
mismatches.

A non-zero prediction error ηf (x) implies a non-zero
expected error in the optimal candidate estimates,

δxkopt ¼ arg min
x∈ x1;…;xkf g

 f ̂k xð Þ� �
− xopttrue

�����
�����: (18)

Recalling the definitions (17) and xopttrue ¼ arg min
x∈

 f xð Þ½ �, a
rearrangement of terms is be used to rewrite δxkopt as
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δxkopt¼ arg min
x∈ x1;…;xkf g

ηf xð Þ þ arg min
x∈ x1;…;xkf g

 f xð Þ½ � − arg min
x∈

 f xð Þ½ �
�����

�����
≤ arg min

x∈ x1;…;xkf g
ηf xð Þ

�����
�����þ arg min

x∈ x1;…;xkf g
 f xð Þ½ � − arg min

x∈X
 f xð Þ½ �

�����
�����

(19)

This expression splits the error in optimal candidate
estimation into two parts shown on the right-hand side of

the inequality. The first part arg min
x∈ x1;…;xkf g

ηf xð Þ
�����

�����
 !

relates to

the prediction error (17) in the model, while the second part
relates to the exploratory error for the optimization arising
from the limited trust region of the model ({x1,…,xk} ⊂ ).

If the expectation of the true stochastic process ([f (x)]) is
assumed to be Lipschitz continous with a Lipschitz bound L,
then an error in optimal candidate estimation δxkopt leads to a
worst-case estimation error in the optimal value δf kopt ≤
Lδxkopt. The effect of prediction and exploratory errors on δxkopt
is then proportional to their effect on δxkopt.

For the noise-free case, Gaussian process learning can

provide a zero prediction error arg min
x∈ x1;…;xkf g

η f xð Þ
�����

����� ¼ 0

 !
at

the observed points, while the exploratory error follows an
asymptotic convergence as shown in (16).

For the noisy case, we must rely on repeated sampling at
the locations in {x1,…,xk} to drive the prediction error

arg min
x∈ x1;…;xkf g

η f xð Þ
�����

����� towards zero. The need for repeat sampling

thus slows down the convergence rate for the exploratory
error and may lead to a non-zero prediction error at
termination due to the finite nature of repeated sampling in
a practical algorithmic setting.

With repeated sampling at a given location, assuming
negligible covariance to other locations, the worst-case
convergence rate for the prediction error can be expected to
follow a normal distribution ηf (x) ∼ (0, σ2η(x)/n(x)) using the
central limit theorem, where σ2η(x) is the noise variance at x
and n(x) is the number of samples drawn at location x.

A Bayesian optimization scheme with the underlying
assumptions and conditions of (16), taking N repeated samples
for every location sampled in k, follows an exploratory error
convergence rate of (1/(N−1k1/d)). The overall error in δxkopt can
then be analyzed as an asymptotic convergence resulting from
the sum of the two converging error components.

Repeated sampling at the optimal location xopttrue will lead
to a prediction error ηf (x

opt
true) ∼ (0, σ2n(x

opt
true)/N). The

convergence error in the estimated optimal value δf kopt ∼
|ηf (x

opt
true)| then has the expected value of the half-normal

distribution,  δ f kopt
h i

∼
ffiffiffiffiffiffiffiffi
2=π

p
σn xopttrue

� �
=
ffiffiffiffi
N

p
and variance

Var[δf kopt] ∼ (1 − 2/π)σ2n(x
opt
true)/N.

We can thus expect to see a non-zero convergence error on
average in noisy Bayesian optimization with magnitude on
the order of ση=

ffiffiffiffi
N

p
, (ση = σn(x

opt
true)). We observe this

phenomena in section 6 with ση for the case studies defined
in section 2. We characterize the performance of achieving
an expected error of less than one standard deviation of the
noise (ση) with the name, sub-σ convergence or accuracy.

The above discussion is an outline of the arguments
behind the convergence expected from a Bayesian
optimization scheme in the presence of noise. A further
formalization of the proof must take into account the effects
of covariance between the data samples that are left out of
the above discussion for simplicity.

Section 5 introduces some of the acquisition functions
used in Bayesian optimization and introduces the generalized
form of the noise-augmented Expected Improvement
acquisition used in this work that promotes a data-
dependent strategy for repeated sampling to selectively drive
the prediction error ηf (x) down for the optimal candidates.

4.2 Empirical analysis

While the theoretical analysis of section 4.1 provides insights
into the convergence rate statistics up to a proportionality
factor, in practice, the factor is unknown and problem-
dependent. Thus the theoretical bounds may not be
amenable to characterize the number of samples required to
guarantee convergence. Instead, one may empirically observe
the rate of change of the optimal estimate with the iterations
of the algorithm.

Typically, a budget of N samples is decided beforehand for
the optimization, and the optimization is terminated after
the acquisition of N samples. The last Ntest samples of the N
samples may be used as a test set to characterize the
convergence.

The rate of change in the observed function value (x̂optk ) is
observed using the variance of the observed values over the
test set. If the variance is smaller than a small threshold ε,
the optimization is likely converged, if not, the budget for the
samples N may need to be increased further.

The convergence characteristics of the Bayesian
optimization scheme vary from one run of the algorithm to
another due to the randomized nature of acquired samples.
The statistical characterization of the algorithm performance
on a problem thus requires multiple independent runs. The
algorithm's reliability is then evaluated by observing the
variance in convergence characteristics across the multiple
runs. Eqn (20) below proposes a quality metric (Q) for the
algorithm across L independent multiple runs.

Q fð Þ ¼ max
k∈Ntest

Var f x ̂optk;1

� �
; f x ̂optk;2

� �
;…; f x ̂optk;L

� �h i
(20)

where x̂optk,i denotes the estimated optimal candidate at the
kth iteration from the ith independent run of the algorithm.
The variance Var[ f (x̂optk,1 ), f (x̂

opt
k,2 ),…, f (x̂optk,L )] is taken across the

L observed function values in the independent runs, at each
iteration k in the test set. The quality metric Q then takes
the worst case variance observed in the test set as a
measure for the reliability or quality of the algorithm's
design choices. A small value for Q, implies a small worst
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case variance and thus a higher reliability or quality for the
algorithm.

The worst-case variance observed in the test set indicates
the worst-case convergence result that may be expected if any
one of the independent runs was realized during the
application of the algorithm to a problem and if the
algorithm was randomly terminated at any iteration in the
test set. Since the exact number of iterations required for
reliable convergence is often unknown, such a worst-case
characterization for the convergence result provides an
important insight into the algorithm's reliability.

The function f in eqn (20) may be replaced by other
functions such as the expected value of f or the regret
function if the underlying ground truth for a problem is
known, to provide additional insights into the convergence
characteristics.

5 Acquisition functions

An acquisition function A(x| f̂k) evaluates the merit of
choosing a candidate point x for sampling to drive down
the prediction and exploratory errors (introduced in
section 4) in a Bayesian optimization scheme. The next
point to sample within a Bayesian optimization algorithm
is then found as the point that maximizes the acquisition
function, i.e.,

xkþ1 ¼ arg max
x∈X

A xj f k̂
� �

(21)

The simplest form of acquisition function is provided by
the probability of improvement (POI),

APOI(x| f̂k) = ( f̂k(x) ≤ f̂ optk ) (22)

where f̂ optk−1 is the current best estimate for the optimal value.
This kind of acquisition function represents the greedy
approach to candidate sampling, where the sample showing
the best probability of improvement according to the current
model is chosen as the next candidate to acquire. While
simple in formulation, the approach can suffer from non-
convergence to the global (or even local) optimum of f, that
is, the sampling scheme may fail to acquire samples
improving model information and may converge to the
optimum of an incorrect model f̂N. In this scenario, the
exploratory error component of the expected convergence
error in (19) is left undiminished, leading to a large error.

This shortcoming of the greedy approach is overcome by
the Expected Improvement (EI) metric1 which explicitly
accounts for the information gained by sampling at a point x
in addition to the improvement in the objective value. The
metric is computed as the expectation of the objective value
at x exceeding the previous best f optk ,

AEI(x| f̂k) = [max( f̂ optk − f̂k(x), 0)]. (23)

A nearly optimal rate of convergence to the global optimum
is achieved by the EI acquisition function26 under
assumptions of noise-free, smooth, differentiable underlying
functions f, f̂k in C2ν for any ν > 0.§ For a Gaussian process
model f̂k(x) ∼ (μk(x), σ

2
k(x)), the expected improvement can

be written explicitly in terms of the predicted mean and
variance as

AEI xjμk; σk
� � ¼ f ̂

opt
k − μk xð Þ

h i
Φ

f ̂
opt
k − μk xð Þ
σk xð Þ

 !

þ σk xð Þ ϕ f ̂
opt
k − μk xð Þ
σk xð Þ

 ! (24)

where Φ and ϕ are the cumulative and probability density
functions for the standard normal distribution, respectively.

The expected improvement metric can be seen as a
weighted sum between the improvement in mean (μk(x) −
f̂ optk ) and standard deviation σk(x) weighted by cumulative
probability and probability density functions respectively.
The weighted standard deviation term in (24) provides the
acquisition function some value in sampling points where
σk(x) is large, thus promoting exploration in the parameter
space, even when the corresponding point x has a low
probability of improvement according to APOI. This
exploratory quality is known to guarantee asymptotic
convergence to the global optimum.26

A generalized version of the expected improvement3 is
computed by using an integer power g of max ( f̂ optk − f̂k(x), 0)
to compute the generalized expected improvement (gEI) as

AgEI(x| f̂k) = [[max( f̂ optk − f̂k(x), 0)]
g] (25)

Using a larger power g promotes the standard deviation
terms in the expected improvement and thus promotes more
aggressive exploration in the parameter space. For g = 0, AgEI
is equal to APOI and g = 1 gives AEI. For a general integer g
and a Gaussian process model f̂k(x) ∼ ( μk(x), σ2k(x)), the
generalized expected improvement can be computed
recursively using

AgEI xjμk; σk;Dk
� � ¼ σk xð Þ½ �g

Xg
i¼0

− 1ð Þi g

i

	 

f ̂
opt
k − μk xð Þ
σk xð Þ

 !g−i

Ti

(26)

with

T0 ¼ Φ
f ̂
opt
k − μk xð Þ
σk xð Þ

 !
and T1 ¼ −ϕ f ̂

opt
k − μk xð Þ
σk xð Þ

 !

Another form of acquisition function used to tradeoff
between exploration and exploitation is given by the lower
confidence bound (LCB),44

§ C2ν denotes the space of real-valued functions that are differentiable 2ν times
with continuous derivatives.
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ALCB(x|μk, σk) = μk(x) − βkσk(x), (27)

with some parameter sequence βk > 0. The LCB assigns each
point an optimistic additive term as a constant βk multiple of
the standard deviation at that point. This additive term
promotes exploration; the larger the βk, the more aggressive
the exploration. The factor βk may be fixed to a constant β

throughout the iterations. However, certain k-dependent βk
sequences are shown to provide theoretical convergence
bounds for the optimization algorithm.15,44 The proposed βk
sequences gradually increase the aggressiveness of the search

as k increases, with growth on the order of O
ffiffiffiffiffiffiffiffiffi
lnk

p� �
. The

LCB acquisition function is motivated by its simplicity for
use with Gaussian process models and is shown to perform
at par with the expected improvement function.15,44

Unlike the above acquisition functions that are designed
with asymptotic convergence in mind,45 introduced the
knowledge gradient (KG) acquisition function to find a nearly
optimal solution with only a limited budget for iterations.
For AKG(x| f̂k), each new sample point is determined by
assuming that it is the last available function evaluation in
the budget of the Bayesian optimization algorithm. Thus the
metric is designed to find the point that maximizes the best
possible improvement expected by sampling a point x,

AKG xj f k̂
� �

¼ min
x′∈X

μk x′ð Þ −E min
x′∈X

μkþ1 x′jxkþ1 ¼ xð Þ
	 


:

This equation relies on the closed-form update of the
posterior mean of the Gaussian process model when a new
point (xk+1 = x, y) is added to the training set for the model.
The probability of seeing a measurement y for the sample
point xk+1 = x is taken to be specified by the model f̂k ∼
( μk(x), σ2k(x)) and the expectation is taken over this
distribution. The closed-form expression of the updated
mean after adding a point (xk+1 = x, y) for a Gaussianprocess
model can be written as

μk+1(x′|xk+1 = x) = μk(x′) +
P

(x′, x)(
P

(x, x) + λI)−1 (y − μk(x)) (29)

for a kernel matrix function
P

(x′, x) specified for the
Gaussian process model and a noise covariance λ assumed
for the measurement noise in y.45 This closed-form
expression can be maximized as a function of x′ for any given
x, y and the expectation over of this maximum as a function
of y is taken over the distribution y ∼ (μk(x), σ

2
k(x)). This

overall computation for the KG acquisition function can
become computationally intractable and often requires some
form of randomized Monte-Carlo approximation. The next
point to acquire xk+1 is then obtained by maximizing AKG over
the candidate sample space, each evaluation of which
requires a Monte-Carlo approximation. This step makes the
use of the KG acquisition function computationally
expensive.

In addition to the above, the acquisition functions can
also be supplemented with additional trust-region constraints

or penalties to enforce requirements such as model safety,
safe exploration, or dynamical constraints7–11 leading to
further variants.

The above acquisition functions focus on driving down
the exploratory error in (19) and make no explicit attempts at
repeated sampling to drive down prediction errors for noisy
scenarios, which leads to poor convergence performance
when working with noisy measurements.12

Latham et al.12 use a Monte-Carlo scheme of constructing
multiple models f̂ (i)k from artificially generated noise
realizations from the model f̂k. An averaged expected
improvement using each model is then computed as

AMC xj f ̂k
� �

¼ 1
N

XN
i¼1

AEI xj f ̂kið Þ
� �

: (30)

The averaged EI value over several noise realizations tries
to capture a more realistic value of the expected
improvement, not adversarially affected by any single noise
realization. This approach promotes the repeated sampling
required to improve the predictive error component of the
convergence error and thus shows improved empirical
performance.12

Huang et al.13 introduced the augmented EI acquisition
function

AaEI xð Þ ¼ AEI xj f ̂k
� �

1 − ε

σ2k xð Þ þ ε

	 


where ε > 0 is a tolerance hyperparameter and σ2k(x) is the
variance prediction at x from the model f̂k. The multiplicative
augmentation to the expected improvement metric in (31)
increases the value assigned to points with high variance
prediction σ2k(x) given by the model. The variance prediction
σ2k(x) asymptotically decreases to the noise variance σ2n
hyperparameter value for a Gaussian process model with
repeated sampling at x. The augmentation thus captures the
amount of resampling at x as an internal state of the
acquisition function and provides a way to enforce
resampling at points with high noise variance in order to
reduce predictive errors.

We consider a generalized form of the augmentation in
(31) and construct the generalized noise-augmented expected
improvement as

AaEI ¼ AEI xj f k̂
� �

1 − ε

σ2k xð Þ þ ε

	 
p

(32)

for any integer p ≥ 0. The value p = 0 makes AaEI = AEI and,
with higher values of p, the augmentation sees a sharper
increase towards 1 as the variance σ2k(x) increases. An
improved convergence error and robustness is observed as p
is increased from 0 to 2 in section 6.

The maximization of the expected improvement or
augmented expected improvement can be performed using a
gradient-based numerical optimizer. The gradient
computations, although tractable, increase the computational

(28)
(31)
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effort required. Also, gradient-based methods tend to get
stuck in local optima for the acquisition functions, which
tend to be multi-modal, i.e., have multiple local and global
maxima. The multiple maxima can lead to the Bayesian
optimizer getting stuck in a local exploration region. These
limitations can be overcome by treating the acquisition
function as a target probability distribution for a Markov
Chain Monte Carlo (MCMC) sampler.46 The MCMC sampler
can draw q samples for any integer q from a probability
distribution proportional to the target acquisition function.
Since AaEI(x| f̂k) ≥ 0 for all x, the acquisition function can be
directly set as the target distribution and used to draw q
samples from a probability distribution proportional to
AaEI(x| f̂k) with an MCMC sampler. This approach allows a
simple and direct extension of the acquisition function to a
batched sampling approach. Batched sampling further
promotes repeated sampling and helps reduce prediction
errors. Section 6 compares the convergence performances for
different batch sizes q.

6 Results

The Bayesian optimization algorithm from section 3 is run
on the case studies for polymer nucleation described in
section 2. The algorithm is run with a fixed budget of two
thousand samples and compared across ten independent
runs for statistical characterization of the convergence
properties. A comparison is made using different choices for
the generalized noise-augmented acquisition function (32),
sample batch sizes q and with a prior-art algorithm for
Bayesian optimization in material discovery from Ueno
et al.22

The performance of the algorithm is compared using
metrics for optimality, convergence rate, and the quality
metric Q to account for the reliability or expected variability
in results across different runs. The optimality of the result is
characterized by observing a normalized regret

Δ f opt=ση ¼
E f½ � x ̂optk

� �
− f opttrue



 


ση

(33)

where the ground truth estimates for the case studies from
Section 2 provide the required quantities [ f ](x) as mean(x)
from (3), f opttrue as optmean from (4) and ση as the reference
standard deviation from (6). The gridded NEMD data37,38

provides an estimate for the ground truth for the two case
studies and are used to characterize the convergence of the
algorithm using (33). The algorithm, however, is not provided
any knowledge of this underlying ground truth.

6.1 Bayesian optimization with noise-augmented acquisition
applied to the polymer nucleation case studies

Fig. 2 and 3 show the typical convergence performance for
the algorithm over the two case studies of polymer nucleation
presented in section 2, using a batch size of 10 (q = 10) and a

noise-augmented expected improvement acquisition function
(p = 2).

The noisy nature of the process implies that the Bayesian
optimization cannot guarantee a zero convergence error to
the noise-free optimal solution. Instead, the convergence
error is compared to the standard deviation of the noise
using the normalization.

The presence of noise also implies that different
independent runs of the optimization see different
realizations of the noise and thus lead to different
convergence paths towards the optima. The algorithm's
performance is thus characterized in terms of the observed
distribution. Fig. 2 and 3 show the convergence error
distribution over a group of 10 independent runs each for
the tetrahedral and hexagonal additive groups respectively.
The median case shows the median error across runs. The
best- and worst-case performances show the minimum and
maximum convergence error seen across the different runs at
each iteration.

In both cases, we observe a median error of less than one
standard deviation of the process noise and a worst-case

Fig. 2 Tetrahedral additives: A distribution of convergence
performance for augmented Expected Improvement AaugEI(x)-based
Bayesian optimization. A batch of 10 independent runs of 200
iterations is shown with best-case, worst-case, and median
performances.

Fig. 3 Hexagonal additives: a distribution of convergence performance
for augmented expected improvement AaugEI(x)-based Bayesian
optimization. A batch of 10 independent runs of 200 iterations is shown
with best-case, worst-case, and median performances.
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deviation of less than three standard deviations. A sub-σ level
of convergence for the algorithm shows the algorithm's
effectiveness in estimating the optimal values with an
accuracy level better than the underlying process noise. We
observe that, on average, the algorithm performs at this sub-
σ level. Even in the worst case, the error in the optimal
estimate remains with a 3 − σ level of the noise. The
corresponding estimates of the optimal candidate SW-
parameters discovered are shown in Fig. 4a and b.

Fig. 4a and b show the distribution of optimal candidate
estimates considered over 2000 sample acquisitions and ten
runs for the tetrahedral and hexagonal additive case studies,
respectively. Observing this distribution, as opposed to the final
terminal value of the optimization, provides additional insight
into the regions of the candidate space that the algorithm
considers as likely locations to find an optimal candidate. Since
the set of real, realizable crystals is only a subset of the
continuous space described by the UAFF parameters, the
collection of crystals with parameter values near or within this
observed distribution provides the subset of candidates that
are likely to achieve a close to optimal nucleation rate. The
distribution also provides a way to account for any multi-modal
nature in the optimal candidate solution space.

We use the normalized UAFF parameter space described
in section 2 to parameterize the candidate search space, with
SW potentials for the silicon and graphene crystals used as
the normalization constants for the tetrahedral and
hexagonal cases, respectively. The case study for tetrahedral
additives is restricted to only three out of the four UAFF
parameters ((εAD, λSW, σSW)) to maintain consistency with the
ground truth data available.37 Fromthe results, the largest
peak in the optimal candidate parameter distribution is
observed to be around (0.98, 1.05, 0.85) for the tetrahedral
case, with a larger spread of possible candidate values in the
λSW parameters. A similar spread is observed in the optimal
λSW candidate estimates for the hexagonal additive case as
well from Fig. 4b, thus indicating a lower sensitivity of the
optimal candidate to the λSW potential. The
hexagonalcandidates distribution shows a peak at (1.1, 0.41,
0.66, 1.4) with secondary peaks for εSW and εAD at εSW = 0.36
and εAD = 1.

An optimal candidate normalized parameter of near 1
indicates the suitability of silicon and graphene respectively
as optimal additive candidates for the two cases. Considering
this distribution of optimal candidates with peaks around
(0.98, 1.05, 0.85) and (1.1, 0.41, 0.66, 1.4) thus suggests nearly
optimal performance of silicon and an optimal candidate
away from graphene as a nucleating agent. Both εSW and λSW
are proportional to the rigidity of the crystal and smaller
values (0.41, 0.66) in the case for hexagonal crystals suggests
a softer and more compliant material than graphene would
perform well as a nucleating agent for poly-alkanes. This
result is consistent with observations from Bourque et al.38

and crystal growth processes observed in semiconductors47

where a higher compliance substrate allows for better crystal
growth despite relatively large substrate-semiconductor lattice
mismatch. The search for crystals with these specific
deviations in SW parameters is left as a direction for future
exploration.

The results from Fig. 2 and 3 highlight the non-
monotonic nature of convergence of the optimization
algorithm in the presence of noisy measurements. This
nonmonotonicity is expected as the underlying Gaussian
process model evolves in its estimate of what it thinks the
optimal value will be as more data and noise realizations are
made available. An initial estimate of the optimum is based
on far fewer observations of the data and noise realizations.
It thus can easily be misguided by noise into creating an
incorrect model of the underlying ground truth, i.e., suffers
due to higher prediction errors. This occurrence results in a
non-monotonic increase in deviation from the unknown
optimum value. As further noise realizations are observed for
any given candidate point, the model corrects itself and gains
a better estimate for the statistics at the observed locations.

6.2 Comparison to prior-art and varying augmentation factors
( p)

The noise-augmented acquisition function (32) is particularly
designed to promote a higher degree of exploration in
regions where fewer noise realizations have been observed to
avoid getting trapped with an incorrect model of the

Fig. 4 Distribution of estimated optimal candidates after 200 iterations of Bayesian optimization.
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underlying ground truth when a noise realization misguides
the algorithm. This acquisition function may result in a
slower convergence as the model focuses on additional
exploration to combat noise and not only on the exploitation
of the model, generated from initial noise realizations, to
search for optimal candidates. The augmented acquisition
function, however, provides higher overall stability with
improved median and worst-case performance.

Fig. 5 and 6 show a comparison of the median and worst-
case performance obtained from the traditional expected
improvement acquisition function ( p = 0) to that of the
augmented Expected Improvement function ( p = 1, 2) in
combating the noise-driven predictive errors from misleading
of the optimization algorithm. A baseline comparison to the
prior art using the toolbox from Ueno et al.22 is provided.

For p = 0, a non-monotonic increase is observed in the
deviation away from optimum even after 2000 iterations of
the algorithm have been completed, which occurs due to the
insufficient exploration of noise realizations provided by the
expected improvement metric.

As the power factor p is increased in the augmented
acquisition function, increased weight is provided to the

exploration of noise realizations. This exploration
significantly improves the worst-case performance, with fewer
and smaller non-monotonic deviations upon convergence for
the p = 1 case and no observable deviations upon
convergence from the p = 2 case, indicating that a sufficient
exploration of the noise realizations is provided by the
augmented case ( p = 2) before converging to an optimal
candidate. This improved stability in the algorithm prevents
a misleading result from being declared as optimal when the
algorithm is terminated in a run where the worst-case
performance might have been realized. This notion of
reliability or quality of the algorithm's design choices is
quantified by the quality metric Q from (20).

Fig. 7 shows the comparison for the four cases considered
above in terms of the quality metric Q(Δf/ση). The quality
metric shows the worst-case variance in the regret obtained
at any iteration in obtaining the test samples across the ten
independent runs of the algorithm for each design choice.
35% of the sample budget, i.e., the last 700 samples of each
run are reserved as the test set to quantify the quality metric.

The quality metric shows a clear improvement in the
reliability of the algorithm as the augmentation factor ( p) is
increased from 0 to 2. The smaller the value of Q, the smaller
the variability of results obtained from the algorithm, thus
higher the reliability.

6.3 Comparison across varying batch size (q)

Another important aspect in dealing with noisy and
expensive material discovery experiments is that experiments
are typically performed in batches. Thus the optimizer must
provide a batch of candidate samples at every iteration. The
Bayesian optimization algorithm is run with the noise-
augmented acquisition function with p = 2 for different
choices of the sampling batch size q. Ten independent runs
are used to characterize the statistical performance and
quality (Q) of the algorithm for each choice of q. The total
number of samples drawn is kept constant at 2000 (sample
budget N = 2000) to keep the results comparable. The total

Fig. 5 A comparison of median-case performance with varying
augmentation factors (p) for the acquisition function. p = 0
corresponds to the conventional expected improvement acquisition
strategy for Bayesian optimization.

Fig. 6 A comparison of median-case performance with varying
augmentation factors (p) for the acquisition function. p = 0
corresponds to the conventional expected improvement acquisition
strategy for Bayesian optimization.

Fig. 7 Comparing model quality (Q) for varying augmentation factors
(p) obtained from the test iterations with 35% of the sample budget
allotted for quality testing.
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number of iterations available to the optimizer is then given
by 2000/q.

Fig. 8 shows a comparison of the reliability or quality
metric (Q) across the different choices for the batch sizes
considered. The quality metric Q is evaluated over a test set
containing the last 700 samples of each independent run for
a given choice of q. The figure clearly shows a marginal
improvement in the algorithm's reliability as the batch size is
increased from 1 to 20. A significant loss in reliability is
observed as the batch size is further increased to 40.

As the batch size increases, a larger number of samples
are included in the model update at every iteration, which
leads to a faster accumulation of data and noise realizations
on every iteration. This makes the model updates less
susceptible to noise on any given iteration. The downside of
larger batch sizes is that there are fewer optimizer iterations
(N/q) for a fixed budget of N samples. The selection of batch
size (q) is thus a tradeoff between these two factors when the
total samples budget is kept constant. Fig. 8 shows this
tradeoff in action with the marginal improvement of
reliability up to q = 20 and a significant drop of reliability
with q = 40, which leaves the algorithm with too few (50)
optimizer iterations.

Fig. 9 and 10 compare the median and worst-case
performances of the algorithm with varying batch size q.

The median performance (Fig. 9) sees a nearly similar
error (around 0.5ση) across the different choices for q. The
small changes in median performance upon termination are
within a small fraction of the noise standard deviation and
are considered statistically insignificant.

The worst-case performance (Fig. 10) however, shows
consistent convergence up to q = 20 and a significant
degradation of performance by several multiples of the noise
standard deviation for a batch size of 40. Such a degradation
occurs due to an insufficient number of optimization steps
available to the algorithm for q = 40.

In practice, it is often preferred to have experiments
performed in batches and thus observing consistent
convergence performance with the larger batch sizes such as
q = 10 and q = 20 may thus be considered optimal, as
quantified by the quality metric Q and the consistent results
for the median and worst-case convergence.

6.4 Observations from the numerical studies

Using the comparisons from sections 6.2 and 6.3, a batch
size of q = 10 or q = 20, with p = 2, is observed to provide an
adequate tradeoff with good median and worst-case
performance (sub-σ and sub-3σ respectively), with an
improved reliability or quality metric Q.

The numerical studies were performed using ten
independent runs of the algorithm for each design choice, such
as the choices for p and q. Furthermore, each independent run
is initialized with an independent and randomly sampled
initial training set which further contributes to the
independent and randomized convergence paths taken by the
algorithm across the different runs. The quality metric Q thus
captures the worst-case variability of the results across all such
independent runs for any given design choice of the algorithm
and any sample in the last Ntest samples acquired by a run
being declared as the optimal candidate.

The Bayesian optimization with batched sampling and a
noise-augmented acquisition function thus provides an
effective strategy to achieve a sub-σ level of median and

Fig. 8 Comparing model quality (Q) for varying batch sizes (q)
obtained from the test iterations with 35% of the sample budget
allotted for quality testing.

Fig. 9 Median case comparison: varying sample batch sizes (q), p = 2.

Fig. 10 Worst-case comparison: varying sample batch sizes (q), p = 2.
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best-case convergence in the presence of noise while
maintaining a worst-case performance within three
standard deviations of the noise level. The improved quality
metric (Q) shows that the augmentation and batched
sampling also lead to a lower sensitivity to factors such as
the choice of initial training set or the choice of the
termination iteration number.

7 Conclusions

This article explores the challenges in dealing with the
process or measurement noise in materials discovery
approaches using Bayesian optimization methods. The non-
monotonic convergence and noise-driven variability of
outcomes across different runs of the algorithm are shown to
be significant factors to consider for the design of a Bayesian
optimization approach that is robust to noise and a quality
metric is introduced to quantify such variability. The use of
an augmented acquisition function and a batched approach
to sampling are both shown to be helpful in achieving
improved robustness, and the median performance of the
designed approach is shown to achieve a sub-σ level of
accuracy in determining optimal candidates, while the worst-
case performance shows better than 3σ level of accuracy in
two case studies for additive discovery in polymer
(polyethylene) nucleation.

The case studies consider the search for optimal additive
candidates using a united atomic force field model for search
space parameterization in classes of tetrahedral and
hexagonal additives, respectively. The results suggest nearly
optimal performance for silicon in the class of tetrahedral
crystals but suggest a candidate more compliant than
graphene in their respective classes. With the deviations
observed in optimal parameters from Si and graphene, a
search for possibly better-matched crystals to the discovered
candidates is a direction for further research.

The augmented Bayesian optimization approach for
materials discovery in noisy processes is seen to be an
effective approach to minimize the number of expensive
experimental or MD simulation samples required while
addressing the challenges of batched sampling and
robustness to noise.
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