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Most pharmaceutical manufacturing processes include a series of crystallization
processes to increase purity with the last crystallization used to produce crystals of
desired size, shape, and crystal form. The fact that different crystal forms (known as
polymorphs) can have vastly different characteristics has motivated efforts to under-
stand, simulate, and control polymorphic crystallization processes. This article pro-
poses the use of weighted essentially nonoscillatory (WENO) methods for the numeri-
cal simulation of population balance models (PBMs) for crystallization processes,
which provide much higher order accuracy than previously considered methods for
simulating PBMs, and also excellent accuracy for sharp or discontinuous distributions.
Three different WENO methods are shown to provide substantial reductions in numeri-
cal diffusion or dispersion compared with the other finite difference and finite volume
methods described in the literature for solving PBMs, in an application to the
polymorphic crystallization of L-glutamic acid. � 2008 American Institute of Chemical

Engineers AIChE J, 55: 122–131, 2009

Keywords: pharmaceutical crystallization, polymorphism, hyperbolic partial differential
equation, weighted essentially nonoscillatory, high resolution, finite difference

Introduction

Most manufacturing processes include a series of crystalli-
zation processes in which product quality is associated with
the crystal final form (such as crystal size and shape distribu-
tion). Recently, there is a rapid growth of interest in poly-
morphism (when a substance has multiple crystal forms)

motivated by patent, operability, profitability, regulatory, and
scientific considerations.1–3 The different polymorphs can
have orders-of-magnitude differences in properties such as
solubility, chemical reactivity, and dissolution rate, which can
have an adverse effect on downstream operability and per-
formance of the crystal product.2 As a result, controlling
polymorphism to ensure consistent production of the desired
polymorph is very critical in those industries, including in
drug manufacturing where safety is of paramount importance.

Numerical simulations for polymorphic crystallizations
enable the investigation of the effects of various operating
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conditions and can be used for optimal design and control.4–6

Generally, the most widely accepted approach to modelling
particulate processes is based on population balance equa-
tions.7 Solving population balance equations is particularly
challenging when the partial differential equations (PDEs)
are hyperbolic with sharp gradients or discontinuities in the
distribution.8 Standard first-order methods require a very
small grid size in order to reduce the numerical diffusion
(i.e., smearing), whereas standard higher order methods intro-
duce numerical dispersion (i.e., spurious oscillations), which
usually results in a crystal size distribution with negative val-
ues. Efficient and sufficiently accurate computational meth-
ods for simulating the population balance equations are
required to ensure the behavior of the numerical solution is
determined by the assumed physical principles and not by
the chosen numerical method.

There have been many papers on the numerical solution of
population balance models. The method of moments approxi-
mates the distribution by its moments,9 which under certain
conditions, converts the hyperbolic PDEs into a small num-
ber of ordinary differential equations (ODEs) that describe
characteristics of the distribution. The method of moments
does not apply to PBEs which do not satisfy moment closure
conditions. The method of weighted residuals approximates
the size distribution by a linear combination of basis func-
tions,10 which results in a system of ODEs. For most practi-
cal crystallizations, a large number of basis functions is
needed to approximate the distribution, which results in high
computational cost. The Monte Carlo method tracks individ-
ual particles, each of which exhibits stochastical behavior
according to a probabilistic model.11–13 This approach is too
computationally expensive for most industrial crystalliza-
tions. Another problem-specific numerical method for solving
population balance equations is the method of characteris-
tics.14,15 This method solves each population balance equa-
tion by finding curves in the characteristic size-time plane
that reduce the equation to an ODE. Although the method is
highly efficient when the kinetics are simple, the approach
does not generalize to more complex kinetics. Most publica-
tions on numerical methods for solving PBEs involve various
types of discretizations and go by a variety of names includ-
ing ‘‘method of classes’’ and ‘‘discretized population balance
equations.’’16–20 In recent years there have been several
efforts to reduce the numerical diffusion and numerical dis-
persion for distributions which contain sharp gradients or dis-
continuities, which is common in batch crystallizations.
High-resolution (HR) finite volume methods (FVMs) popular
in astrophysics and gas dynamics21–25 were extended to the
application of multidimensional population balance equa-
tions.26–30 A typical implementation applies a first-order
method near discontinuities or sharp gradients and a second-
order method everywhere else, which results in less numeri-
cal dispersion than the second-order method and less numeri-
cal diffusion than the first-order method.26

This article considers a class of numerical algorithms
known as weighted essentially nonoscillatory (WENO) meth-
ods which were developed for especially accurate simulation
of shock waves and provide much higher order accuracy
than the previously considered methods for solving PBMs.
Three WENO methods are considered: Liu et al’s version of
WENO (LOCWENO),31 Jiang and Shu’s version of WENO

with Henrick mapping (JSHWENO),32,33 and the weighted
power ENO method (Wpower-ENO).34 These WENO meth-
ods are compared with the HR finite volume method and a
second-order finite difference (FD2) method, for polymorphic
crystallization of L-glutamic acid under conditions in which
the distribution contains sharp gradients.

This article is organized as follows. First, the PBM for the
polymorphic crystallization of L-glutamic acid is summar-
ized. Then the five numerical methods are discussed and
compared. Finally, conclusions are provided.

Process Model

This section presents a kinetic model for the polymorphic
crystallization of metastable a-form and stable b-form crys-
tals of L-glutamic acid (Hermanto et al.35). The population
balance equations are

@fseed;i
@t

þ @ Gifseed; ið Þ
@L

¼ 0; (1)

@fnucl;i
@t

þ @ Gifnucl;i
� �

@L
¼ Bid L� L0ð Þ; (2)

where fseed,i and fnucl,i are the crystal size distributions of the
i-form crystals (i.e., a- or b-form crystals) obtained from
seed crystals and nucleated crystals (#m24), Bi and Gi are
the nucleation (#m3 s21) and growth rate (m s21) of the i-
form crystals, L and L0 are the characteristic size of crystals
(m) and nuclei (m), and d(�) is a Dirac delta function. These
equations are augmented by the solute mass balance:

dC

dt
¼ �3

103

qsolv
qakvaGala;2 þ qbkvbGblb;2
� �

; (3)

where the nth moment of the i-form crystals (#mn23) is

li;n ¼
Z1
0

Ln fnucl;i þ fseed;i
� �

dL; (4)

C is the solute concentration (g kg21), qsolv is the density of
the solvent (kg m23), qi is the density of the i-form crystals
(kg m23), kvi is the volumetric shape factor of the i-form
crystals (dimensionless) as defined by vi 5 kviL

3, where vi is
the volume of the i-form crystal (m3), and 103 is a constant (g
kg21) to ensure unit consistency. The kinetic expressions are

Ba ¼ kbaðSa � 1Þla;3 ða-form crystal nucleation rateÞ; (5)

Ga ¼
kgaðSa � 1Þga if Sa � 1

ða-form crystal growth=
dissolution rateÞ;

kdaðSa � 1Þ otherwise

8>>><
>>>:

(6)

Bb ¼ kbb;1 Sb � 1
� �

la;3 þ kbb;2 Sb � 1
� �

lb;3

ðb-form crystal nucleation rateÞ; ð7Þ

Gb ¼ kgb;1 Sb � 1
� �gbexp � kgb;2

Sb � 1

� �
ðb-form crystal growth rateÞ; ð8Þ
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where Si 5 C/Csat,i and Csat,i 5 ai,1T
2 þ ai,2T þ ai,3 are the

supersaturation and the saturation concentration (g kg21) of
the i-form crystals, respectively, and T is the solution temper-
ature (8C). The kinetic parameters kba, kga, and kda corre-
spond to the nucleation (#m23 s21), growth (m s21), and disso-
lution (m s21) rates of a-form crystals, respectively, whereas
kbb,j and kgb,j correspond to the jth nucleation (#m23 s21)
and growth (m s21) for j 5 1 and dimensionless for j 5 2
rates of b-form crystals, respectively, and gi is the growth
exponential constant of the i-form crystals which may have a
value between 1 (for diffusion-limited growth) and 2 (for
surface integration-limited growth).36 The Arrhenius equation
was used to account for the variability of crystal growth rate
with temperature:

kga ¼ kga;0 exp � Ega

8:314 T þ 273ð Þ
� �

; (9)

kgb;1 ¼ kgb;0 exp � Egb

8:314 T þ 273ð Þ
� �

; (10)

where kgi,0 and Egi are the pre-exponential factor (m s21)
and activation energy (J mol21) for the growth rate of i-form
crystals, respectively. The values for densities, volumetric
shape factors, and parameters for the saturation concentration
are in Table 1.

Secondary nucleation is assumed for both a- and b-form
crystals, since it is the dominant nucleation process in seeded
crystallization. The growth rate expression for the a-form
crystals includes both growth (supersaturation) and dissolu-
tion (undersaturation). Dissolution occurs during the poly-
morphic transformation of a- to b-form crystals, where
a-form crystals dissolve and b-form crystals nucleate and
grow.

Numerical Methods

The numerical methods described here differ in terms of
their discretization along the crystal size dimension (L), each
of which produces a system of ODEs describing the time
evolution of the crystal size distribution at the chosen discre-
tized points Lk.

37 To provide a fair basis for comparison, the
implementation of all of the methods integrated the ODEs
using a fourth-order orthogonal Runge-Kutta Chebyshev
method,38 which is a class of explicit Runge-Kutta methods
with extended stability domains along the negative real axis.

The stability properties of this method make it suitable for
stiff problems.

It is advantageous for a numerical method to be conserva-
tive, that is, to ensure that a quantity remains conserved by
calculating a single flux which describes the flow of that
quantity between neighbouring cells.22,23 Although flux con-
servative schemes are normally formulated using finite vol-
umes, a finite difference scheme is utilized here based on the
approach described in Shu.39

@fnucl;i
@t

þ @ Gifnucl;i
� �

@L
¼ 0; (11)

fnucl;i L0; tð Þ ¼ Bi

Gi
: (12)

To simplify notation, (1) and (11) are written in the same
form

@u

@t
þ @p

@L
¼ 0;

@u

@t
¼ � @p

@L
;

(13)

where u is fseed,i or fnucl,i and p is Gifseed,i or Gifnucl,i. Equa-
tion 13 is discretized in the L domain with uniform intervals
of size DL, Lk 5 k DL indicates the crystal size at node k,
and Ik 5 [Lk21/2,Lkþ1/2] is the kth cell. The conservative
approximation to the spatial derivative is used:

dukðtÞ
dt

¼ � 1

DL
p̂kþ1=2 � p̂k�1=2

� �
; (14)

where uk is the value of u at Lk and the numerical flux p̂kþ1/2

approximates hkþ1/2 5 h(Lkþ1/2) with h(L) implicitly defined
by39

p u Lð Þð Þ ¼ 1

DL

ZLþDL=2

L�DL=2

h nð Þ dn: (15)

For stability, it is important that upwinding is used in con-
structing the numerical flux p̂kþ1/2. One way is to compute
the Roe speed to determine the direction of the wind:

�akþ1=2 ¼ pkþ1 � pk
ukþ1 � uk

; (16)

where pk is the value of p at Lk.
In the context of process model, the Roe speed is

�akþ1=2 � Gi; (17)

and
� if Gi � 0 then the wind blows from the left to the right

and the numerical fluxes p̂kþ1/2 and p̂k21/2 are approximated
by p2kþ1/2 and p�k�1=2, respectively.� if Gi \ 0 then the wind blows from the right to the left
and the numerical fluxes p̂kþ1/2 and p̂k21/2 are approximated
by pþkþ1/2 and pþk21/2, respectively.

Table 1. Model Parameters for L-glutamic Acid
Polymorphic Crystallization

Parameters Values Parameters Values

ln (kba) 17.233 qsolv 990
ln (kga,0) 1.878 qa 5 qb 1540
ga 1.859 kva 0.480
ln (Ega) 10.671 kvb 0.031
ln (kda) 210.260 aa,1 8.437 3 1023

ln (kbb,1) 15.801 aa,2 3.032 3 1022

ln (kbb,2) 20.000 aa,3 4.564
ln (kgb,0) 52.002 ab,1 7.644 31023

ln (kgb,2) 20.251 ab,2 21.165 3 1021

gb 1.047 ab,3 6.622
ln (Egb) 12.078
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The difference between the values with superscript 6 at
the same location Lkþ1/2 is due to the possibility of different
stencils for cell Ik and for cell Ikþ1, that is, p

2
kþ1/2 is due to

the stencil for cell Ik and pþkþ1/2 is due to the stencil for cell
Ikþ1 (see Figure 1). In the next sections, five reconstruction
procedures are described to obtain p�k�1=2 and pþkþ1/2 only, as
pþkþ1/2 can be readily derived from pk0�1=2+ for cell Ik0 5 Ikþ1

and p�k�1=2 can be derived from p2k0þ1/2 for cell Ik0 5 Ik21.

WENO variants

All WENO methods discussed here are the derivatives of
the original essentially nonoscillatory (ENO) method devel-
oped by Harten et al.41 in 1987. This article was the first to
obtain a self similar (i.e., no mesh size-dependent parameter),
uniformly high order accurate, yet essentially nonoscillatory
interpolation [i.e., the magnitude of the oscillations decays as
O(Dxr) where r is the order of accuracy] for piecewise
smooth functions. ENO methods are especially suitable for
problems containing both shocks and complicated smooth
flow structures, such as those occurring in shock interactions
with a turbulent flow and shock interaction with vortices. To
improve the ENO method and further expand its applications,
ENO methods based on point values and total diminishing
variation (TVD) Runge-Kutta time discretizations were
developed, which can reduce computational costs signifi-
cantly for multiple space dimensions.39,40 Then biasing
during selection of the stencil was proposed for enhancing
stability and accuracy.42,43 Later, WENO methods were
developed, using a convex combination of all candidate sten-
cils instead of just one as in the original ENO.31–34

WENO methods improve the accuracy of the original
ENO method to the optimal order in smooth regions while
maintaining the essentially nonoscillatory property near dis-
continuities. Liu et al.31 converted the rth order ENO method
into an (r þ 1)th order WENO method with a cell average
approach. Based on the pointwise finite difference ENO
method39,40 and a new smoothness indicator, the WENO
method by Jiang and Shu32 can achieve the optimal (2r 2
1)th order accuracy. Jiang and Shu’s WENO version was
later modified by adding a mapping function for the original
nonlinear weight which improves accuracy near smooth
extrema.33 Serna and Marquina34 improved the behavior of
Jiang and Shu’s WENO method by introducing the power-
eno3 or powermod3 limiter, resulting in an (2r 2 1)th order
weighted power ENO method. The powereno3 or powermod3

limiter substantially reduces smearing near discontinuities
and results in better resolution of corners and local extrema.

All WENO methods adopt the following idea. Denote the
r candidate stencils by

Sm ¼ Lkþm�rþ1; Lkþm�rþ2; . . . ; Lkþmð Þ; m ¼ 0; 1; . . . ; r � 1;

(18)

whose corresponding rth order ENO approximation of the
flux hkþ1/2 is

p�kþ1=2 ¼ qrmðpkþm�rþ1; . . . ; pkþmÞ
��
L¼Lkþ1=2

: (19)

Using the smoothest stencil among the r candidates for the
approximation of hkþ1/2 is desirable near discontinuities to
avoid introducing aphysical oscillations. All of the stencils
are smooth in regions where the solution is smooth, in which
case it is better to combine the results of multiple stencils to-
gether to produce a higher order (higher than rth order, the
order of the original ENO method) approximation to the flux
hkþ1/2.

32 WENO methods assign a weight xm to each candi-
date stencil Sm to obtain the combined approximation of
hkþ1/2 as

p�kþ1=2 ¼
Xr�1

m¼0

xmq
r
mðpkþm�rþ1; . . . ; pkþmÞjL¼Lkþ1=2

: (20)

To achieve the essentially nonoscillatory property, the
weights adapt to the relative smoothness of p on each candi-
date stencil such that any discontinuous stencil is effectively
assigned a zero weight. In smooth regions the weights are
adjusted such that the resulting approximation gives an order
of accuracy higher than r. The differences between WENO
methods lie on the method for selecting the weights xm and
the flux approximations qrm(pkþm2rþ1,. . .,pkþm). The subse-
quent WENO methods have r 5 3 with the flux approxima-
tions qrm(pkþm2rþ1,. . .,pkþm) constructed based on quadratic
polynomials.

Liu et al.’s WENO (LOCWENO) method

The flux approximations and weights for the fourth-order
accurate LOCWENO method are31

q3mðpkþm�2; pkþm�1; pkþmÞ
¼ pkþm � 2pkþm�1 þ pkþm�2

2DL
L� Lkþm�1ð Þ2

þ pkþm � pkþm�2

2DL
L� Lkþm�1ð Þ

þ pkþm�1 � pkþm � 2pkþm�1 þ pkþm�2

24
ð21Þ

and

xm ¼ kmP2
j¼0 kj

; (22)

Figure 1. Computational cells.
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where

km ¼

dm

ðISm þ eÞh for p�kþ1=2

d2�m

ðISm þ eÞh for pþk�1=2:

8>>><
>>>:

(23)

The values of h and dm in Eq. 23 are in Table 2 and e is a small
number to avoid division by zero (i.e., e 5 1024 was used in
this article). The ISm are smoothness indicators given by

ISm ¼ pkþm�1 � pkþm�2ð Þ2 þ pkþm � pkþm�1ð Þ2
2

þ pkþm � 2pkþm�1 þ pkþm�2ð Þ2: ð24Þ

Jiang and Shu’s WENO method with Henrick mapping
(JSHWENO)

The Jiang and Shu’s WENO method used here is based on
the quadratic polynomial instead of the original linear
approximation. With

dkþ1=2 ¼ pkþ1 � pk; (25)

dk ¼
dkþ1=2 þ dk�1=2

2
; (26)

Dk ¼ dkþ1=2 � dk�1=2; (27)

the flux approximations are

q30 pk�2; pk�1; pkð Þ ¼ pk � Dk�1

24

þ L� Lkð Þ
DL

dk�1=2 þ Dk�1

2
þ Dk�1

2

L� Lk
DL

� �� �
; ð28Þ

q31 pk�1; pk; pkþ1ð Þ ¼ pk � Dk

24
þ L� Lkð Þ

DL
dk þ Dk

2

L� Lk
DL

� �� �
;

(29)

q32 pk; pkþ1; pkþ2ð Þ ¼ pk � Dkþ1

24

þ L� Lkð Þ
DL

dkþ1=2 � Dkþ1

2
þ Dkþ1

2

L� Lk
DL

� �� �
; ð30Þ

and the weights are32

xJS
m ¼ kmP2

j¼0 kj
; (31)

where km is defined in Eq. 23 and the values of h and dm are
in Table 2. The smoothness indicators ISm are

IS0 ¼ 13

12
pk�2�2pk�1þpkð Þ2 þ 1

4
pk�2�4pk�1þ3pkð Þ2; (32)

IS1 ¼ 13

12
pk�1 � 2pk þ pkþ1ð Þ2þ 1

4
pk�1 � pkþ1ð Þ2; (33)

IS2 ¼ 13

12
pk�2pkþ1þpkþ2ð Þ2 þ 1

4
3pk�4pkþ1þpkþ2ð Þ2: (34)

The Henrick mapping33

gmðxÞ¼xðdmþd2m�3dmxþx2Þ
d2mþð1�2dmÞx : (35)

is used to revise these weights to improve the accuracy near
smooth extrema:

xHJS
m ¼ k�mP2

j¼0 k
�
j

(36)

with

k�m ¼ gmðxJS
m Þ; (37)

to produce a fifth-order accurate method.

Weighted power ENO (Wpower-ENO) method

Using the definitions in Eqs. 25–27, the flux approxima-
tions for the Wpower-ENO method are

q30ðpk�2; pk�1; pkÞ ¼ pk �
Powk�1=2

24

þ L� Lkð Þ
DL

dk�1=2 þ
Powk�1=2

2
þ Powk�1=2

2

L� Lk
DL

� �� �
; ð38Þ

q31ðpk�1; pk; pkþ1Þ ¼ pk � Dk

24
þ ðL� LkÞ

DL
dk þ Dk

2

L� Lk
DL

� �� �
;

(39)

q32ðpk; pkþ1; pkþ2Þ ¼ pk �
Powkþ1=2

24

þ L� Lkð Þ
DL

dkþ1=2 �
Powkþ1=2

2
þ Powkþ1=2

2

L� Lk
DL

� �� �
; ð40Þ

where

Powkþ1=2 ¼ powereno3ðDk;Dkþ1Þ; (41)

is the powereno limiter acting on L 5 Lkþ1/2 where

powereno3ðx; yÞ ¼ minsignðx; yÞ � power3ðjxj; jyjÞ ; (42)

minsignðx; yÞ ¼ signðxÞ if jxj � jyj ;
signðyÞ otherwise ;

(
(43)

Table 2. Values of h and dm for LOCWENO, JSHWENO,
and WPower-ENO Methods

LOCWENO JSHWENO WPower-ENO

h 3 2 2
d0 1/12 1/10 1/5
d1 1/2 3/5 1/5
d2 1/4 3/10 2/5
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power3ðx; yÞ ¼ minðx; yÞ x
2 þ y2 þ 2½maxðx; yÞ�2

ðxþ yÞ2 : (44)

The weights xm and parameters km are the same as for the
LOCWENO method, except that the smoothness indicators

IS0 ¼ 13

12
Powk�1=2

� �2þ 1

4
2pk � 2pk�1 þ Powk�1=2

� �2
; (45)

IS1 ¼ 13

12
pk�1 � 2pk þ pkþ1ð Þ2þ 1

4
pk�1 � pkþ1ð Þ2; (46)

IS2 ¼ 13

12
Powkþ1=2

� �2þ 1

4
2pkþ1 � 2pk � Powkþ1=2

� �2
; (47)

are used. This method is fifth-order accurate.

HR method

The popular HR method uses second-order discretization
with a flux limiter to ensure nonoscillatory behavior. For Gi

� 0, a backward second-order discretization is used:

p�kþ1=2 � p�k�1=2 ¼
1

2
ð3pk � 4pk�1 þ pk�2Þ

¼ 1

2
ð3pk � pk�1Þ � 1

2
ð3pk�1 � pk�2Þ (48)

or

p�kþ1=2 ¼
1

2
ð3pk � pk�1Þ ¼ pk þ 1

2
ðpk � pk�1Þ ; (49)

where the first term is first-order and the second term is com-
monly referred to as an ‘‘anti-diffusion term’’ because it
reduces numerical diffusion. Applying a flux limiter on the
antidiffusion term yields

p�kþ1=2 ¼ pk þ 1

2
/ðwkÞðpk � pk�1Þ ; (50)

where wk is the upwinding ratio defined by

wk ¼ pkþ1 � pk
pk � pk�1

(51)

and /(�) is the flux limiter. In this article, the popular Van
Leer flux limiter44 was used:

/ðwÞ ¼ wþ jwj
1þ w

: (52)

For Gi \ 0, a forward second-order discretization is used:

pþkþ1=2 � pþk�1=2 ¼
1

2
ð�3pk þ 4pkþ1 � pkþ2Þ

¼ 1

2
ð�pkþ2 þ 3pkþ1Þ � 1

2
ð�pkþ1 þ 3pkÞ ð53Þ

or

pþk�1=2 ¼
1

2
ð3pk � pkþ1Þ ¼ pk � 1

2
ðpkþ1 � pkÞ (54)

Similar inclusion of a flux limiter to the antidiffusion term
gives

pþk�1=2 ¼ pk � 1

2
/

1

wk

� �
pkþ1 � pkð Þ: (55)

This HR method is second-order accurate in smooth regions,
and first-order accurate near discontinuities.

The second-order finite difference (FD2) method

A second-order finite difference method with correct
upwinding uses the fluxes p2kþ1/2 and pþkþ1/2 given by Eq. 49
and 54, respectively.

Table 3. Initial Seed Distribution Parameters for
a- and b-forms

i ji rseed,i[m] 3 106 L̂seed;i[m] 3 106

a 2 3 1010 2.000 30.000
b 2 3 1010 4.000 50.000

Figure 2. Temperature profile used in simulations.

Figure 3. CSD of nucleated a form at the end of the
batch for the various numerical methods (DL
5 0.6 lm).
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Simulation Results

The five numerical methods were applied to the L-glutamic
acid polymorphic crystallization model. The initial seed dis-
tributions fseed,i(L,0) for a- and b-forms are described by
Gaussian distributions:

fseed;iðL; 0Þ ¼ jiffiffiffiffiffiffi
2p

p
rseed;i

exp �ðL� L̂seed;iÞ2
2r2seed;i

 !
; (56)

with the parameters in Table 3 selected so that the distribu-
tions would be sharp enough to challenge numerical meth-
ods. The temperature profile is in Figure 2 where the vertical
solid line indicates the seeding time (i.e., at t 5 10 min).
Since an analytical solution is not available, the reference

solutions for all CSDs were obtained by using WPower-ENO
method with very fine resolution. All the computations were
performed using Compaq Fortran 6.6 on a HP workstation
XW6400 [Intel Xeon 5150 (2.66 GHz) and 2 GB of RAM].

In an unseeded crystallization the CSD profiles for all
methods are nearly coincident with the reference profiles (see
Figures 3 and 4), indicating that a conventional numerical
method such as FD2 might suffice, which is consistent with
expectations since no sharp gradients occur in these distribu-
tions. In the case of seeded crystallization (the usual case in
practice), the differences in the CSD profiles between the
WENO variants and their conventional counterparts are sig-
nificant (see Figures 5 and 6). While the three WENO var-
iants are nearly indistinguishable with the reference profiles,
the HR and FD2 methods exhibit numerical diffusion and do
not resolve the peaks accurately. In addition, the FD2 method
introduces a spurious oscillation (known as numerical disper-

Figure 4. CSD of nucleated b form at the end of the
batch for the various numerical methods (DL
5 0.6 lm).

Figure 5. CSD of seeded a form at the end of the batch
for the various numerical methods (DL 5
0.6 lm).

Figure 6. CSD of seeded b form at the end of the batch for
the various numericalmethods (DL5 0.6 lm).

Figure 7. Evolution of the error L1 norm with time for
the various numerical methods (DL 5 0.6
lm).
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sion) which can occur near sharp gradients with this method.
The HR method does not produce spurious oscillation
because the flux limiter detects the presence of sharp gra-
dients and limits the size derivatives. The larger numerical
errors in the CSD profiles obtained by HR and FD2 methods
for the seeded a-form compared with the seeded b-form are
associated with its sharper gradient.

The prediction errors were quantified in terms of the L1
norm (EL1

):

EL1 ¼
1

2ðNgrid;seed þ Ngrid;nuclÞ

3
X

i¼ a;bf g

XNgrid;seed

k¼1

fseed;i;k � f refseed;i;k

��� ���þ XNgrid;nucl

k¼1

fnucl;i;k � f refnucl;i;k

��� ���
( )

;

(57)

where f refseed,i,k and f refnucl,i,k are the reference solutions for the
seeded and nucleated crystals size distributions and Ngrid,seed

and Ngrid,nucl are the number of grids used to discretize the

size coordinate of the seeded and nucleated crystal size dis-
tributions, respectively. The error L1 norms from the three
WENO variants are much smaller in magnitude and grow
much slower than those from the HR and FD2 methods (see
Figure 7). In terms of the L1 norm, the JSHWENO method
gave the smallest numerical errors. Figure 8 indicates that
the JSHWENO method gave smaller numerical errors for the
full range of DL from 0.1 to 2.0 lm.

The JSHWENO method generally had lower CPU times
than the WPower-ENO method, but somewhat higher CPU
times than the other methods for most values of DL (see Fig-
ure 9). To fairly compare the overall efficiency for these
methods, the CPU time was compared for discretizations that
produce the same error L1 norm. From Figure 10 it is
observed that, for any given error L1 norm, the WENO var-
iants used less or equal CPU time to the HR and FD2 meth-

Figure 8. Error L1 norm at the end of the batch vs. DL
for the various numerical methods.

Figure 9. CPU time vs. DL for the various numerical
methods.

Figure 10. CPU time required for the various numerical
methods for a given error L1 norm at the
end of the batch.

Figure 11. Relative CPU time for the various numerical
methods with respect to CPU time from
JSHWENO for a given error L1 norm at the
end of the batch.
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ods, and hence the WENO variants were more efficient. The
JSHWENO method was the most efficient for nearly all
desired accuracy levels. Figure 11 shows the relative cost of
the numerical methods with respect to the JSHWENO
method. The HR method was more efficient than the FD2
method for nearly all desired accuracy levels, and was more
efficient than the WPower-ENO method for some accuracy
levels, but was not as efficient as the LOCWENO and
JSHWENO methods. Although the WENO methods are more
complicated to implement, their efficiency is much better
when sufficiently high accuracy in the size distribution is
desired. Among the WENO variants, the performance of
JSHWENO is followed by that of the LOCWENO method
by a small margin, and then followed by that of the
WPower-ENO method.

Another way to assess numerical methods is to compute
the L1 self-convergence order

OL1 ¼
ln

EL1
j2DL

EL1
jDL

	 

ln 2

: (58)

This metric provides information on the internal consistency
of the numerical method and its intrinsic convergence.44 The
L1 self-convergence order for all numerical methods are in
Table 4. For a linear model with a smooth solution, these
values would correspond to the order of the truncation error
for a given numerical method. This is not the case here
because of the nonlinearity of the model and the sharp gra-
dients in the distribution. On average, the JSHWENO method
gives the best L1 self-convergence order, followed by the
WPower-ENO, LOCWENO, HR, and FD2 methods.

Conclusions

This article proposed the use of WENO methods for the
numerical solution of population balance models for crystalli-
zation processes. The LOCWENO, JSHWENO, and WPower-
ENO methods were compared with standard discretization
methods. In simulations of the polymorphic crystallization of
L-glutamic acid, the WENO methods produced much less nu-
merical diffusion and dispersion, with the LOCWENO and
JSHWENO methods having the highest overall efficiency
(that is, lowest CPU time for the same level of numerical ac-
curacy). The L1 self-convergence order which characterizes
integral consistency and convergence was the highest for the
JSHWENO method, followed by the other two WENO meth-

ods. These results recommend WENO methods for the simu-
lation of crystallization processes, especially when the distri-
butions are sharp and very high accuracy is desired. These
methods combine very high order of accuracy with good
convergence properties even in the presence of sharp varia-
tion in the size distributions.

Notation

ai,1, ai,2, ai,35 parameters for the saturation concentration of the
i-form crystals

akþ1/25Roe speed
Bi5nucleation rate of the i-form crystals
C5 solute concentration

Csat,i5 saturation concentration of the i-form crystals
Egi5 activation energy for the growth rate of i-form crystals
EL1

5prediction errors in terms of the L1 norm
fi, fseed,i, fnucl,i5 total, seed, and nucleated crystal size distribution of the

i-form crystals
Gi5growth rate of the i-form crystals
Ik5 the kth cell

ISm5 smoothness indicator
kba, kga, kda5 nucleation, growth, and dissolution rates of a-form crys-

tals
kbb,j, kgb,j5 the jth nucleation and growth rates of b-form crystals

kgi,05pre-exponential factor for the growth rate of i-form crys-
tals

kvi5volumetric shape factor of the i-form crystals
L, L05 characteristic length of crystals and nuclei

Lk5 crystals length at the kth discretized point
DL5discretization size of crystal length

Lseed,i5 mean for the seed crystal size distribution of i-form
crystals

OL1
5L1 self-convergence order

p̂kþ1/2, p̂k21/25 numerical flux approximation at node k þ 1/2 and k 2
1/2

qrm 5quadratic polynomial flux approximation function
Si5 supersaturation of the i-form crystals
Sm5 candidate stencil
T5 crystallizer temperature

Greek letters

d(�)5dirac delta function
ji5 scaling factor for the seed crystal size distribution of

i-form crystals
li,n5 the nth moment of the i-form crystals
xm5 scalar weight to each candidate stencil Sm for the flux

approximation
/5flux limiter
qi5density of the i-form crystals

qsolv5density of the solvent
rseed,i5 standard deviation for the seed crystal size distribution

of i-form crystals
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