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Characterization of the rate of nucleation of crystals from solution continues to be of interest, both for
investigations into fundamental molecular phenomena as well as for applications in the pharmaceu-
ticals, biotechnology, and fine chemicals industries. Substantial experimental evidence indicates that
nucleation in some solute-solvent systems does not agree with classical theory, especially at high
supersaturations. An approach is proposed for computing bounds on the nucleation rate as a function of
supersaturation that does not require an assumed analytical expression for the nucleation kinetics. The
approach involves (1) a microfluidic platform that measures crystal nuclei formation in droplets, (2) the
analytical solution of the Chemical Master equation for nucleation that takes finite-volume effects into
account, and (3) a numerical algorithm that employs linear splines to construct upper and lower
bounds on the nucleation rate from the experimental data produced by the microfluidic platform. The
approach is demonstrated for mean induction times measured for the nucleation of paracetamol and
glycine crystals in aqueous solution. The approach can be used to suggest dependencies for the
development of new nucleation expressions and for providing kinetic information needed for the
simulation of crystallizers that operate at high supersaturations, such as dual-impinging-jet and vortex-

mixer crystallizers.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous studies have been directed towards obtaining a
better fundamental understanding of nucleation mechanisms
(Blow et al., 1994; ten Wolde and Frenkel, 1997; Saikumar
et al., 1998; Aizenberg et al., 1999; Baird, 1999; Cacciuto et al.,
2004; Schope et al., 2006; Li et al., 2008; Kreutz et al., 2009; Auer
and Frenkel, 2001). Substantial experimental evidence has been
published (Vekilov, 2004; 2010) that shows that nucleation rate
expressions for some solute-solvent systems do not agree with
classical nucleation theory (Volmer and Weber, 1926; Nielsen,
1964; Nyvlt, 1985) at the high supersaturations that can occur
during protein crystallization, dual-impinging-jet and vortex-
mixer crystallization of pharmaceuticals, and microfluidic
crystallizations of various compounds (Midler et al., 1994; Dauer
et al, 1996; Mahajan and Kirwan, 1996; Sanjoh and Tsukihara,
1999; Lindrud et al., 2001; am Ende et al., 2003; Zheng et al., 2003;
Schwarzer and Peukert, 2004; Vekilov, 2004; 2010; Squires and
Quake, 2005; Hansen et al., 2006; Wang et al., 2006; Liu et al., 2008).
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For example, the nucleation rate has been experimentally observed
to go through a maximum and then decrease with respect to
supersaturation for some systems (e.g., see Kelton, 1991; Pusey,
1991). As another example, the experimentally determined homo-
geneous nucleation rate for lysozyme crystals in 4% NaCl-aqueous
solution has been reported (Vekilov, 2004) with (1) a plateau in the
nucleation rate with respect to lysozyme concentration, and (2) a
bifurcation of the nucleation rate into two branches corresponding
to the formation of two crystal morphologies at the same lysozyme
concentration.

No quantitative replacement for classical nucleation theory
has been established yet, which presents a quandary for engineers
who need rate expressions to characterize nucleation kinetics at
high supersaturation for incorporation into mathematical models
for the design of crystallizers that employ process intensification
(e.g., Schwarzer and Peukert, 2004; Liu et al., 2008; Woo et al.,
2009). A crystallizer could produce poor quality product if
designed based on a rate expression that is not valid for the
particular solute(s), solvent(s), and supersaturation range of
interest. This paper addresses this problem by proposing an
approach for determining upper and lower bounds on the
nucleation rate as a function of supersaturation that does not
require any assumptions on the specific form for the nucleation
rate expression. These bounds also could be used to design
subsequent experiments that will generate data that maximally
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reduce the gap between the upper and lower bounds on the
nucleation rate.

The approach consists of three components. The first compo-
nent is a microfluidic platform that measures crystal nuclei
formation in droplets (e.g., Sanjoh and Tsukihara, 1999; Zheng
et al, 2003; Vekilov, 2004; 2010; Squires and Quake, 2005;
Hansen et al., 2006; Li et al., 2008; Kreutz et al., 2009; Talreja
et al., 2005). The nucleation data can be reported in any form,
such as mean induction times, induction time distributions, or the
number of crystals generated in multiple droplets over time. The
second component is the Chemical Master equation for nuclea-
tion that satisfies mass conservation while taking finite-volume
effects into account (Goh, 2007; Goh et al.,, 2010). The third
component of the approach is a numerical algorithm that
employs linear splines to construct upper and lower bounds on
the nucleation rate from the experimental data produced by the
microfluidic platform and an analytical solution for the Chemical
Master equation. After describing the second and third compo-
nents of this approach in more detail, the approach is demon-
strated for the nucleation of paracetamol and glycine crystals in
an evaporation-based microfluidic platform.

2. Theoretical methods
2.1. Analytical solution to the chemical master equation
The Chemical Master equation for nucleation that satisfies

mass conservation while taking finite-volume effects into account
is Goh et al. (2010):

Poll) — _ictpo(o), Pot) = 1, (1a)
d’jj”t(t) — K(E)(Poy ()—Pn(0)), Pn(0) = 0, n=12,. .. (1b)

where P,(t) is the probability that a droplet contains n crystals
and x(t)dt is the probability that a critical nucleus will form
during an infinitesimal time interval dt. The model assumes that
the time to grow from a nucleus to a visible crystal is negligible
compared to the induction time, which is a very good assumption
for nucleation in micro- to nanoliter drops at high supersaturation
for most systems (e.g., see analysis in Goh et al. (2010) and
references cited therein).! The differential equations (1) describe
a non-stationary Poisson process (Cinlar, 1971) and can be solved
analytically to obtain the time evolution of the above
probabilities.?

The average number of crystals that form over time for a large
number of droplets, the induction time distribution, the variance
in the induction times, and the mean, most likely, and median
induction times can be derived from this analytical solution. For
example, the mean induction time t;,ea, for the nucleation of at
least 1 crystal in a droplet is

) t
- <(s)d.
trmean = / tic(tye” o Ot )
0

where ts,; is the time when the solute concentration in the drop
just reaches the saturated solute concentration. The analytical
expressions for all of the measurable quantities such as in Eq. (2)
can be computed for any expression for x(t) > 0 by using standard
subroutines for numerical integration (e.g., Chapra and Canale,

T If the time required to grow a crystal to a detectable size is not negligible,
then subtract this time from the measured induction times before applying the
expressions in this paper. .

2 The analytical solution to Eq. (1) is Pa(t)=(1/nh[ s k(s)ds]"e” Jo s,

n=0,1,2,... (Goh et al., 2010).

2002; Heath, 2002). For homogeneous nucleation or heteroge-
neous nucleation on tiny particles distributed with a well-mixed
droplet, the supersaturation-dependent nucleation rate J(S(t)) is
related to x(t) in (1) by k(t)=J(S(t))V(t) where V is the droplet
volume. The time trajectory for the supersaturation S(t) and
volume V(t) can be directly measured or derived from mass
balances on the solute(s), solvent(s), and precipitant(s) in a
droplet, so that x(t)=]J(S(t))V(t) can be computed for any specified
expression for the nucleation rate J(S). For heterogeneous nuclea-
tion on any contact surface or interface of area A(t), the corre-
sponding relationship is x(t)=J(S(t))A(t).

2.2. Construction of bounds on the nucleation rate

A numerical algorithm employing a model-free representation
is used to construct upper and lower bounds on the nucleation
rate J(S) from the experimental data produced by the microfluidic
platform and the analytical solutions for the model Eq. 1. The
nucleation rate is parameterized by the piecewise-linear function
(also called a first-order spline or a linear spline):

](S):ai5+bi for Si,1 <S<5,‘, i=1,2,...n, (3)
where S; are discrete values for the supersaturation, and
bij=b;_1+(a;_1—a;)S;_1 ensures continuity and b;=0 so that
J=0 for S=0. The coefficients were selected so that J(S)>0 for
S >0 and to be finite, which bounds the derivative with respect to
the supersaturation. The non-equal spacing allows higher resolu-
tion for small values for S. This parameterization allows the
nucleation rate J(S) to be increasing, decreasing, or at a plateau
for any range of supersaturation, which is flexible enough to
describe the deviations from classical nucleation theory that have
been reported in the literature (e.g., see Vekilov, 2004; 2010; and
citations therein).

The numerical algorithm determines the set of constrained
coefficients in the linear spline that are consistent with an upper
bound on the sum-of-squared deviations (SSD) between the
model and measurements,

N
SSD(H) = Z D’model,i_ymeasured,i(g)]2 <g, (4)

i=1

where N is the number of experimental data points, ¥Ymeasured.i 1S
the ith data point, and ymode; is the corresponding value com-
puted from the Chemical Master equation (1) with the linear
spline for J(S), 6 is the vector of coefficients a; and b;, and the value
of the upper bound ¢ is computed from the intrinsic variability in
the measured values as well as imperfections in the experiments
that result in variations in the evaporation rate, initial solute
concentration, and droplet volume (for details, see Goh, 2007).
The value for ¢ can be a function of a confidence level o if
estimated by statistical procedures (Beck and Arnold, 1977,
Taylor, 1982). For the case in which each data point is the
measured mean induction time t;j,q for repeated experiments,
Eq. (4) would be

N

SSD(H) = Z [tind,model,i_tind,measured,i(e)} > <é (5)
i=1

In this approach, a bound on the smoothness of the nucleation
rate can be included, which is written as 3 (a; 41 —a;)?<v.Inany
case, sets of coefficients a; and b; that satisfy these bounds can be
located by stochastic search (Foster et al, 1993). A best-fit
nucleation rate can be obtained by minimization of the left-hand
side of Eq. (4) subject to the smoothness constraint or by
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incorporating smoothness through a penalty term:

N
rnein { Z D’model,i_.ymeasured,i(g)]2 + ";’Z (ai+1 _ai)z} (6)
i=1 i

By replacing the functional form for J(S), the above approach
can be used to evaluate the consistency of experimental data with
a particular nucleation expression, such as that for classical
nucleation theory (Nielsen, 1964; Walton, 1969),

J(S(t) = AC(t)exp(—B/(In(S(t) +1)))*) 7

where ((t) is the solute concentration and A and B are model
parameters. The low number of parameters within power-law,
classical nucleation, and other simple expressions enables the family
of J(S) consistent with those expressions to be determined by gridding
the parameters. Upper and lower bounds on the nucleation rate J(S)
can also be computed from the maximum and minimum value of
each linear spline at each value of the supersaturation. A plotting
algorithm can order the linear splines into groups that simplify the
interpretation of nucleation rates that are consistent with the experi-
mental data. The lack of linear splines that are monotonically
increasing would indicate that the nucleation expression is not a
monotonically increasing function of the supersaturation. In the case
of multiple distinct values for the nucleation rate J(S), as would occur
for the branch reported for lysozyme (Vekilov, 2004), two bands of
allowed nucleation rates would be computed if values between the
bands are inconsistent with the experimental data.

The proposed approach is demonstrated for two examples below.

3. Results and discussion

Consider the measurement of mean induction times for para-
cetamol and glycine in aqueous solution for an array of conditions
in an evaporation-based microwell platform of hanging droplets
(for details on the experimental system, see Talreja et al., 2007).
No crystals were observed on the droplet support so nucleation
was assumed to occur in the liquid phase, in which case the mean
induction time is given by inserting the product of the nucleation
rate per unit volume, J, and the volume V into Eq. (2) to give

tind = /0 SOV Jud SV, 8)

where S in this study was taken to be the relative supersaturation
(the same approach also applies to absolute supersaturation) and
V(t)=Vo(1 — ft) was computed from a mass balance on the solvent
(Talreja et al., 2007), where f is the mass evaporation rate (ER)
divided by the initial mass of solvent.

3.1. Nucleation of paracetamol

Measured mean induction times for paracetamol in aqueous
solution for different initial solute concentrations (Co) and evapora-
tion rates (ER) and the solute concentrations at the time that crystals
were first observed (referred to as metastable concentrations) are
shown in Fig. 1. The mean induction times decrease with increased
evaporation rate (Fig. 1), as expected. Many linear splines are
consistent with the data within the experimental variations (see
Fig. 2), with the splines showing a monotonic dependence on the
supersaturation such as occurs for classical nucleation theory
(Fig. 2(b)). The experimentally measured mean induction times

3 The induction time is the time in which at least one crystal is observed in a
droplet using an optical microscope positioned over the droplet. The measured
mean induction time was the average of the induction times measured for three
droplets that undergo the same experimental conditions, that is, have the same
temperature, evaporation rate, initial concentrations, and droplet volume.
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Fig. 1. Mean induction times, mass evaporation rates (ER), and initial concentrations
(Go) for 11 sets of experimental conditions for the nucleation of paracetamol in aqueous
solution at 21 °C (Csar=13.2 g paracetamol/kg water). The initial volume was 5.07 pL
and the low, mid, and high initial solute concentrations Cy are given in Table 1.

Table 1

Experimental data for measuring mean induction times for paracetamol in
aqueous solution (Goh et al., 2010). The initial droplet volume was 5.07 pL for
all experiments.

Experiment Mass Initial solution Mean time to reach Measured
No. evaporation concentration saturated conditions true

rate (g/h) (g solute/kg  and observe at least induction

solvent) one crystal (h) time (h)*
1 2.22E-04 7.94 22.00 12.9
2 1.87E-04 7.94 25.67 149
3 3.02E-04 9.90 15.75 11.6
4 2.61E—-04 9.90 18.25 13.4
5 2.22E-04 9.90 21.25 15.5
6 1.87E—04 9.90 24.75 18.0
7 3.47E-04 11.86 13.75 123
8 3.02E-04 11.86 15.25 135
9 2.61E-04 11.86 17.75 15.8
10 2.22E-04 11.86 20.25 17.9
11 1.87E—-04 11.86 23.25 205

* The last column was determined by subtracting the time required for the
droplet to reach saturated conditions from the second to last column.

were consistent with a classical nucleation model (Fig. 3). The
minimum sum-of-squared deviations for the linear spline is very
close to that for the classical nucleation expression, which implies
that the mean induction time data for paracetamol in aqueous
solution in Fig. 1 provide no evidence that the nucleation rate
deviates significantly from that predicted by classical nucleation
theory.

3.2. Nucleation of glycine

Mean induction times measured for glycine in aqueous solution
for different initial solute concentrations (Cp) and evaporation rates
(ER) and metastable concentrations are shown in Fig. 4. The mean
induction times decrease with increased evaporation rate for low to
mid initial solute concentrations with this dependence being much
weaker for high initial solute concentrations (Fig. 4). The mean
induction times for glycine increase with decreased initial solute
concentration, which is the opposite trend observed for paracetamol
(compare Figs. 1 and 4). None of the linear splines for the nucleation
rate J(S) produce estimates of the mean induction times that are
consistent with the experimental variations (see Fig. 5(a)). Also, the
linear splines that provided the best fit or nearly the best fit to the
mean induction time data showed a non-monotonic dependence on
the supersaturation, which is not consistent with a single classical
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Fig. 2. (a) Mean induction times for the linear spline J(S) that best fits the data
reported in Fig. 1 (paracetamol), with SSD=1.4 <&¢= 3.8, (b) sample nucleation
rates parameterized by linear splines that are consistent with experimental
variations of ¢= 3.8.

0]

25

model (0)
data (x)

20

15

mean induction time (hr)

10

0 5 10 15
evaporation rate (10 g/hr)

(o3

x

-

o
@

15

10

nucleation rate
(#crvstals/L/hn)

0 5 10 15 20
relative supersaturation, S
Fig. 3. (a) Mean induction times for the classical nucleation expression J(S) that

best fits the data reported in Fig. 1 (paracetamol), with A=3.9 x 10°, B=15.0, and
SSD=1.46 < ¢, (b) the corresponding nucleation rate.

Table 2
Experimental data for measuring mean induction times for glycine in aqueous
solution.

Experiment Mass Initial solution Initial Mean time Measured
No. evaporation concentration droplet  to reach true
rate (g/h) (g solute/kg  volume saturated induction
solvent) (uL) conditions  time (h)*
and
observe at
least one
crystal (h)
1 4.46E —04 173.55 4.50 9.33 6.1
2 3.68E—04 173.55 4.50 10.11 6.2
3 2.98E—-04 173.55 4.50 11.50 6.6
4 2.36E-04 173.55 4.50 13.00 6.9
5 1.79E-04 173.55 4.50 15.67 7.6
6 4.46E—-04 200.00 435 5.33 3.2
7 3.68E—04 200.00 4.35 5.83 3.2
8 2.98E-04 200.00 4.35 6.92 3.7
9 2.36E-04 200.00 435 7.89 3.9
10 1.79E—04 200.00 435 9.83 4.5
11 4.46E—04 209.49 4.30 4.67 29
12 3.68E—04 209.49 4.30 5.08 3.0
13 2.98E-04 209.49 4.30 5.67 3.0
14 2.36E-04 209.49 4.30 6.33 3.0
15 1.79E—-04 209.49 4.30 7.33 3.0

* The last column was determined by subtracting the time required for the
droplet to reach saturated conditions from the second to last column.
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Fig. 4. Mean induction times, evaporation rates (ER), and initial concentrations
(Gyp) for 15 sets of experimental conditions for the nucleation of glycine in aqueous
solution at 36 °C (Cs;=256.2 g glycine/kg water). The initial droplet volumes,
evaporation rates, and low, mid, and high values of the initial solute concentra-
tions Cy are given in Table 2.

nucleation mechanism occurring within uniform well-mixed dro-
plets (Fig. 5(b)). In particular, the nucleation rates most consistent
with the experimentally observed mean induction times have a
peak located between relative supersaturation of 5 and 6, followed
by another rise in nucleation rate for large supersaturation (S > 6,
see Fig. 5(b)).

Non-monotonic dependency of the nucleation rate on super-
saturation has been reported for many systems (Kelton, 1991;
Pusey, 1991), with reduction in the nucleation rate with increased
supersaturation attributed to a lower rate of growth of nuclei or
to an increase of the solid-liquid interfacial free energy with
increased supersaturation (e.g., Auer and Frenkel, 2001), but these
hypotheses would not explain an increase in nucleation rate at
even higher supersaturations (Fig. 5(b)). A partial explanation for
the reduction of the nucleation rate for intermediate supersatura-
tion could be the existence of multiple parallel nucleation path-
ways (Vekilov, 2004), in which one nucleation pathway becomes
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Fig. 5. (a) Mean induction times for the linear spline J(S) with n=32 and
smoothing factor y=2 x 10~ !® that best fits the data reported in Fig. 4 (glycine),
with SSD=37.3 > £¢=28.3, with the horizontal axis being the experiment number,
(b) nucleation rates parameterized by linear splines with SSD < 40. Since there
were more experiments with a metastable supersaturation Sy less than 3, the
linear spline was chosen to have a smaller spacing between points for low S.

suppressed at some supersaturation whereas a second pathway is
only important at a much higher supersaturation. Different
polymorphs have different nucleation pathways and typically
different nucleation rates (see Allen et al., 2002 and Chen et al.,
2011 for discussions of polymorphic crystal nucleation in dro-
plets), however, only a single polymorphic form of glycine () has
been observed in over 100 experiments in this microfluidic
platform at these evaporation rates (He et al., 2006). A possible
explanation would be heterogeneous nucleation on contaminat-
ing particles in each droplet at lower supersaturation becoming
covered by crystals, and so are no longer available for inducing
nucleation, followed by homogeneous nucleation at higher super-
saturation (Vekilov and Galkin, 2003). Another possible explana-
tion for multiple peaks would be the presence of contaminating
particles only in some of the droplets (Pound and Lamer, 1952;
Laval et al., 2008; Teychené and Biscans, 2011), so that the lower
supersaturation peak corresponds to droplets with the particles
and the higher supersaturation increase corresponds to droplets
without the particles. Of the above potential explanations for the
supersaturation dependence in Fig. 5(b), the latter could explain
why the best-fit linear spline did not reduce the sum-of-squared
deviations below the experimental variations (see Fig. 5(a)).
Another possible explanation could be that the nucleation for
glycine in aqueous solution follows a two-step nucleation
mechanism at high supersaturation, in which crystal nucleation
occurs after a liquid-liquid phase separation that forms highly
concentrated droplets within each droplet (Vekilov, 2010). Some
experimental evidence from small-angle x-ray scattering for such
a two-step nucleation mechanism in glycine in aqueous solution
has been reported (Chattopadhyay et al., 2005).

As expected from the lack of monotonicity of the nucleation rate
in Fig. 5(b), the experimentally measured mean induction times
were not consistent with the best-fit classical nucleation model
(Fig. 6), which produced much larger sum-of-squared deviations
than for the best-fit linear spline (Fig. 5). The analysis in Figs. 5 and 6
provide evidence that nucleation within the droplets for this set of
experiments was not described by a single classical nucleation
mechanism occurring within uniform well-mixed droplets.
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Fig. 6. (a) Best-fit mean induction times to the classical nucleation expression for
the data reported in Fig. 4 (glycine), with A=721, B=0.04, and SSD=48.7 > ¢, with
the horizontal axis being the experiment number, (b) the best-fit nucleation rate
parameterized by the best-fit classical nucleation expression, which is inconsis-
tent with experimental variations of ¢=28.3.

Most of the aforementioned possible explanations for obser-
ving an apparent deviation from classical nucleation theory
involve multiple nucleation pathways. An approach for applying
the method to address systems with multiple nucleation path-
ways is to separate the data into groups and independently
estimate the bounds on the nucleation rates for each group of
data. For example, the above hypothesis of two nucleation
mechanisms occurring over the supersaturation range can be
further evaluated by repeating the analysis with the mean
induction time data for the highest supersaturations removed
from the data set (see Fig. 7(a)). Many linear splines were
consistent with this subset of the data, and these linear splines
showed no evidence of a nonmonotonic dependence of the
nucleation rate on the supersaturation (Fig. 7(b)). This analysis
supports the hypothesis that evidence for a deviation from the
classical nucleation mechanism only occurs for the mean induc-
tion time data at high supersaturations. The nucleation rate for
the best-fit classical nucleation expression is within experimental
variations, indicating that the mean induction time data for
relative supersaturations less than 0.73 are reasonably consistent
with classical nucleation theory (Fig. 8). A non-classical nuclea-
tion theory is indicated only for the mean induction time data in
which the relative supersaturation within the droplets is higher
than 0.73.

The above approach of separating the data in multiple sets that
are subsequently analyzed independently can be applied when it
is clear how the droplets should be separated into multiple data
sets, such as in the above example where the droplets were
separated into terms of low and high supersaturation. When each
droplet cannot be a priori assigned to a different nucleation
pathway, then the model (1) can still be written for the droplets
associated with each nucleation pathway, but an additional
assumption is needed to be able to combine the model predic-
tions from multiple nucleation pathways to compute experimen-
tal observations such as mean induction times. For example, if the
droplets had varying numbers of contaminants, then an assump-
tion could be that the source solution has a spatially uniform
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Fig. 7. (a) Mean induction times for the linear spline J(S) with n=32 and
smoothing factor y=2 x 10~ !® that best fits a subset of the data reported in
Fig. 4, with SSD=0.86 <¢=8.5, (b) nucleation rates parameterized by linear
splines that are consistent with experimental variations of 8.5.
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Fig. 8. (a) Best-fit mean induction times to the classical nucleation expression for
a subset of the data reported in Fig. 4, with A=475, B=0.04, and SSD=2.7 < £=8.5,
(b) the corresponding nucleation rate.

distribution of contaminants, so the distribution of the number of
contminants per drop can be determined based on elementary
statistical analysis (Pound and Lamer, 1952). Addressing the two-
step nucleation mechanism is less straightforward — a truly first-
principles approach model would include a model for the
dynamic evolution of the liquid-liquid phase separation with
the number and volume of droplets feeding into model (1).
Having poorly mixed droplets would also be more involved, as
then a first-principles approach would have to include a fluid
mechanics model. In all of these cases, the overall approach
proposed in the manuscript would remain the same but with (i)

an extended mathematical model, (ii) multiple sets of bounds
determined if multiple nucleation pathways are present, and (iii)
more experimental data needed to be able to determine tight
bounds on the nucleation rates.

4. Conclusions

The proposed approach for bounding of the nucleation rate
enables the invalidation of proposed nucleation rate expressions
while using only a small amount of compound and having the
ability to collect data at high supersaturations such as occur in the
dual-impinging-jet and vortex mixers used in the pharmaceutical
industry for the manufacture of highly uniform crystals (Midler
et al., 1994; Dauer et al., 1996; Mahajan and Kirwan, 1996;
Lindrud et al,, 2001; am Ende et al., 2003; Wang et al., 2006;
Liu et al, 2008). The bounds constrain the nucleation rate
expression, which can be fit to the experimental data and
incorporated into simulation models for the design of crystallizers
that employ process intensification (Schwarzer and Peukert,
2004; Liu et al., 2008; Woo et al., 2009). The numerical algo-
rithm’s use of a linear spline provides a high flexibility in
capturing a wide variety of nucleation expressions, including
the classical nucleation, power-law, and polynomial expressions.
Applying the proposed approach to mean induction times for
glycine in aqueous solution at high supersaturations indicated
that the nucleation at high supersaturation was not consistent
with a single classical nucleation mechanism occurring with
uniform well-mixed droplets. An inability of any nucleation
expression to fit the measured induction times for those experi-
ments could be evidence for the lack of uniform concentration in
each droplet or that contaminating particulates were located only
a subset of droplets. Large gaps between the upper and lower
bounds on the nucleation rate, as well as plots of the deviations
between the best-fit models and measurements, indicate experi-
mental conditions where additional experiments may be needed
to improve the accuracy of the nucleation rate.
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