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CONTEXT & SCALE

Machine learning plays a critical role

in accelerating materials research

and optimizing battery

performance. In recent years,

scientists and engineers have

developed accurate data-driven

models to predict the lifetime of Li-

ion batteries. The versatility of such

models and their ability to shorten

battery testing have drawn

substantial attention from industry

and academia. Feature engineering

has been instrumental in achieving

promising model performance. In

this perspective paper, we

encourage researchers to

determine whether they should

include features that encode cycling

conditions depending on their use

case.

In model training datasets, battery
SUMMARY

Data-driven models are being developed to predict battery lifetime
because of their ability to capture complex aging phenomena. In this
perspective, we demonstrate that it is critical to consider the use
cases when developing prediction models. Specifically, model fea-
tures need to be classified to differentiate whether or not they
encode cycling conditions, which are sometimes used to artificially
increase the diversity in battery lifetime. Many use cases require
the prediction of cell-to-cell variability between identically cycled
cells, such as production quality control. Developing models for
such prediction tasks thus requires features that do not rely on
cycling conditions. Using the dataset published by Severson et al.
in 2019 as an example, we show that features encoding cycling con-
ditions boost model accuracy because they predict the protocol-to-
protocol variability. However, models based on these features are
less transferable when deployed on identically cycled cells. Our
analysis underscores the concept of using the right features for
the right prediction task. We encourage researchers to consider
the usage scenarios that they are developing models for and
whether or not to include cycling conditions in their models in order
to avoid data leakage. Equally important, benchmarking model per-
formance should be carried out between models developed for the
same use case.
cell aging is related to both intrinsic

variability between cells and

induced variability between cycling

conditions. We demonstrate that

for certain applications, such as

production quality control, models

should only use features that

capture cell-to-cell variability. In

these cases, features that encode

information on cycling conditions

should be avoided. Through several

analyses, we show that when this

constraint is not upheld, model

performance is artificially inflated.

Using the right features for the right

task is essential to building data-

driven models suitable for real use

cases.
INTRODUCTION

Optimizing rechargeable batteries is a challenging and necessary task as energy

storage is deployed to decarbonize transportation and the electricity grid. The bat-

tery design space is large, spanning chemistry, architecture, manufacturing pro-

cesses, and usage conditions. Besides, battery lifetime is long, and its evaluation

is time and resource consuming, generally lasting several months to years, even un-

der accelerated testing conditions. Over the past few decades, there have been sub-

stantial efforts to shorten battery lifetime evaluation, such as developing accelerated

testing protocols (typically under elevated temperatures)1,2 and electrochemical

methods (such as high-precision coulometry).3 Physics-based models4–7 and semi-

empirical models8,9 have also been widely used to capture battery degradation tra-

jectories. More recently, substantial progress has been made in data-driven ap-

proaches for battery lifetime prediction, typically involving machine learning (ML)

methods on large datasets.10,11

There are many use cases for battery lifetime prediction ML models, and the model

development is specific to each use case. In Figure 1, we provide an overview of
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Figure 1. Machine learning algorithms for battery research can be deployed for various use cases

This flowchart illustrates the correspondence between available data and use cases.
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several typical use cases and classify them based on whether the cycling conditions

are varied when carrying out the cycling experiments. For example, a battery engi-

neer who aims to optimize the cell design will cycle batteries identically for a fair

comparison (Figure 1 scenario a).12,13 Alternatively, a model sorting short-lasting

batteries out of a production line needs to rely onminimal testing as batteries cannot

be cycled more than a few times (Figure 1 scenario b).14 In another scenario, a bat-

tery engineer aims to determine the impact of usage conditions, such as the depth of

discharge and the charging current, on battery lifetime.1,15,16 For such a use case, an

experiment with intentionally varied aging conditions is needed to build a prognosis

model (Figure 1 scenario c). Such a model could be further integrated into more

complex architectures to optimize over a large protocol parameter space (Figure 1

scenario d).17,18 In another use case, an electric vehicle (EV) engineer aims to inte-

grate a prediction model in the battery management system (BMS) to estimate

the battery state of health (SOH).10,19,20 Contrary to the previous scenario, cells

are cycled variably during driving, and the BMS can access historical data for predic-

tions (Figure 1 scenario e). Lastly, for battery repurposing, models do not have ac-

cess to historical cycling data (Figure 1 scenario f).21 These use cases are diverse

and involve cycling conditions that are either constant or variable.

Differences in battery aging trajectories are due to both cell-to-cell variability and

differences in external aging factors, such as cycling rate and temperature. On the

one hand, several studies quantified the intrinsic cell-to-cell variability.14,22–26 On

the other hand, varying the cycling conditions is an artificial yet convenient way to

enhance the diversity of the dataset and decrease the number of cells that need

to be tested. This approach of diversifying the dataset via varied cycling conditions

is analogous to accelerating aging via elevated temperature cycling, with the goal

being to decrease the resources (number of cells and time) required.

In 2019, Severson et al.11 demonstrated that ML, combined with a large dataset, is

effective for predicting battery lifetime by employing data-driven feature engineer-

ing. The authors achieved accurate early lifetime predictions for 124 commercial

lithium iron phosphate (LFP)/graphite cells using observations from the first 100

aging cycles. The cells were charged under different fast-charging protocols, but

the discharge protocol was identical for all cells. Thus, the charging data explicitly

encoded the cycling conditions, whereas the discharging data (for a given cycle)
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did not. Following this work, several battery datasets have been published.25,27–31

Features inspired by Severson’s work have been used to create models that can be

transferred to different datasets32–34 or different chemistries.35 Other feature engi-

neering methods36,37 and more complex ML algorithms, such as neural networks,

have also been deployed for lifetime and SOH estimation.20,38–40 These complex

architectures can be used to improve lifetime prediction accuracy41 or to enable

predictions with fewer aging cycles.42 Both of these objectives have been used

as metrics to benchmark model performance. Although ML approaches for battery

lifetime predictions are powerful, they also have pitfalls.43 Among them are ‘‘non-

legitimate features,’’44 which are those linked or correlated with the outcome. In

the ML community, the term ‘‘data leakage’’ is used when information about

the target is contained in the training data but may not be accessible in real

testing conditions. This results in the model performance being artificially inflated

during training but then deteriorating when the trained model is deployed for real

use cases.

In this perspective, we analyze the Severson dataset to demonstrate that the com-

munity needs to pay attention to which features to use, depending on the usage sce-

nario. Using features developed by Greenbank and Howey37 extracted on (1) the

charging data, (2) the discharging data, and (3) the entire charge-discharge data,

we show that models relying on features based on the charging data have substan-

tially better prediction accuracies than models using features from the discharging

data. This is because these former models directly capture protocol-to-protocol var-

iations. In fact, we show that models using no aging data at all and only the cycling

conditions give good performance. However, when deployed on identically cycled

cells, models based on the charging data do not maintain the same level of predic-

tion accuracy. More generally, we show that feeding information about the aging

conditions into a lifetime prediction ML model will bias the model to learn the pro-

tocol-to-protocol variations instead of learning the cell-to-cell variations. Thus, for

use cases aiming to detect cell-to-cell variability, features encoding cycling condi-

tions are inappropriate and should be avoided to prevent data leakage.
METHODOLOGY

In the Severson dataset, the authors artificially amplified the variability between cells

by changing the charging protocols (two constant current [CC] steps varied across

cells, followed by a CC, constant voltage [CCCV] step). As a result, the cycle life

(defined as the cycle number when the capacity reaches 80% of nominal value) var-

ied between 148 and 2,237 cycles. The discharge conditions, on the other hand,

were kept constant for all cells, providing a common diagnostic across cycling con-

ditions. In Figure 2, we define a feature classification scheme, specific to this dataset,

reflecting how these features are derived:

� ‘‘Class 0’’ features: solely based on cycling protocol parameters (no actual bat-

tery cycling data)

� ‘‘Class 1’’ features: derived from the charging data during aging, which encode

charging protocols

� ‘‘Class 2’’ features: derived from the discharging data during aging

This classification scheme is generalizable to other battery datasets. Specifically,

class 1 features are those that encode aging conditions either through cycling or

through calendar aging.16 Class 2 features rely solely on regions of the cycling curves

that are kept constant across all cells. This can be a diagnostic or check-up cycle,
1958 Joule 7, 1956–1965, September 20, 2023



Figure 2. Voltage and current versus time profiles from one full charge and discharge cycle in the

Severson dataset

Marked are the temporal regions from which class 1 and class 2 features are generated.
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performed at regularly spaced intervals, to probe the state of degradation.16,25,45

Including a reset cycle at the start of such check-up cycles is essential to erase any

explicit information about aging conditions. In the Severson dataset, there is no

reset cycle between the charge and the discharge, but the CCCV at the end of

charge is kept constant across all cells and mitigates explicit data leakage to the

discharge data.

The purpose of this perspective is to assess the importance of the feature classes for

lifetime predictions. Thus, we need features that are derived equivalently across

charging and discharging curves (e.g., using the same feature extraction routine).

For this reason, we employ features developed by Greenbank and Howey.37 Briefly,

these features quantify the fraction of time a given time series of interest (voltage,

current, etc.) spends in a given window (e.g., 3.5–3.6 V) during a given time interval

(10-cycle window in our study). See supplemental information for a complete expla-

nation of the featurization. The code used for this analysis is publicly available on

Github at https://github.com/geslina. For simplicity, models using features based

on the charging data, the discharging data, or the full cycling data are referred to

as ‘‘charge’’ (class 1), ‘‘discharge’’ (class 2), or ‘‘full’’ (class 1) model, respectively.

Finally, we derive the features at different points in the early cycles of the cells.

This allows us to study how the information carried by such features evolves during

the early aging of the cells.

The ML task is to predict the battery lifetime and to compare the impact of incorpo-

rating features encoding cycling conditions directly or indirectly (class 0 and class 1).

We employed a regularized linear model (elastic net) and an ensemble model

(random forest regressor), the latter being able to capture nonlinear correlations.

Most of the discussion is based on the results from the random forest model, which

provides better accuracy. To prevent overfitting and to optimize model hyperpara-

meters, a 10-fold cross-validation was carried out systematically using the

GridSearchCV class from Python package SKlearn46 (see supplemental information

for details). An 80–20 train-test split was used. Because we observe that the predic-

tion accuracy depends on train-test splits, all of the analyses conducted here are

repeated over 10 random train-test splits. To evaluate the usefulness of an ML
Joule 7, 1956–1965, September 20, 2023 1959
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approach, we employed a ‘‘dummy regressor’’ from the SKlearn library46 as a base-

line. For a given training set, such a model always predicts the same output value (in

this study, the mean of the training set labels) regardless of the input features.
RESULTS AND DISCUSSION

Class 0 model is a decent baseline model without the need for any aging data

Using solely the cycling protocols and no battery aging data (e.g., only class 0 fea-

tures), we show good but artificially inflated ‘‘early-prediction’’ model performance,

compared with the dummy regressor. We stress that this is not an early-prediction

model but a model that predicts cycle life as a function of cycling conditions. Table 1

reports the mean absolute percentage error (MAPE) for both the linear model and

the random forest model. These results show that by solely using cycling conditions

and no aging data, lifetime can be predicted with 26.4% error, a significant improve-

ment over the 41.2% error of the dummy regressor. Importantly, this confirms that

cycling conditions are predictive, even without aging data, as should be

expected.15,47
Class 1 features carry more information than class 2 features

Next, we compare ML performance using class 1 and class 2 features (Figure 3) as a

function of the number of early cycles used as inputs. The errors of the charge and full

models are equivalent and substantially better than the discharge model. Impor-

tantly, the charge models work equally well using only features from cycle 1 vs. fea-

tures from cycle 150. The low prediction errors of these models are explained by the

fact that the charge features encode both the protocol-to-protocol and the cell-to-

cell variability. This makes the charge models even more accurate than the class

0 model. By contrast, the discharge models do not rely on any cycling conditions in-

formation. Thus, their predictive power is limited if only the first tens of cycles are

employed for the featurization, as shown in Figure 3. However, their accuracy im-

proves steadily with increasing early aging data, approaching the other two models’

accuracy after over 100 cycles, consistent with Severson et al.11 Additionally, Fig-

ure S4 demonstrates that all models’ errors are approximately equivalent if cycling

information is manually included into the features. These results confirm that a

model that includes features that encode the intentionally varied cycling conditions

will have an artificially inflated early-prediction accuracy. On the contrary, predicting

lifetime without knowledge of the cycling conditions is a considerably more

challenging task.
Class 2 models are more appropriate to study cell-to-cell variability

Finally, we compare charge and discharge models when deployed on a subset of

cells from the dataset that were cycled identically. This special case examines how

we can predict the lifetime of cells in which variation arises purely from intrinsic dif-

ferences between cells, with one use case being production quality control.

Although the Severson dataset does not contain many protocols with a large number
Table 1. Train and test mean absolute percentage errors (MAPEs) for the baseline models

Model

Train error Test error

MAPE (SD) MAPE (SD)

Dummy regressor 40.4% (1.3%) 41.2% (7.4%)

Class 0 (elastic net) 29.6% (1.2%) 29.7% (4.4%)

Class 0 (random forest) 16.9% (1.5%) 26.4% (4.3%)

The mean MAPE and SD are calculated across 10 train-test splits.

1960 Joule 7, 1956–1965, September 20, 2023



Figure 3. Evolution of the accuracies of random forest models based on howmuch aging data are

included as inputs to the models

A class 0 model relies solely on cycling conditions and thus does not need any aging data. The

shaded areas represent the values within 1 SD, calculated across the 10 train-test splits results.
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of cell repeats, there are 5 protocols with at least 6 repeats (Figure S5). For each of

these protocols, we train and test a charge model and discharge model on the entire

dataset, excluding the identically cycled cells of that protocol. We then deploy these

models on the retained cells and compare the models errors (Table 2). Protocols

‘‘5.0C-(67%)-4.0C’’ and ‘‘5.3C-(54%)-4.0C’’ (rows 1 and 4 in Table 2) show that the

discharge model performs similarly if not outperforms the charge model on identi-

cally cycled cells. This trend is opposite to the model trained on the full dataset,

which includes cells frommany charging conditions. Class 1 features are less capable

of capturing intrinsic cell-to-cell variability than class 2 features because their predic-

tive power relies strongly on the charging protocol encoded in the data (which is not

varied in this test subset of the data). Additionally, both models deployed on cells

from protocols ‘‘5.6C-(19%)-4.6C’’ and ‘‘5.6C-(36%)-4.3C’’ (rows 2 and 3 in Table 2)

show a significant error reduction, irrespective of the model. As mentioned earlier,

the test performance is highly dependent on the train-test split. These two protocols

both have a narrow distribution and a mean close to that of the entire dataset (802

cycles) as shown in the parity plots in Figure S6. Such protocols may lead to ‘‘easier’’

predictions because these cells are similar to the train set cells. Such protocols pro-

vide little information regarding the ability of a model to extrapolate for datapoints

outside of the train set. By contrast, in the case of protocol 5.0C-(67%)-4.0C (row 1),

which has a higher spread in cycle life distribution, a model relying on the cell-to-cell

variability (‘‘discharge model’’) would perform better at extrapolating. Lastly, proto-

col ‘‘4.8C-(80%)-4.8C’’ (row 5 in Table 2) has the largest number of repeats but also

contains 3 cells with a cycle life higher than 1,600 (more than two standard deviations

[SDs] away from the mean). The errors of these models reported in Table 2 are domi-

nated by the models’ ability to fit outliers (Figure S6). Thus, these outliers make the

performance results for that protocol less representative.

We note that the Severson dataset is not optimal to study cell-to-cell variability. First,

the protocol-to-protocol variability is more pronounced than the cell-to-cell vari-

ability because of the aggressive cycling conditions (Figure S4). Second, the dataset
Joule 7, 1956–1965, September 20, 2023 1961



Table 2. Errors when models are deployed on identically cycled cells

Protocol (CC1-(SOC%)-CC2) Repeats

Model test error Unseen identically cycled cells

Cycle life Charge Discharge Charge Discharge

Mean (SD) MAPE (SD) MAPE (SD) MAPE (SD) MAPE (SD)

5.0C-(67%)-4.0C 6 1,116 (402) 13.3% (6.3%) 18.8% (4.7%) 35.9% (5.5%) 25.0% (2.4%)

5.6C-(19%)-4.6C 7 963 (138) 13.1% (5.4%) 19.2% (4.7%) 7.0% (2.2%) 10.2% (1.7%)

5.6C-(36%)-4.3C 8 931 (126) 15.3% (7.6%) 22.5% (6.0%) 8.1% (1.0%) 11.7% (2.5%)

5.3C-(54%)-4.0C 8 1,074 (121) 14.9% (7.2%) 22.7% (5.7%) 18.2% (2.4%) 18.0% (4.4%)

4.8C-(80%)-4.8C 9 1,032 (550) 17.3% (8.8%) 21.0% (7.4%) 13.4% (1.4%) 20.0% (2.3%)

5 protocols in the ‘‘Severson dataset’’ contain at least 6 repeats. The mean MAPE and SD are calculated across 10 train-test splits. The overall average lifetime in

the entire dataset is 802 cycles with an SD of 378. Class 2 features are more appropriate to capture cell-to-cell variability.
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does not containmany protocols with a large number of repeats (Figure S5). Dechent

and coworkers48,49 developed statistical methods to estimate the number of cell re-

peats needed to capture the underlying cell-to-cell variability of a population. They

showed that, even for simple models with 3 parameters or less, at least 9–13 repeats

are needed to reliably fit the data. The ML models used here rely on many more pa-

rameters, and the Severson dataset does not contain more than 9 repeats for any

protocol. This emphasizes the need to design datasets tailored for specific applica-

tions. For example, to study cell-to-cell variability, datasets in Baumhöfer et al.,14

Rumpf et al.,22 Dechent et al.,23,24 and Weng et al.25 are more appropriate.
The analysis and results are reproducible using different sets of features

For completeness, we repeated our analysis using features originally derived by

Severson et al.11 Only 7 of the 20 original features were employed; not all features

could be derived identically on the charge and discharge data because the

charging protocol has three steps, whereas the discharge protocol has only one.

Figure S7 shows similar model performance trends as observed in Figure 3 (which

uses features developed by Greenbank and Howey37). Errors are noticeably higher

compared with Figure 3 (�+5% in error for the best-performing models), which is

expected because the features are not optimized. This analysis confirms that

cycling conditions information can bias models, independently of the featurization

method.
CONCLUSIONS AND RECOMMENDATIONS

In recent years, the battery research community has deployed data-driven methods

to predict battery lifetime. The dataset published by Severson et al.11 among several

others, is widely used for benchmarking model performance. In this dataset,

charging conditions are varied to broaden the distribution of cycle life, whereas dis-

charging conditions are kept constant across the cells. We demonstrate that a pre-

diction model using only cycling conditions and no aging data can achieve decent

(26.4% MAPE) predictions (compared with a dummy regressor, 41.2% MAPE)

because cycling conditions strongly influence battery lifetime. More importantly,

we show that models with features encoding the cycling conditions are more accu-

rate than models that do not rely on cycling conditions. However, these models do

notmaintain the same level of performance when predicting intrinsic cell-to-cell vari-

ability among subsets of cells cycled identically.

Our results illustrate that MLmodels for lifetime prediction can be biased to learn the

intentionally induced protocol-to-protocol variations in a dataset. In some use sce-

narios, such as prognosis predictions and cycling protocol optimization, this is
1962 Joule 7, 1956–1965, September 20, 2023
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advantageous. However, in other scenarios, such as production quality control and

chemistry/cell design optimization, the objective is to detect the intrinsic variability

between the cells rather than how cycling conditions determine the lifetime. In

such use cases, battery cells are cycled identically, making the prediction model

task harder, as we show here.

We recommend that researchers carefully consider the use cases when developing

lifetime prediction models and select the right features for the right prediction tasks

to avoid data leakage. Importantly, benchmarking of lifetime prediction models

should be carried out for models designed for the same use cases. Comparing

model performance across use cases would be unfair as some models can rely on

richer data encoding the protocol-to-protocol variability as demonstrated in this

perspective.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.joule.

2023.07.021.

ACKNOWLEDGMENTS

This work was supported by the Toyota Research Institute through the Accelerated

Materials Design and Discovery program. The authors thank Dr. Brian Storey for the

insightful discussion and framing of the problem. The authors would like to thank

Adrian Yao, Jianbo Wang, Vivek Lam, Devi Ganapathi, Emma Kaeli, Stephen

Kang, and Shijing Sun for their help reviewing themanuscript. The authors also thank

the reviewers for their suggestions to improve this paper.

AUTHOR CONTRIBUTIONS

Conceptualization, A.G., B.v.V., X.C., R.D.B., and W.C.C.; software and analysis,

A.G., B.v.V., and A.B.; visualization, A.G., B.v.V., X.C., A.B., and P.A.A.; writing –

original draft, A.G., B.v.V., and X.C.; writing – review and editing, A.G., B.v.V.,

X.C., A.B., P.A.A., R.D.B., and W.C.C.; funding acquisition, W.C.C.; supervision,

W.C.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
1. Leng, F., Tan, C.M., and Pecht, M. (2015). Effect
of temperature on the aging rate of Li ion
battery operating above room temperature.
Sci. Rep. 5, 12967. https://doi.org/10.1038/
srep12967.
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