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a b s t r a c t 

This article proposes a two-phase Eulerian-Eulerian model coupled with granular kinetic theory, semi- 

discrete population balance equations, energy balance, and scalar transport equations for the simulation 

of the full crystal size distribution and the effects of particle settling in continuous-flow crystallizers. 

The model capabilities are demonstrated by application of an OpenFOAM 

® implementation to the com- 

bined cooling/antisolvent crystallization of Lovastatin in a coaxial mixer. The simulations show that (1) 

the spatial fields for the antisolvent mass fraction and crystal nucleation and growth rates can be highly 

asymmetric for small continuous-flow crystallizers, (2) continuous-flow crystallizers of small dimension 

can generate bimodal crystal size distributions, and (3) a relatively small change in the inlet feed veloc- 

ity can change the crystal size distribution from being unimodal to bimodal. These results demonstrate 

the potential of the proposed model for gaining insights into continuous-flow crystallization that can be 

useful for the design of equipment or operations. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Crystallization is one of the most important separation and pu-

rification techniques in the manufacturing of high-value products

such as fine chemicals and pharmaceuticals. In this multiphase

process, simultaneous heat and mass transfer occur and the crystal

size distribution (CSD) and other states vary with space and time

( Mullin, 2001 ). 

Among various methods of crystallization used by the industry,

especially by the pharmaceutical industry, antisolvent addition is

commonly used for inducing crystallization for thermally sensitive

pharmaceuticals by limiting large temperature variations ( Wey and

Karpinski, 2002 ). Also applied in industry are combined cooling

and antisolvent crystallization (e.g., Nagy et al., 2008; Jiang et al.,

2015; Schall et al., 2018 ), in which both cooling and antisolvent are

employed, primarily to generate higher yields than can be achieved

separately. 

Several crystallizer designs have been investigated, including

batch and semi-batch stirred tanks and mixed-suspension mixed-

product removal (MSMPR), dual-impinging jet, coaxial, and radial
∗ Corresponding author. 
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t  

t  

fl  

t

https://doi.org/10.1016/j.compchemeng.2019.01.009 

0098-1354/© 2019 Elsevier Ltd. All rights reserved. 
ixer-based continuous-flow crystallizers ( Jiang et al., 2015; Li

t al., 2015; Pirkle et al., 2015; Yu et al., 2016; Cheng et al., 2017; da

osa and Braatz, 2018 ). Continuous operation has some advantages

hat include improved product consistency, yield, and capacity,

nd lower facility cost and space requirements (e.g., Wang et al.,

017 ). An important consideration in the design of continuous-

ow crystallizers is to suppress encrustation (e.g., Powell et al.,

015 ), which is also commonly referred to as “fouling.” Encrusta-

ion in continuous-flow crystallizers and heat transfer device op-

ration has been modeled (e.g., Brahim et al., 2003; Koswara and

agy, 2017; Majumder and Nagy, 2015; Pääkkönen et al., 2016 ). En-

rustation depends on spatially localized values for the states, and

etter models are needed of the fluid flow and operating condi-

ions during crystallization to be able to accurately predict encrus-

ation, at which point the equipment and operations can be de-

igned to suppress encrustation. 

Different approaches can be employed to model fluid-particle

ows with particle size distribution and the inclusion of gravity

ffects, e.g., Eulerian-Lagrangian, Eulerian-Eulerian. The Eulerian-

ulerian, also called two-fluid-model, combined with the popula-

ion balance equation has been successfully applied to simulate

he evolution and growth of the particle size in gas–solid rotating

uidized bed olefin polymerization ( Ahmadzadeh et al., 2008 ) and

o calculate the variation of the particle properties during a CO 
2 

https://doi.org/10.1016/j.compchemeng.2019.01.009
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Nomenclature 

B Nucleation rate 

c Concentration of solute 

c ∗ Solubility or saturation concentration 

D t Turbulent diffusivity 

e ss Restitution coefficient 

f Number density function 

f r Derivative of number density function 

f w 

Mass basis density function 

�
 g Gravitational acceleration 

G Growth rate 

h Enthalpy per unit mass 

k Turbulent kinetic energy 

k v Volume shape factor 

˙ m Mass transfer rate between phases 

p Pressure in momentum conservation equation 

p s Crystals phase pressure 

r Crystal size 

r 0 Nuclei size 

Re s Particle Reynolds number 

S Relative supersaturation = c/c ∗

S w,j Source term due to crystallization 

S φ Source term in components transport equations 

t Time 

T Temperature 

�
 v Velocity vector 

Symbols 

�c supersaturation = c – c ∗

�r Discretized bin size for crystal size 

�k Effective mass diffusion coefficient 

� Granular temperature 

α Volume fraction 

β ls Momentum transfer coefficient 

ε Turbulent kinetic energy dissipation rate 

φ Energy exchange between phases in the granular 

temperature equation 

Mass fraction in the multicomponent mixture model 

γ s Collisional dissipation of energy 

λ Solids bulk viscosity in granular kinetic model 

μ Viscosity 

μeff effective shear viscosity 

μt Turbulent viscosity 

ρ Density 

τ Stress tensor 

Subscripts 

c Crystal 

f Face interpolation 

j Discretized bin for crystal size in population balance 

equation 

k Component index in multicomponent model 

l Liquid phase 

s Crystals phase 

w Mass basis in population balance equation 

apture using MgO-based sorbent ( Abbasi et al., 2015 ). However,

here is a lack of information regarding the application of such

odels to simulate crystallization processes and to predict “foul-

ng” formation in continuous-flow crystallizers. 

This article couples the population balance equation with

 two-fluid model, based on the Eulerian-Eulerian formulation

nd the granular kinetic theory ( Gidaspow, 1994 ), to model

nd simulate combined cooling and antisolvent crystallization in
ontinuous-flow crystallizers and to predict likely locations for

rystal deposition. For that purpose, a set of semi-discrete pop-

lation balance equations, using a high resolution finite-volume

ethod, was coupled to a two-phase Eulerian-Eulerian using

he open-source CFD package OpenFOAM 

®. The methanol-water

ooling and antisolvent crystallization of lovastatin, using ki-

etics reported in the literature ( Mahajam and Kirwan, 1994 ),

nd the continuous-flow coaxial crystallizer geometry studied by

irkle et al. (2015) , was chosen as the model system in the simu-

ations. The case study, results and discussion, and conclusions are

resented after the model equations, model implementation, and

umerical methods. 

. Model equations 

This article employs a two-phase model, based on the Eulerian-

ulerian approach, and the granular kinetic theory to account

or the flow properties of the particle phase. The evolution of

he crystal size distribution (CSD) is modeled by a set of semi-

iscrete population balance equations, derived using a high resolu-

ion finite-volume discretization method, that was coupled to the

wo-phase model. The fluid phase is treated as an ideal multicom-

onent mixture, and scalar transport equations are used to account

or the mass conservation of each component. Also, energy balance

quations are employed to model the intra- and interphase heat

ransfer. 

.1. Mass and momentum conservation 

The continuity equations for the two liquid ( l ) and crystal ( s )

hases are 

∂ 

∂t 
( αl ρl ) + ∇ · ( αl ρl � νl ) = −( ˙ m ls − ˙ m sl ) (1) 

∂ 

∂t 
( αs ρs ) + ∇ · ( αs ρs � νs ) = ( ˙ m ls − ˙ m sl ) (2) 

here α is the volume fraction and ( ˙ m ls − ˙ m sl ) is the net mass

ransfer rate between the phases due to crystallization and/or crys-

als dissolution. The conservation of momentum equations for the

wo phases are 

∂ 

∂t 
( αl ρl � νl ) + ∇ · ( αl ρl � νl � νl ) 

= −αl ∇p + ∇ · τ l + αl ρl � g − βls ( � νl − �
 νs ) + 

˙ m sl � νs − ˙ m ls � νl (3) 

∂ 

∂t 
( αs ρs � νs ) + ∇ · ( αs ρs � νs � νs ) 

= −αs ∇ p − ∇ p s + ∇ · τ s + αs ρs � g − βls ( � νs − �
 νl ) 

− ˙ m sl � νs + 

˙ m ls � νl (4) 

here βls ( � νl − �
 νs ) is the interphase momentum transfer due to the

rag force, and ˙ m sl � νsl and ˙ m ls � νls are extra terms to account for

he interphase momentum transfer due to mass transfer between

hases. p s in (4) is the solids pressure or the normal stress of the

ranular phase which consists of consists of the kinetic pressure

ue to the motion of the particles and a collisional pressure due to

nelastic collision of particles ( Lun et al., 1984 ). 

The liquid phase is assumed to be a Newtonian fluid, and the

oussinesq hypothesis for the turbulent stress-strain, 

l = αl μeff 

[ 
∇ 

�
 v l + ( ∇ 

�
 v l ) 

T − 2 

3 

( ∇ · � v l ) I 
] 

− 2 

3 

αl ρl k l I , (5) 

s used, where μeff = μl + μt 
l 

is the effective shear viscosity of the

iquid phase, k is the turbulent kinetic energy, and Ī is the identity
l 
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tensor. Turbulence effects in the fluid phase were modeled by the

standard k - ɛ model. 

In a similar way, the shear stress of the particle phase is ex-

pressed as 

τ s = αs μs 

[∇ 

�
 v s + ( ∇ 

�
 v s ) T 

]
+ αs 

(
λs − 2 

3 

μs 

)
( ∇ · � v s ) I (6)

where μs and λs are the particle shear viscosity and bulk viscos-

ity, respectively, which are calculated via granular kinetic theory

( Gidaspow, 1994 ). 

2.2. Particle drag model 

The studied crystallizer conditions are within the dilute particu-

late flow regime, for which the momentum transfer coefficient β ls 

given by ( Wen and Yu, 1966 ) 

βls = 

3 

4 

C D 
αl αs ρl | � v s − �

 v l | 
d s 

α−2 . 65 
l 

(7)

where 

 D = 

24 

αl R e s 

[
1 + 0 . 15 ( αl R e s ) 

0 . 687 
]

(8)

and 

R e s = 

ρl | � v s − �
 v l | d s 

μl 

(9)

is the particle Reynolds number. 

2.3. Granular kinetic theory equations 

The momentum equation requires a description of the solid-

phase shear stress and pressure, for which the granular kinetic

theory of Gidaspow (1994) is adopted. Analogous to the thermo-

dynamic temperature for gases, the granular temperature ( �s �s )

is introduced as a measure of the particle velocity fluctuations, 

�s = 

1 

3 

(
ν ′ 

s 

)2 
, (10)

where ν ′ 
s v 

′ 
s is the particle fluctuating velocity. That is, the granu-

lar temperature for the solid phase is proportional to the kinetic

energy of the random motion of the particles. The conservation of

granular temperature equation is 

3 

2 

[
∂ 

∂t 
( αs ρs �s ) + ∇ · ( αs ρs � νs �s ) 

]

= 

(
−p s I + τ s 

)
: ∇ 

�
 νs + ∇ · ( k �s ∇ �s ) − γs + φls (11)

where ( −p s I + τ s ) : ∇ v s is the generation of energy by the solid

stress tensor, k �s ∇�s is the diffusion of energy, γs γ�s 
is the col-

lisional dissipation of energy, and φls is the energy exchange be-

tween the fluid phase and the solid phase. The diffusion coefficient

for granular energy ( k �s 
) and the energy exchange between phases

( φls ) were calculated as in Gidaspow et al. (1992) . The collisional

dissipation of energy was modeled according to Lun et al. (1984) . 

The solids stress tensor contains the shear and bulk viscosi-

ties arising from particle momentum exchange due to translation

and collision. The collisional and kinetic parts are added to give

the solids shear viscosity. The frictional viscosity term is not in-

cluded because all of the conditions studied here fall within the

dilute flow regime. 

The collisional and kinetic parts of the shear viscosity are given

by ( Gidaspow et al., 1992 ) 

μs,col = 

4 

5 

α2 
s ρs d s g 0 ,ss ( 1 + e ss ) 

(
�s 

π

)1 / 2 

(12)
s,kin = 

10 ρs d s 
√ 

�s π

96 ( 1 + e ss ) g 0 ,ss 

[ 
1 + 

4 

5 

αs g 0 ,ss ( 1 + e ss ) 

] 2 
(13)

The solids bulk viscosity, which accounts for the resistance of

he granular particles to compression and expansion, is given by

 Lun et al., 1984 ) 

s = 

4 

3 

αs ρs d s g 0 ,ss ( 1 + e ss ) 

(
�s 

π

)1 / 2 

(14)

The solids pressure was calculated from ( Lun et al., 1984 ) 

p s = αs ρs �s + 2 ρs α
2 
s g 0 ,ss �s ( 1 + e ss ) (15)

here e ss is the restitution coefficient and g 0, ss is the radial distri-

ution function ( Ogawa et al., 1980 ). 

.4. Energy conservation 

The intra- and interphase heat transfer was modeled by apply-

ng an energy conservation equation to the fluid phase 

∂ 

∂t 
( αl ρl h l ) + ∇ · ( αl ρl � νl h l ) = −∇ · � q l − ˙ Q ls + 

˙ m sl h sl − ˙ m ls h ls 

(16)

nd to the crystals phase 

∂ 

∂t 
( αs ρs h s ) + ∇ · ( αs ρs � νs h s ) = −∇ · � q s + 

˙ Q f s − ˙ m s f h s f + 

˙ m f s h f s 

(17)

These equations include the energy transfer due to crystalliza-

ion ( ˙ m ls h ls ) and/or dissolution ( ˙ m sl h sl ) and the convective inter-

hase heat transfer ( ˙ Q ls ). The convective interphase heat transfer

as modeled by the Newton’s law of cooling analogous equation,

nd the convective heat transfer coefficient was calculated based

n the Nusselt number correlation of Ranz and Marshall (1952) . �q

n (16) and (17) is the conductive heat flux which is modelled by

he Fourier’s law. In this work, the conductive heat transfer in the

rystals phase was neglected by setting the thermal conductivity

o zero. 

.5. Fluid-phase multicomponent model 

The fluid phase was considered to be a multicomponent ideal

ixture, composed by the solvent (methanol), solute (lovastatin),

nd antisolvent (water). Since the concentration of these compo-

ents vary with time and space, due to the boundary conditions

nd crystallization, mass transport equations are applied to model

ach component ( k ), as described by 

∂ 

∂t 
( αl ρl φk ) + ∇ · ( αl ρl � v l φk ) = ∇ · ( αl �k ∇ φk ) + S φk 

(18)

here φk is the mass fraction of the k component and S φk 
is the

ource term due to mass generation and/or consumption of the k

omponent. 

.6. Population balance equation 

The crystallization is described by the spatially inhomogeneous

opulation balance equation (PBE), 

∂ f 

∂t 
+ 

∑ 

i 

∂ [ G i ( r i , c, T ) f ] 

∂ r i 
+ ∇ · ( � v f − D t ∇ f ) 

= B ( f, c, T ) 
∏ 

i 

δ( r i − r i 0 ) + h ( f, c, T ) , (19)

here f is the particle number density function, which is a func-

ion of external coordinates (X, Y, and Z in the Cartesian 3D case),
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he internal coordinates r i (the size dimensions of the crystals),

nd the time t ( Randolph and Larson, 1988 ). The growth rates

 i = d r i /dt and the nucleation rate B are functions of the vector

f solution concentrations c and the temperature T, δ is the Dirac

elta function, and h describes the creation and destruction of

rystals due to aggregation, agglomeration, and breakage. For size-

ependent growth, the growth rates G i also vary with the internal

oordinates r i . 

To couple with the CFD solver, the PBE (19) is rewritten on a

ass basis, 

f w, j = ρc k ν
r j+1 / 2 

∫ 
r j−1 / 2 

r 3 f j dr = 

ρc k ν f j 

4 

[ (
r j+1 / 2 

)4 −
(
r j−1 / 2 

)4 
] 
, (20) 

here f w, j is the cell-averaged crystal mass with units of kg/m 

3 .

he PBE is discretized along the growth axis using a high-

esolution finite volume method ( Woo et al., 2006 ). Differently

rom past work which used single-phase CFD ( Woo et al., 2006;

009; Pirkle et al., 2015 ), this article couples the set of semi-

iscrete PBE to a two-phase CFD model. Since the PBE is applied

nly to the crystals phase in this formulation, the PBE must be

onverted to the same volumetric basis. Therefore the volume frac-

ion concept is introduced in the semi-discrete set of equations, as

∂ 

∂t 

(
αs f w, j 

)
+ ∇ ·

(
αs � υs f w, j 

)
= ∇ ·

(
αs D t ∇ f w, j 

)
+ αs S w, j (21)

here S w, j is the source term due to crystal nucleation and

rowth, which is calculated from 

 w, j = 

ρc k v 

4�r 

[ (
r j+1 / 2 

)4 −
(
r j−1 / 2 

)4 
] {

−G j+ 1 2 

[
f j + 

�r 

2 

( f r ) j 

]

+ G j− 1 
2 

[
f j−1 + 

�r 

2 

( f r ) j−1 

]
+ B δ j0 

}
for �c ≥ 0 (22) 

 w, j = 

ρc k v 

4�r 

[ (
r j+1 / 2 

)4 −
(
r j−1 / 2 

)4 
] {

−G j+ 1 2 

[
f j+1 −

�r 

2 

( f r ) j+1 

]

+ G j− 1 
2 

[
f j −

�r 

2 

( f r ) j 

]}
otherwise (23) 

here �r = r j+1 / 2 − r j−1 / 2 , ρc is the crystal density, k v is the crys-

al volume shape factor, ( f r ) j is the derivative approximated by the

inmod-limiter ( Kurganov and Tadmor, 20 0 0 ), �c is the supersat-

ration, and δji is the Kronecker delta (which is defined to be equal

o one when i = j and zero otherwise). 

. Model implementation and numerical solution 

The model equations were implemented in OpenFOAM 

® 4.0 via

bject-oriented C ++ programing language as in Passalacqua and

ox (2011) and Liu and Hinrichsen (2014) . A set of dictionaries

as used to input the transport and PBE properties. The semi-

iscretized PBE equations, resulting from PBE growth axis dis-

retization, were implemented in OpenFOAM 

® code using the

trList < T > C ++ template, which constructs an array of classes or

emplates of type T. In order to calculate the source terms of the

BEs, the minmod-limiter and the functions for calculating super-

aturation, crystal growth and nucleation were implemented in a

eparated C ++ object, which makes it easier to customize the code

or different crystallization kinetics. 

.1. Discretization of the model equations 

The fully conservative form of the momentum equations was

dopted in this work. In order to avoid obtaining a singular sys-

em of linear algebraic equations, the momentum equation was
ot solved in the computational cells where the phase volume

raction is lower than a certain minimum value ( Passalacqua and

ox, 2011 ). 

As mentioned before, the liquid phase is considered to be a

ulticomponent ideal mixture, with extra scalar transport equa-

ions to account for the mass conservation of mixture components.

s such, the density of the mixture is a function of both spatial co-

rdinates and time (while the density of the crystals phase is con-

tant). The semi-discrete form of (3) and (4) with constant density

re 

 l � νl = H l − αl ∇P + αl ρl � g − βls ( � νl − �
 νs ) + 

˙ m sl � νs − ˙ m ls � νl (24) 

 s � νs = H s −αS 

ρS 

∇ P − 1 

ρS 

∇ P s + αs � g −β f s 

ρS 
( � νs − �

 νl ) −
˙ m sl 

ρs 

�
 νs + 

˙ m ls 

ρs 

�
 νl 

(25) 

here A represents the diagonal coefficients of the velocity matrix

nd H consists of the off-diagonal and source terms apart from the

ressure gradient (e.g., as in Eq. 3.137 of Jasak, 1996 ). 

Grouping the terms containing the unknown velocities in these

quations results in equations for the intermediate phase veloci-

ies, 

 l = λl ( H l − αl ∇P + αl ρl � g ) + λl ( βls + 

˙ m sl ) � νs (26) 

 s = λs 

(
H s − αs 

ρs 
∇ P − 1 

ρs 
∇ P s + αs � g 

)
+ λs 

(
βls + 

˙ m ls 

ρs 

)
�
 νl (27) 

here λl and λs are given by 

l = 

1 

A l + 

˙ m ls + βls 

(28) 

s = 

1 

A s + 

βls + ̇ m sl 

ρs 

(29) 

Substituting (26) into (25) and (27) into (24) results in two de-

oupled expressions for the intermediate phase velocities, 

 l = 

1 

A 

∗
l 

{
H l + λs ( βls + 

˙ m sl ) H s −( αl + λs αs 
βls + ̇ m sl 

ρs 
) ∇ P −λs 

βls + ̇ m sl 

ρs 
∇ P s 

+ [ αl ρl + λs αs ( βls + 

˙ m sl ) ] � g 

}
(30) 

 s = 

1 

A 

∗
s 

[
H s + λl 

βls + ̇ m ls 

ρs 
H l −

(
αs 

ρs 
+ λl αl 

βls + ̇ m ls 

ρs 

)∇ P − 1 
ρs 

∇ P s 

+ 

(
αs + λl αl ρl 

βls + ̇ m ls 

ρs 

)
�
 g 

]
(31) 

here 

 

∗
l = A l + 

˙ m ls + βls − λS ( βls + 

˙ m sl ) 

(
βls + 

˙ m ls 

ρS 

)
(32) 

 

∗
s = A s + 

(
βls + 

˙ m sl 

ρs 

)
− λl ( βls + 

˙ m sl ) 

(
βls + 

˙ m ls 

ρs 

)
(33) 

.2. Pressure equation and velocity fluxes correction 

The pressure equation is obtained by imposing volumetric con-

ervation, 

 · ϕ = ∇ ·
(
αl, f ϕ l + αs, f ϕ s 

)
= 0 , (34)

here ϕl and ϕs are the liquid and crystals phases velocity fluxes,

espectively, which are calculated by interpolating (30) and (31) on

ell faces and calculating the scalar product with the face normal
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Fig. 1. Numerical solution procedure. 
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Replacing the face fluxes in (34) by (35) and (36) , and collecting

he terms that contain the pressure gradient on the left-hand side

nd all other terms on the right-hand side, results in 
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βls + ˙ m sl 

ρs 

)
f 

+ 

αs, f 

A ∗
s, f 

(
αs 

ρs 
+ λl αl 

βls + ˙ m ls 
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(37)

where ϕ 

0 
l 

and ϕ 

0 
s are the fluid- and solid-phase volumetric fluxes

ithout the contribution of the pressure gradient, which are given

y 
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After solving the pressure equation and updating the pressure

eld, (40) and (41) are used to correct the flux of each phase using

he new pressure field: 
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gth of 1 m (10 0 0 mm). The two feeds are on the left and the outlet is on the right. 
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Fig. 3. Hex-dominant mesh used in the simulations. 

Fig. 4. Grid-independent numerical solution analysis: (A) average CSD at the outlet of the crystallizer; (B) solute conversion as function of the axial position. 

3

 

s  

b  

i  

t  

s  

c  

t  

α  

c

 

 

fi

ϕ

ϕ

w  

i

.3. Discretization of the crystals phase continuity equation 

Discretizing the dispersed phase continuity equation requires

pecial care, to ensure that the dispersed phase fraction is bounded

etween zero and the maximum physical value, which is the pack-

ng limit ( αs , max ). The boundedness is achieved by re-formulating

he continuity equation and implicitly introducing the solid pres-

ure gradient into the continuity equation. By rewriting (2) for a

onstant density phase, using the face velocity flux to discretize

he convective term, and introducing the mixture flux, ϕ = αl, f ϕ l +
s, f ϕ s and the relative flux, ϕ r = ϕ s − ϕ l , the continuity equation

an be rewritten as 

∂ αs 

∂t 
+ ∇ ·

(
αs, f ϕ 

)
+ ∇ · ( αs αl ϕ r ) = 

˙ m ls − ˙ m sl 

ρs 
(42)
Then the mixture and relative fluxes are replaced by the modi-

ed fluxes, 

 = ϕ 
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∗
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⊥ P s (43) 
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hich explicitly include the solid pressure gradient, leading to the

mplemented form of the continuity equation as 
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+ ∇ ·
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Fig. 5. Crystal mass distributions for varying numbers of bins used in the dis- 

cretization of the internal coordinate. 
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3.4. Numerical solution procedure 

The simulations were run using the merged PISO-SIMPLE (PIM-

PLE) algorithm, which combines the SIMPLE algorithm and the

pressure implicit with splitting the operators (PISO) algorithm to

rectify the second pressure correction and correct both velocities

and pressure explicitly. The numerical solution procedure, adopted

in the simulations, is summarized in Fig. 1 . 

As in Passalacqua and Fox (2011) , the Euler implicit scheme

was used to discretize the transient terms, the divergence of the

phase stress tensor was discretized explicitly with the second-

order central scheme, and the convective terms were discretized

with a second-order upwind scheme with limited gradients. Tran-

sient simulations were run up to 20 s of real time simulation. A

time step of 1.0 × 10 –4 s was used in all simulations. A maximum

residual of 1.0 × 10 –3 was used for the momentum and turbulence

model equations and 1.0 × 10 –6 was used for all other equations. 

4. Case study 

4.1. Computational domain 

The set of model equations was applied to simulate a coaxial

crystallizer configuration of Pirkle et al. (2015) . According to the

authors coaxial crystallizers have negligible buildup of crystalline

material on their surfaces and are less likely to plug. 

A 3D computational domain with YZ| x = 0 plane of symmetry and

an inner tube diameter of 0.01620 m and an outer tube diameter

0.03632 m, as shown in Fig. 2 , was used in the simulations. The
Fig. 6. Antisolvent mass fraction contour p
reeCAD open-source CAD modeler was used to generate the ge-

metry and export all the faces as STL( StereoLithography) files. 

.2. Mesh 

3D computational meshes, with a YZ| x = 0 symmetry plane,

ere generated using the snappyHexMesh tool, available on

penFOAM 

®. This tool generates hex-dominant meshes, as shown

n Fig. 3 , which contributes to numerical stability. A grid-

ndependent numerical solution analysis was performed by keep-

ng a constant time step throughout the simulations and varying

he number of grid cells, as shown in Fig. 4 A,B. The solute conver-

ion as function of the axial coordinate and the CSD at the out-

et of the crystallizer were chosen to compare the solutions be-

ause these variables strongly depend on all other parameters of

he model. Increasing the number of grid cells from 39,174 up

o 146,602 elements significantly affected the simulation results

 Fig. 4 A and B). However, further increments in the number of ele-

ents had no significant impact in the evaluated variables. There-

ore, all the results shown in this article were run with a grid size

f 146,602 elements. 

.3. Grid spacing for the PBE internal coordinate discretization 

The number of bins to use for discretization of the internal

oordinate (crystal growth axis), which fixes the �r , was deter-

ined by comparing the mass-weighted average CSD at the outlet

f the crystallizer for three different discretizations: 10 bins ( �r =
5 μm), 20 bins ( �r = 12 . 5 μm), and 30 bins ( �r = 8 . 33 μm),

hich all correspond to a range of diameters between 0 and

50 μm ( Fig. 5 ). Constant grid spacing was applied to discretize

he crystal growth axis. 

As it can be seen in Fig. 5 , increasing the number of discretiza-

ion bins from 10 to 20 significantly affected the CSD, shifting the

aximum of the function to a larger crystal size. However, increas-

ng from 20 to 30 bins produced results with an average crystal

ize of less than 0.5% difference. The differences between the out-

et CSD for 20 and 30 bins in Fig. 4 are smaller than what would be

etectable in experimental measurements, so no further increment

n the number of bins was evaluated, and �r = 8 . 33 μm was cho-

en to run all remaining simulations in this article. This discretiza-

ion is in agreement with the grid spacing used in the simulation

f antisolvent crystallization in dual impinging jet mixers of similar

imensions by Woo et al. (2009) . The ability of the high-resolution

nite volume method with a relatively small number of bins to

rovide good numerical accuracy in crystallizer simulations is con-

istent with past studies ( Gunawan et al., 2004 ), in contrast to pop-

lar alternative numerical discretization methods such as the up-

ind difference and Lax–Wendroff methods that typically require

00 of bins to achieve similar numerical accuracy. In order to have

 correct particle size distribution, it was necessary to run the sim-
lot at the YZ| x = 0 plane of symmetry. 
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Fig. 7. Antisolvent mass fraction contour plot for XY planes at different axial positions: (A) 0.12 m; (B) 0.15 m; (C) 0.2 m; (D) 0.3 m. 

Table 1 

Operating conditions studied in this work. 

Component Mass fraction Mass flow rate (kg/s) Inlet velocity (m/s) 

Outer tube inlet Inner tube inlet 

Case 1 Solute 0.05 0 0.025 0.7876 

Solvent 0.95 0 0.475 

Antisolvent 0 1 0.5 6 

Case 2 Solute 0.05 0 0.0165 0.525 

Solvent 0.95 0 0.3135 

Antisolvent 0 1 0.33 4 
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lations with 40 bins of discretization, keeping the �r = 8 . 33 μm,

hich correspond to a range of diameters between 0 and 333 μm. 

.4. Operating conditions 

Simulations were performed for the solution of lovas-

atin/methanol (solute/solvent) fed through the outer tube inlet

t a temperature of 305 K, and the antisolvent (pure water) fed

hrough the inner tube inlet at a temperature of 293 K. The den-

ity of lovastatin is 1273 kg/m 

3 , and the volume shape factor was

ssumed to be 0.0 0 0625 ( Pirkle et al., 2015 ). Two different total

nlet mass flow rates were studied, 1.0 kg/s (Case 1) and 0.66 kg/s

Case 2), keeping the antisolvent/solution ratio equal to 1.0 in both

ases, as shown in Table 1 . 

. Results and discussion 

Fig. 6 shows the contour plot of the antisolvent (water) mass

raction in the YZ| x = 0 plane of symmetry for the two cases. Asym-

etric profiles in the Y coordinate are observed for both cases,

hich is due to the density difference between the antisolvent

heavier) and solution (lighter). The lower mass flow rate and in-

et velocity in Case 2 than in Case 1 results in a stronger influ-

nce of gravity in the spatial profile even far down the crystallizer
 Fig. 7 C), which represents higher segregation of the antisolvent at

he bottom of crystallizer and significantly affects the crystal nu-

leation and growth rates, as shown in Figs. 8 and 9 , respectively.

his result is interesting in that experimental studies on continu-

us crystallization in mixers typically do not consider the potential

ffects of gravity during the experimental design, the execution of

he experiments, or in the interpretation of the experimental re-

ults (e.g., am Ende and Brenek, 2004; Jiang et al., 2015 ). The sim-

lation shows that the effects of gravity on crystallization can be

ignificant even for tubes that have diameters less than 4 cm. 

The small increase in the inlet feed velocity (Case 1) provides

etter macro-mixing, which contributes to more spatially uniform

rofiles for crystal nucleation and growth rates ( Figs. 8 and 9 ) and

igher values of relative supersaturation, as shown in Fig. 10 . The

hange in the peak relative supersaturation changes by more than

5%, which is important in practical applications as the amount of

mpurity incorporation into the crystals is typically a strong func-

ion of the relative supersaturation (e.g., Sangwal and Pałczy ́nska,

0 0 0; Simone et al., 2015 ). The better macro-mixing and higher

elative supersaturation values, which produced higher crystal nu-

leation and growth rates for Case 1 resulted, as expected, in

igher solute conversion, for the same contact time, when com-

ared to Case 2 ( Fig. 11 ). That a higher initial momenta leads to en-

anced mixing is not surprising; however, the relatively large mag-
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Fig. 8. Crystal nucleation rate contour plot at the YZ| x = 0 plane of symmetry. 

Fig. 9. Crystal growth rate contour plot at the YZ| x = 0 plane of symmetry. 

Fig. 10. Radially averaged relative supersaturation as function of the axial coordi- 

nate (the average is on a mass basis). 

 

 

 

 

 

 

 

 

 

Fig. 11. Solute conversion as a function of the average contact time. 
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p  
nitude of the change in the spatial evolution of the nucleation and

growth rates and the relative supersaturation due to a relatively

small increase in inlet feed velocity may be surprising to some. 

Fig. 12 shows the cross-sectional profile of the crystals-phase

volume fraction for different axial positions. It can be observed,

as expected, that initially ( Fig. 12 A) the crystallization occurs at

the interface between the solution and the antisolvent, where high

supersaturation is generated. The asymmetric profiles observed in

Fig. 12 are a result of both the density difference between the so-

lution and antisolvent ( Fig. 7 ), as discussed before, and the den-
ity difference between the liquid and crystals phases. More im-

ortantly, from Fig. 12 A–D, the gradual collection of crystals at the

ottom of the crystallizer can be observed, which induce fouling

s the crystals are in direct contact with the wall under supersat-

rated conditions. These results show the importance of modeling

he effects of particle settling, and demonstrate the model capabil-

ty to predict fouling formation. Although the inlet feed velocities

or the two cases are within a factor of two, the Case 2 simula-

ions showed a much higher tendency for the collection of crystals

n the lower wall, and a much higher potential for fouling, com-

ared to Case 1. This behavior is a result of the balance between
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Fig. 12. Crystals-phase volume fraction contour plot for XY planes at different axial positions: (A) 0.3 m; (B) 0.5 m; (C) 0.8 m; (D) 1.0 m. 
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d  
he momentum transfer, from the fluid to crystals phase, and the

ffect of gravity on both the solution and the crystals. 

The use of a set of semi-discrete PBEs enables the model to pre-

ict the full CSD at every grid cell, which is one of the strengths of

his formulation. Also, this approach enables the calculation of the

ow properties of the crystals, using granular kinetic theory, based

n the mean Sauter diameter of the full CSD at every grid cell. This

bility is demonstrated in Fig. 13 A and B for Cases 1 and 2. 

The low crystals concentration and high supersaturation ob-

erved near the solution/antisolvent contact position (0.10 m) in

ontinuous-flow antisolvent crystallization make nucleation the

ominant phenomena for low contact time, which explains the

arrower CSD and smaller average crystal size in Case 1 observed

or the axial positions up to 0.20 m ( Fig. 13 AB). As the slurry

oves downstream, the crystals concentration and mean crystal

ize increase with increasing contact time, the growth phenom-

na becomes dominant, and the mass fraction of fine crystals

e.g., < 10 μm) become negligible. The variation of the velocity as

 function of the pipe radius also broadens the CSD, as liquid and

rystals near the center move faster than liquid and crystals near

he pipe walls. The Case 1 operating conditions produces narrower

SDs and smaller crystals at every axial position than for Case 2.

or the kinetics model used here, as for nearly all solute-solvents

ystems, the dependency of the crystal nucleation rate on the rel-

tive supersaturation is stronger than for the growth rate. Since

ase 1 presented better mixing and, consequently, higher values

f the relative supersaturation in the first 40% of the crystallizer

 Fig. 10 ), the ratio between the nucleation and growth rates is

igher for Case 1, which generates more nuclei and, consequently,

maller crystals. 

More interesting is that the shape of the outlet CSD is also

ualitatively very different, with Case 2 producing a bimodal dis-

ribution whereas the distribution produced by Case 1 is nearly

nimodal. Such bimodal distributions have not been observed in

impler simulation models that have been published for crystal-

ization within such mixers (e.g., Pirkle et al., 2015 ), and one of

he strengths of the formulation in this article is its ability to

odel all of the phenomena that contribute to the formation of

a  
uch bimodal distributions. Also, bimodal distributions are diffi-

ult to discover and can result in large errors in formulations that

mploy some methods of moments in place of solving the pop-

lation balance equations (e.g., see the computational results of

archisio et al., 2002 and Falola et al., 2013 ). 

. Conclusions 

A two-phase Eulerian-Eulerian model with variable properties

oupled with granular kinetic theory, semi-discrete population bal-

nce equations, energy balance, and scalar transport equations

as successfully implemented in the open-source CFD package

penFOAM 

®. This model computes the spatial evolution of all crys-

allization states including the crystal size distribution, and is able

o predict multimodal distributions as well as operating conditions

hat are prone to fouling, while taking into account the effects of

urbulence and particle settling. 

This model was applied to study the methanol/water antisol-

ent crystallization of Lovastatin in a coaxial crystallizer. As ex-

ected, the case study with higher inlet velocities (Case 1) showed

etter mixing, higher values of relative supersaturation, narrower

SD, and higher solute conversion when compared to Case 2. In

ddition, the crystals nucleation and growth rates are higher near

he solution/antisolvent contact position, where high values of rel-

tive supersaturation are observed. The model also made many in-

eresting predictions, which would not have been obvious without

he capabilities provided by the model, including that (1) the spa-

ial fields for the antisolvent mass fraction and crystal nucleation

nd growth rates can be highly asymmetric for small continuous-

ow crystallizers ( < 4 cm in diameter) of symmetric configuration,

2) the effects of gravity on the liquid solution can be highly signif-

cant for small continuous-flow crystallizers, (3) a relatively small

hange in inlet feed velocity can generate a relatively large magni-

ude of the change in the spatial evolution of the nucleation and

rowth rates and the relative supersaturation, (4) continuous-flow

rystallizers of small dimension can generate bimodal crystal size

istributions for solute-solvents systems that are not experienced

ggregation, agglomeration, or breakage, and (5) a relatively small
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Fig. 13. Radially averaged crystal size distribution at different axial positions ob- 

tained for (A) Case 1 and (B) Case 2 (the average is on a mass basis). 
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change in the inlet feed velocity can change the crystal size distri-

bution from being unimodal to bimodal. These results demonstrate

the potential of the proposed mathematical formulation for gaining

insights into continuous-flow crystallization that can be useful for

the design of equipment or operations. 
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