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a b s t r a c t

Battery evaluation and early prediction software package (BEEP) provides an open-source Python-based
framework for the management and processing of high-throughput battery cycling data-streams. BEEPs
features include file-system based organization of raw cycling data and metadata received from cell
testing equipment, validation protocols that ensure the integrity of such data, parsing and structuring
of data into Python-objects ready for analytics, featurization of structured cycling data to serve as
input for machine-learning, and end-to-end examples that use processed data for anomaly detection
and featurized data to train early-prediction models for cycle life. BEEP is developed in response to the
software and expertise gap between cell-level battery testing and data-driven battery development.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Energy storage in Li-ion batteries revolutionized the portable
electronics industry and is now defining the future of vehicle
electrification. The growing consumer adoption of electric vehi-
cles (EVs) and the potential for positive environmental benefits
have spurred academic and industrial interest in improving the
capacity, energy and power density, durability and safety of Li-ion
cells, as well as lowering the manufacturing costs [1]. Transition-
ing to a data-driven research paradigm shows great potential to
accelerate battery development –a traditionally slow and tedious
process- in areas including the optimization of the chemistry
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of electrodes, electrolytes, additives [2–5] or formation [6], and
designing state-of-health (SoH) [7–10], state-of-charge (SoC) [10–
12], early prediction models [9,10,13] or advanced battery man-
agement systems (BMSs) [14–16]. An increase in the volume of
standardized cycling data can open the door to improvement of
existing approaches to data-driven prognostics, [9,13,15,17] or to
design of more complex algorithms capable of delivering accurate
health predictions.

For the broader adoption of data-driven battery development,
reusable high-throughput battery testing data [13,18] and soft-
ware tools for processing and analysis of such data are essential.
While the hardware for automated battery cycling is accessible,
the field still lacks open software for both acquisition and man-
agement of cycling data and preparing the data for analytics.

https://doi.org/10.1016/j.softx.2020.100506
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100506
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100506&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_49
mailto:patrick.herring@tri.global
mailto:chirranjeevi.gopal@tri.global
mailto:murat.aykol@tri.global
https://doi.org/10.1016/j.softx.2020.100506
http://creativecommons.org/licenses/by/4.0/


2 P. Herring, C. Balaji Gopal, M. Aykol et al. / SoftwareX 11 (2020) 100506

Community-driven software development can be effective in fill-
ing this gap [19] and can yield reliable and reusable tools (as
experienced in computational materials science [20,21]). Such
software libraries can form the basis for advanced development
capabilities for the expert and lower the barrier for the novice to
set foot in data-centric battery research.

The repetitive nature of battery experiments defines the re-
quirements for such a tool to be useful to battery researchers.
Experiments consist of repeated application of ‘‘cycling protocols’’
(which prescribe how the battery should be charged and dis-
charged) to a user-supplied battery cell by the hardware. Such cy-
cling experiments can take from a few hours to several months to
complete. During these experiments, many types of information,
such as time, capacity, voltage, cycle number and temperature
are recorded with high sampling frequency, and the size of raw
data can grow rapidly. Besides, the naming conventions for dif-
ferent projects, data, metadata and protocol files can vary among
vendors or members of a research group. Hence, a scalable data
management and processing system is required. In addition, the
data structures can be complicated due to the cyclic nature of the
experiments. For example, raw data may need to be grouped over
one axis and interpolated over another. Data formats and stor-
age technologies (e.g. databases, file systems) also vary among
different cycler hardware. Researchers could benefit from stan-
dardized data formats, alongside programmatic interfaces to such
databases as needed. Data streams should be validated against
human errors, equipment errors or failures, and environmental
circumstances to ensure their integrity. Organized, processed, and
validated data are the key ingredient for a data-driven research
pipeline, and can be used in unsupervised modeling (e.g. for
anomaly detection) or followed by a ‘‘featurization’’ step that
computes engineered features from the data [13,22]. Featurized
cycling data can be used in training predictive models (e.g. for
failure prediction).

To the best of our knowledge, there is no open software
that satisfies the requirements or features summarized above,
which are expected to be useful for enabling wider adoption of
data-driven approaches in battery research. The battery experi-
mentation and early prediction Python library, BEEP, aims to fill
this gap. Since it is built on common Python libraries such as
NumPy, SciPy, scikit-learn and pandas, and adopts common data
interchange formats like JSON, we expect BEEP to make this tran-
sition to data-driven research easier for individual researchers
and provide useful building blocks for battery research platforms
developed by research groups [23].

2. Software description

BEEP consists of six main modules: collate, validate,
structure, featurize, generate_protocol and run_
model. While the modules can be used independently, this order
of execution is typical for the data management and processing
steps delivered by the BEEP framework, and therefore the output
of the main methods in each module is the input for the next. The
default functionality of each module can also be directly accessed
from the command-line, where input arguments are provided as
JSON-strings. Almost all BEEP classes are serializable and can be
stored as such objects. Here we explain the main functionalities
delivered with each module in BEEP.

2.1. Collate

The collate module is used for standardization of raw cycler
files and metadata as well as organization of the standardized
files. BEEP follows a name-based convention for file storage and

all paths are defined in reference to the BEEP_EP_ROOT en-
vironment variable. If collate is called from the command
line, the module locates the raw data files, parses the meta-
data, and collates files according to a combination of proto-
col, channel number, and date, organizing them in ‘/data-
share/collated_cycler_files’. This functionality is han-
dled mainly by the function process_files_json which can
also be called directly. The output is a JSON string that contains
ids, paths and names for raw cycler files, paths for the collated
cycler files, cycling protocols corresponding to each file, channel
number and the date the original file was generated.

2.2. Validate

As in any experimental process, erroneous or corrupted data
can be produced as a consequence of instrument failures (e.g.
power outage), changes in environmental conditions (e.g. temper-
ature), software glitches or human errors (e.g. misconfigured pro-
tocols) in any stage of battery cycling experiments. If unnoticed,
such data may contaminate the analytical process or misguide
the research. To address this issue, BEEP provides a validate
module, where the ValidatorBeep class validates collated cy-
cling data against researcher-defined schemas prescribed in yaml
files (examples can be found in VALIDATION_SCHEMA_DIR) or as
dictionary-based rule definitions of the external Python library
cerberus [24]. The validation schemas can include data-types,
min/max values, ranges, non-allowed values or complex rules via
cerberus, which adopts a convenient, dictionary based schema
definition. A fast, lightweight version is provided as Simpl-
eValidatorBeep which does dataframe-based validation (re-
stricted to type, min/max and non-allowed) and supports the
cerberus syntax for interchangeable use. Validation stores the
list of files being validated and the results in JSON format, at
DEFAULT_VALIDATION_RECORDS.

2.3. Structure

Battery cycling tests accumulate information in a tabular form,
containing thousands to millions of rows, and produce large data
files that need to be structured for analytics. The structure
module contains two classes that serve this purpose: RawCy-
clerRun and ProcessedCyclerRun. The first class supports
parsing and indexing of raw data into appropriate integer (e.g.
step, cycle index) and float (e.g. time, current, voltage, charge ca-
pacity, temperature) columns in a dataframe, and provides meth-
ods to identify diagnostic cycles, and deliver summary statistics
and metadata. This class can interpolate target variables over
other variables and return interpolated data-containers of the
same structure (e.g. interpolating variables on a consistent volt-
age scale), which is useful for machine-learning models. Pro-
cessedCyclerRun provides project-specific structuring of raw
data from RawCyclerRun, for which example schemas are pro-
vided in the conversion_schemas folder for various types of
hardware. Input data needed for structuring exist in datafiles
of almost any cycling hardware, often recorded with different
naming conventions. This library of conversion schemas can be
expanded to other formats and provide a centralized resource
for the community to be used with other battery cyclers and
instruments. The ProcessedCyclerRun class produces a rich,
serializable object, which flexibly allows addition of fields and
data as needed.
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Fig. 1. Code snippets demonstrating the raw data file handling, processing and featurization.

2.4. Featurize

Data input for machine learning algorithms generally needs to
be uniformly formatted. For many cases, this formatting can be
done through the construction of features, which are quantities
computed from raw or interpolated data, and are based on known
physical phenomena in the system. We handle this process in
the Featurize module. In the DegradationPredictor class,
features are computed on a per-cell basis from ProcessedCy-
clerRun and are used to predict the performance of the battery
at a certain number of cycles in the future. Many of these quan-
tities could be computed per cycle or at specific times in order
to fit a model that predicts the performance of the battery at a
point in the future (relative or absolute). Currently default fea-
tures include time integrated temperature at cycle 100, capacity
decrease over the first 100 cycles, minimum temperature in the
first 100 cycles, and others [13]. Additional features can be easily
added, but care must be taken to also update the downstream
models. Community improvement of this feature set is a desirable
development direction.

2.5. Model

The model module comprises methods to aggregate featur-
ized battery cycling data, and train and store machine-learning
models, currently for early prediction of cycle life. As input, it
takes feature files encoding DegradationPredictor objects.
The core of the module is DegradationModel and its associ-
ated attributes/methods for model initialization, hyperparameter
tuning, training and cross-validation, and predictions. Users have
the option to load existing serialized models, or train new mod-
els on the set of DegradationPredictor objects using the

train method. Single or multi-point fitting can be performed,
and train automatically makes that determination from the
dataset. Model attributes, coefficients (for linear models), per-
formance metrics, dataset-id and other metadata required to
reproduce the training are serialized as a JSON file. The pre-
dictions are reported as cycle-life, or the number of cycles to
reach a certain discharge capacity relative to the nominal value,
along with a 95% confidence interval. Current implementation
includes regularized multi-linear regression, but as the model
objects build on scikit-learn (and hence use its estimator API),
they are easily extensible to other machine learning models, like
ensemble methods or neural networks in scikit-learn or similar
libraries. Integration with other machine-learning libraries can
be achieved by adopting their APIs in new model classes derived
from existing ones above.

2.6. Protocol

Most battery cycling systems have a ‘‘protocol’’ file that is
used to run the cycling experiment. This file contains parameters
that control the cell, limit conditions for each of the steps in
the cycling experiment, and other variables. Different hardware
vendors refer to these files differently, e.g. as schedule, procedure,
or sequence files and adopt different formats in terms of language
and layout. We use the term protocol to refer to these files and
provide an abstraction for their components to unify such differ-
ent formats. In a manner similar to the data files, we structure
different protocol formats into JSON objects that can be accessed
and modified. This allows programmatic generation of protocols
in the generate_protocol module. We provide functions that
convert protocol objects to the file format in use. Care should
be taken when using this functionality since there are numerous
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Fig. 2. Code snippets demonstrating model prediction using existing (stored) model and training of a new model using featurized data.

Fig. 3. Predicted vs. actual cycle life at different capacity fade thresholds. The capacity fade threshold is shown as a percentage of initial nominal capacity in each
panel.

safety values included in the file; setting these values incorrectly
can result in damage to the cycling system or the cell under test,
either of which might be catastrophic. However, the benefits of
this capability are far reaching, such as the elimination of manual
test creation, which is time-consuming and error-prone, and the
ability to create and run protocols in cyclers with minimal human
input. These features enable automated control and selection
of experiments by active learning systems, as demonstrated in
Ref. [25]. Future developments include the ability to convert from
one system’s protocol file to another’s (within the appropriate
hardware constraints) and supporting more systems.

2.7. Other features

BEEP scripts can be run locally on a machine with appropriate
access to data and adequate compute/memory. But dealing with
the computational workload of data processing, model fitting

and display rendering can become a roadblock in large battery
cycling experiments. Hence, components of BEEP are modularized
for easy deployment to cloud-based services that can scale up
or down. Additional cloud infrastructure can provide messaging
and coordination of various scripts to deal with large data loads
and processing-heavy tasks. For such application environments,
we designed most of the scripts to be containerized and run via
command-line arguments, and messaging between components
to be achieved with event streaming.

Currently, BEEP assumes that data are arriving in a flat-file
format, with one file per test. There are, however, database-
centered cycler systems that do not store or export data in this
form, which improves performance but makes data less accessi-
ble. Scripts that enable integration with such systems and output
of flat files ingestible by BEEP are available at https://github.
com/TRI-AMDD/beep-integration-scripts. There are two caveats
to such scripts. First, there are assumptions about the way that

https://github.com/TRI-AMDD/beep-integration-scripts
https://github.com/TRI-AMDD/beep-integration-scripts
https://github.com/TRI-AMDD/beep-integration-scripts
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the tests are run, such as the user will not duplicate a test name
on a channel, each test runs to completion on a single channel,
etc. These assumptions stem from common practices, but the
scripts have not been tested against a large number of conditions.
Second, while for most cases the data files are less than a few
hundred megabytes, sufficient memory must be available to fit
large tests into memory. Further development might reduce the
memory requirement and provide more robust extraction of the
data, e.g. with improved SQL queries.

3. Illustrative example

BEEP is intended to streamline the process of transforming raw
data from a battery cycler into actionable insights through data
management, transformation and modeling. As a simplified end-
to-end pipeline, here we will parse the raw dataset published by
Severson et al. [13], and featurize it to train a multi-task linear
model for early-prediction of cycle life. Relevant code snippets for
reproducing this exercise are provided in Figs. 1 and 2. First, the
paths to desired raw cycling data are compiled into a JSON object,
and validated, the output of which is a JSON object containing
the validity information. Next, the validated raw data are struc-
tured in two steps. First, a RawCyclerRun object is initialized to
store time-series of measured quantities as a dataframe in data
and metadata, and electrochemical impedance spectra in eis,
if measured. The raw data are then processed to yield a Pro-
cessedCyclerRun object, with optional arguments specifying
the range and resolution of voltage interpolation. The resulting
object contains dataframes that store summary statistics, and
interpolated discharge curves. The object also contains meta-data,
such as the barcode of the cell, protocol and channel_id.
Each row in summary dataframe stores point-measures of var-
ious metrics for a cycle. The resulting dataframe is useful for
developing features that rely on aggregated properties over a
cycle. The cycles_interpolated dataframe contains similar
quantities as summary, but instead of aggregation over cycles, the
values are interpolated on an evenly spaced voltage grid within
each cycle. This dataframe is useful for differential analysis at
specific voltages, or for featurization based on material-specific
properties not captured in summary. The processed cycle run
can be used to prepare features via DegradationPredictor,
with optional arguments specifying the quantity to be predicted
(e.g. cycle as a function of capacity) and type (single vs.
multi task). The feature object contains the name of the feature-
set, actual values of the features in a dataframe X, feature names
in feature_labels, nominal_capacity of the cell in the first
few cycles and the outcomes y for training data.

In Fig. 2, we show how a previously trained and stored model
(DegradationModel) can be loaded to make predictions on
incoming featurized-data or how a new model can be trained
from scratch on a set of DegradationPredictor objects, us-
ing the train method and a dictionary of hyperparameters for
optimization. The train method assembles all the predictors
into a dataframe, performs train-test-split, hyperparameter op-
timization and cross-validation as specified by hyperparame-
ters. Following that, predictions can be generated and/or the
DegradationModel object can be serialized and stored with all
requisite details to reproduce the training process at a later time.
In the current implementation model key corresponds to a linear
model and confidence_bounds is the 95% confidence interval
(for each task) calculated on the test data. A sample plot of actual
vs. predicted capacity fade using a multi-task model trained on 4
different batches of cells is shown in Fig. 3. Specifically, the cycles
(time) taken to reach 95%, 92%, 89%, 86%, 83% and 80% of nominal
capacity using the first 100 cycles are predicted. Predictions of the
model are further compared with the experimental capacity fade
curves in Fig. 4.

Fig. 4. Capacity fade curves (discharge capacity vs. cycle index). Experimental
measurements reported in Severson et al. [13] are shown as solid lines, and
predictions made using the model illustrated in the text are shown as points,
along with the associated standard deviations as horizontal bars.

4. Impact

As the use of Li-ion batteries grows, especially in the EV
market, the importance of understanding their potential and lim-
itations will increase rapidly. We view BEEP as a platform that
can accelerate battery research by removing the burden of data
organization from the researcher and automating as many pro-
cesses as possible. BEEP enables researchers to efficiently deal
with larger sample sizes, improving the repeatability and re-
liability of their results. Automated organization, cleaning and
structuring of data make sharing and collaboration seamless, and
machine-learning approaches more accessible for researchers.
Our hope is that as the battery community builds larger public
datasets, better and more complex models can be trained and
these models can guide battery development and reduce the
number of physical battery experiments, accelerating the pace of
battery development. Such models can potentially provide more
accurate predictions, e.g. for diagnostics, health management or
future performance. Our goal with BEEP is to create a community
composed of both academic and industrial entities, dedicated to
building methods for data-driven battery development.

5. Conclusion

We present a set of methods for automated ingestion and
analysis of battery cycling data. These methods are embodied in
Python scripts that leverage open source formats and packages to
allow a larger community of battery researchers to use them.
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