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SUMMARY

Design methods are proposed for static and fixed-order dynamic output feedback controllers for discrete-
time Luré systems with sector-bounded nonlinearities in the presence of parametric uncertainties described
by polytopes. The derived design conditions are represented in terms of bilinear matrix inequalities, which
are nonconvex. By using convex relaxation methods, controller design equations are derived for systems
with multiple states, outputs, and nonlinearities in terms of linear matrix inequalities (LMIs) and itera-
tive LMIs, which are associated with semidefinite programs. The proposed design methods are developed
from stability conditions using parameter-dependent Lyapunov functions, and existing iterative numerical
methods are adapted to solve certain classes of nonconvex optimization problems for controller design. Sev-
eral numerical examples are provided to illustrate and verify the proposed design methods. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lyapunov methods are powerful ways to analyze and design stabilizing controllers for nonlinear
dynamical systems (e.g., see [1–6] and citations therein). Many stability results have been developed
for a well-known benchmark problem known as the Luré problem [7–10]. The family of such nonlin-
ear systems consists of a feedback interconnection of a linear system and certain classes of nonlinear
functions that are characterized by input and output relations. Many important process models for
practical applications can be represented as Luré systems, which include Wiener and Hammerstein
models [11], dynamical neural network models [12], and systems with actuator saturation [13] or
backlash [14].

Due to the theoretical and practical importance of these nonlinear systems, there have been
much research effort to study the stability of Luré systems both in continuous-time and discrete-
time cases. In particular, methods based on multiplier theory and positive realness of transfer
functions corresponding to the linear system are also extensively studied. The Popov and Circle
criteria are sufficient frequency domain conditions for absolute stability of the feedback intercon-
nection of a continuous linear time-invariant system with a sector-bounded nonlinearity [15–20].
Its discrete-time counterparts are known as the Tsypkin criterion [21, 22] and the Jury–Lee
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criterion [23]. More recently, improvements in computing power and convex programming algo-
rithms have resurged interest in stability analysis and control of Luré systems on the basis of convex
optimization. In particular, stability analysis and control problems can be represented as condi-
tions of feasibility and/or optimality of linear matrix inequalities (LMIs) [1], or more generally,
semidefinite programs. On behalf of the well-known Kalman–Yakubovich–Popov lemma, the pos-
itive realness conditions of a transfer function can be equivalently represented as a problem of
finding a feasible solution for LMIs. To reduce conservatism by incorporating further structure to
the feedback-interconnected nonlinear functions, computationally tractable search for multipliers
is important, and many researchers have recently investigated LMI-based conditions for finding
multipliers and the associated Lyapunov solutions [24–31]. For relations between Lyapunov and
multiplier methods, the readers are referred to [1, 32–35], for which parameters of multipliers can be
seen as dual variables corresponding to the S-procedure [36] and integral constraints [37]. In [38],
in addition, it was observed that stability of the Luré system with a scalar-valued input and output
of feedback connected sector-bounded nonlinear function can be analyzed by checking existence
of a common quadratic Lyapunov solution for the associated linear switched systems in which two
switching system matrices have rank-one difference.

The discrete-time Luré system consists of the interconnection of a linear time-invariant (LTI)
system in feedback with a nonlinear operator:

xŒkC1� D AxŒk� C BppŒk�;

qŒk� D CqxŒk� CDqppŒk�; pŒk� D ��.qŒk�; k/;
(1)

where A 2 Rn�n, Bp 2 Rn�np , Cq 2 Rnq�n, Dqp 2 Rnq�np , and the nonlinear operator � 2 ˆ,
where ˆ is a set of nonlinear functions that satisfy �.0; k/ � 0 for all k 2 ZC and have some
specified input–output characteristics, such as satisfying a sector bound or having a slope within
some specified range (the detailed mathematical descriptions for the nonlinear operators are given
in Section 2).

Model uncertainties are typically represented as parametric variations or unmodeled dynamics. A
matrix polytope is a standard representation for real parametric uncertainties (for example, see [39,
40]). In applications of Luré-type system models, such parametric uncertainties are ubiquitous and
need to be taken into account for robust stability and stabilizing control problems. For example,
identification models such as Wiener, Hammerstein, or neural network models that belong to a class
of Luré-type systems inevitably include modeling errors, and for more accurate and reliable anal-
ysis such modeling errors can be represented as parametric uncertainties that should be considered
for analysis and design. A commonly used method for deriving a robust stability test for an uncer-
tain system with state matrices described by polytopes is to use stability conditions based on a
single quadratic Lyapunov function for the entire uncertainty set, but this method is known to be
conservative in general. The need of less conservative approaches has motivated the reduction of
conservatism by using parameter-dependent Lyapunov functions (PDLFs).

Parameter-dependent Lyapunov functions that are quadratic in the state and have an affine depen-
dence on uncertain parameters have been applied to derive LMI-based robust stability conditions
for continuous-time linear systems [41–43] and discrete-time linear systems [44]. The robust sta-
bility tests involve the solution of parameterized LMIs. The design of stabilizing controllers for
systems with nonlinearities and uncertainties is of interest in both control theory and practice, with
static output feedback (SOF) being the simplest control to implement (e.g., see the survey paper by
[45] and citations therein). The direct application of Lyapunov analysis to SOF design, even for lin-
ear time-invariant systems, results in optimization over bilinear matrix inequalities (BMIs), which
are not convex. These optimization problems can be solved very slowly using global optimization
methods or a local solution can be obtained by iterative linear matrix inequality (ILMI) approaches.
Several ILMI-based algorithms have been developed for the SOF controller design of LTI systems
(for example, see [46–49]).

The main contribution of this paper is to develop design methods for robust stabilizing SOF
controllers for Luré systems with system matrices perturbed by parametric uncertainties. For sta-
bility analysis, a scaled Popov criterion and the associated Lyapunov method incorporating the
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S-procedure and matrix algebra are used. Because of existence of bilinear terms corresponding
to multiplications of variables incurred by the S-procedure and the control gain parameters, the
resultant design problems are nonconvex. Convex relaxation methods on the basis of semidefinite
programming (SDP) and sequential SDP are presented for the design conditions. Depending on the
specific control objectives and the methods of convex relaxation, the design methods are written in
terms of LMIs or ILMIs. For the same control objectives, the results are extended to the computation
of fixed-order dynamic output feedback controllers.

As a parallel set of results, in [50], two LMI-based procedures were proposed for the design of
observer-based output feedback controllers for a Luré-type system with conic-sector-bounded slope-
restricted nonlinearities. Observer design methods were proposed for two different strategies: (a)
based on an observer–controller separation and (b) based on simultaneous design derived from the
variable reduction lemma (a.k.a. Finsler’s lemma). While [50] takes uncertainties in the nonlinear
function and disturbance rejection into account, parametric uncertainties in the linear system were
not considered, which is the main motivation of this paper.

This paper is organized as follows. Section 2 describes the discrete-time Luré systems and sum-
marizes theoretical results used in the rest of the paper. Section 3 derives stabilizing static and
fixed-order dynamic output feedback control designs for nominal Luré systems, and Section 4
derives corresponding results for Luré systems with polytopic parametric uncertainty. The SOF con-
trol design methods proposed in this paper are demonstrated and compared in numerical examples
in Section 5. Section 6 concludes the paper.

2. MATHEMATICAL PRELIMINARIES

2.1. Notation and definitions

The notation is quite standard. ZC and RC denote the set of all nonnegative integers and the set
of all nonnegative real numbers, respectively. k � k is the Euclidean norm for vectors, or the cor-
responding induced matrix norm for matrices. 0 and I denote the matrix whose components are
all zeros and the identity matrix of compatible dimension, respectively. X � 0 denotes that the
matrix X is positive definite, X � 0 denotes that X is positive semidefinite, and X � 0 and
X � 0 denote negative definite and semidefinite matrices, respectively. Sym.X/ WD X C XT and
X? denotes a full-rank matrix orthogonal to X . Sn�n is the set of symmetric matrices in Rn�n.
For a given set S , Co.S/ refers to the convex hull of S , which is a minimal convex containing
S . Throughout this paper, the nonlinearity � is taken to be a member of some specific classes of
nonlinear operators.

Definition 1 (§Definitions of classes of nonlinear operators)
A nonlinearity � W Rnq	ZC ! Rnq is of familyˆj˛jsb if

�
˛�1i �i .�; k/C �

� �
˛�1i �i .�; k/ � �

�
6 0,

and is of family ˆj�jsr if ��i 6 �i .�;k/��i . O�;k/
��O�

6 �i for all �; O� 2 Rnq , k 2 ZC, and i D
1; : : : ; nq , where the subscript i denotes the i-th element of the vector and 0=0 is interpreted as 0.
A nonlinearity � W Rnq 	 ZC ! Rnp is of family N̂ ˛sb if k�.�; k/k 6 ˛k�k holds for all � 2 Rnq ,
k 2 ZC. A nonlinear mapping � W Rnq 	 ZC ! Rnp is of family N̂ �sr if k�.�; k/ � �. O�; k/k 6
�k� � O�k for all � ¤ O� 2 Rnq , k 2 ZC.

Note that the aforementioned classes of nonlinear functions are allowed to have time depen-
dence, whereas most of existing literature (including textbooks [17, 51]) on the absolute stability
analysis and the Luré problems consider time-invariant static functions. Similar definitions for time-
dependent sector-bounded nonlinear functions can be found in [52] and considered in [53], for
example. Any global input–output characteristic in Definition 1 can be relaxed to its counterpart of
local properties for semi-global or local analysis.

§The classes of nonlinear functions ˆj˛jsb and ˆj�jsr are also known as sector-bounded and slope-restricted nonlinear
functions [7, 20].
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2.2. Lagrange relaxations

The positiveness of a quadratic function f0.x/ in a constraint set expressed in terms of quadratic
functions, fi .x/, i D 1; : : : ; m, can be implied by a relaxed form with (Lagrange) multipliers [36].
This approach is called the S-procedure, which is a special case of Lagrange relaxation in which the
constraints are represented in terms of quadratic functions, and the multipliers can be combined into
an LMI inequality. For convenience, the form of the S-procedure used in the proofs of this paper is
given in the succeeding discussions.

Lemma 1 (S-procedure for quadratic inequalities)
For the symmetric matrices Ri , i D 0; : : : ; m, consider the two sets:
(S1) ��R0� < 0; 8� 2 ¹� 2 Fnj��Ri� 6 0; 8i D 1; : : : ; mº, where F denotes either R or C;
(S2) 9�i > 0, i D 1; : : : ; m such that R0 �

Pm
iD1 �iRi � 0.

The feasibility of (S2) implies (S1).

2.3. Variable reduction lemma

In LMI-based robust control theory, it is common to transform a set of nonconvex inequalities to
an LMI that is either equivalent or a conservative approximation, or to eliminate some decision
variables in the original inequalities such that the reduced optimization problem is convex in the
remaining variables. In the elimination process, the eliminated variables that satisfy the original
non-convex inequalities can be reconstructed from the solution of the reduced LMI. Finsler’s lemma
(a.k.a. the variable reduction lemma) is a well-known result for the elimination of parameters to
reduce a particular class of BMI to an equivalent LMI.

Lemma 2 (Finsler’s lemma [1])
The following statements are equivalent:
(a) �TS� > 0 for all � ¤ 0 such that Rx D 0;
(b) .R?/TSR? � 0 for RR? D 0;
(c) S C �RTR � 0 for some scalar �;
(d) S CXRCRTXT � 0 for some unstructured matrix X .

2.4. Discrete-time Luré systems

This paper considers the design of static and fixed-order dynamic output feedback controllers
for some classes of Luré systems with multi-valued nonlinear mappings in a negative feedback
interconnection. The global (or local) asymptotic (or exponential) stability of the closed-loop sys-
tem is guaranteed in the presence of the internal and/or external perturbations. The discrete-time
Luré systems

xŒkC1� D AxŒk� C BppŒk� C �.xŒk�; uŒk�; k/;

qŒk� D CqxŒk�; pŒk� D ��.qŒk�; k/;

yŒk� D CyxŒk�;

(2)

are considered where x 2 Rn and y 2 Rny denote the state and the measurement vector, respec-
tively, q 2 Rnq and p 2 Rnp are the input and output of the nonlinearity, respectively, and u 2 Rnu

is the control input. In addition, the nonlinear function � W Rn 	 Rnu 	 ZC ! Rn is assumed to
be Lipschitz in the first argument. The nonlinear operator � 2 ˆ, where ˆ is a set of nonlinear
functions that satisfy �.0; k/ � 0 for all k 2 ZC and have some specified input–output character-
istics described in Definition 1. Beyond Luré systems with fixed values of the system matrices, we
also consider Luré systems in which the system matrices and control function � are dependent on
uncertain parameters. More specifically, these maps are defined by sets that affinely depend on the
uncertain parameter 	 2 ‚ 
 Rn� , where the set ‚ is assumed to be compact and convex.
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2.5. Stability analysis and state feedback control

The lemma in the succeeding texts provides a sufficient condition for analyzing the stability of
the Luré system (2) with � 2 ˆj˛jsb or � 2 N̂ ˛sb that is later applied to the formulation of control
design methods.

Lemma 3
The system (1) with the memoryless nonlinearity � 2 ˆj˛jsb and � D 0 is globally asymptotically
stable (GAS) if there exists a positive-definite matrix Y D Y T and a diagonal positive-definite
matrix T such that the LMI 2

664
�Y � � �

0 �T � �

AY �BpT �Y �

CqY 0 0 �S˛T

3
775 � 0; (3)

is feasible, where S˛ D diag¹1=˛21 ; : : : ; 1=˛
2
np
º. Similarly, the system (1) with the memoryless

nonlinearity � 2 N̂ ˛sb is GAS if there exists Y D Y T � 0 such that the LMI (3) with S˛ D 
I,

 � 1=˛2, and T D I is feasible.

Proof
(Sketch) The LMIs (3) are obtained from applying the S-procedure in Lemma 1 and the Schur
complement lemma [1, Chapter 2] to a Luré-type Lyapunov function. The stability condition used
in derivation of this LMI condition corresponds to a scaled Popov criterion. Details of the proof are
in [35, Chapter 4]. �

Now consider the Luré system (2) with a control affine term �.xŒk�; uŒk�; k/ D BuuŒk� with
controllable pair .A;Bu/ and design objective of determining a linear state feedback controller

uŒk� D KsxŒk� (4)

where Ks is the control gain matrix of compatible dimension. Applying the feedback controller (4)
to the system (2) results in the closed-loop system:

xŒkC1� D .AC BuKs/xŒk� � Bp�.qŒk�; k/: (5)

The lemma in the succeeding texts provides a sufficient LMI condition for the linear state feedback
controller (4) to stabilize the closed-loop system (5).

Lemma 4
The closed-loop system (5) with � 2 ˆj˛jsb is globally asymptotically stabilized by the state feedback
controller uŒk� D KsxŒk� with Ks D W Y �1 if the LMI2

664
�Y � � �

0 �T � �

AY C BuW �BpT �Y �

CqY 0 0 �S˛T

3
775 � 0; (6)

is feasible for Y D Y T � 0, a diagonal matrix T > 0, andW , where S˛ D diag¹1=˛21 ; : : : ; 1=˛
2
np
º.

If the LMI (6) with S˛ D 
I, 
 � 1=˛2, and T D I is feasible, then the closed-loop system
(5) with � 2 N̂ ˛sb is globally asymptotically stabilized by the state feedback control law (4) with
Ks D W Y

�1.

Proof
(Sketch) Similarly to (3), the LMI (6) is obtained from applying the S-procedure in Lemma 1
and the Schur complement lemma [1, Chapter 2] to a Luré-type Lyapunov function. The stability
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condition used in the derivation of this LMI condition corresponds to a scaled Popov criterion.
Details of the proof are available in [35, Chapter 4]. �

2.6. Parameter-dependent Lyapunov functions

Robustness analysis and synthesis have been extensively studied for linear systems with poly-
topic uncertainty. A widely used approach to these problems is to search for a common quadratic
Lyapunov function that is reformulated into a sufficient condition written in terms of matrix inequal-
ities. The use of a single quadratic Lyapunov function can result in highly conservative results,
which motivated subsequent efforts that reduce conservatism by using PDLFs. To illustrate the
use of PDLFs while presenting some theoretical results used later in the paper, consider the
uncertain system

xŒkC1� D A.	Œk�/xŒk�; (7)

where A is affine in 	Œk� 2 ‚ 
 Rn� , k 2 ZC. Consider a Lyapunov matrix that is also affine in the
parametric uncertainty vector 	 , that is, X.	Œk�/ D

Pnv
jD1 �j .	Œk�/Xj ; where

Pnv
jD1 �j .	Œk�/ D 1,

�j .	Œk�/ 2 Œ0; 1� for all 	Œk� 2 ‚ 
 Rn� , and Xj D XT
j is real for each j D 1; : : : ; nv . In

addition, suppose that ‚ is a convex hull with a finite set of vertices ‚v , that is, ‚ D Co.‚v/. It is
straightforward to apply Lyapunov analysis to show that if the matrix inequality

AT.	Œk�/X.	ŒkC1�/A.	Œk�/ �X.	Œk�/ � 0 (8)

holds for all 	Œk�; 	ŒkC1� 2 ‚ 
 Rn� at each k 2 ZC, then the origin of the uncertain system (7)
is GAS. Because the parameter-dependent matrix (8) is not jointly convex in 	Œk� and 	ŒkC1�, it is
desirable to find an equivalent LMI condition to (8). To do this, the next lemma is adapted from a
similar result in [44].

Lemma 5 (Polytopic parameter-dependent systems)
The origin of the uncertain system (7) is GAS for any time-varying uncertain vector 	Œk� 2 ‚ 
 Rn�

if any of the following inequalities holds for the specified variables:

1. There exists a Lyapunov matrix X.	Œk�/ D XT.	Œk�/ D
Pnv
jD1 �j .	Œk�/Xj � 0 such that

AT.	Œk�/X.	ŒkC1�/A.	Œk�/ �X.	Œk�/ � 0; 8	 2 ‚I (9)

2. There exists a Lyapunov matrix Y.	.k// D Y T.	.k// D
Pnv
jD1 �j .	.k//Yj � 0 such that

�
Y.	Œk�/ Y.	ŒkC1�/A

T.	Œk�/

A.	Œk�/Y.	ŒkC1�/ Y.	ŒkC1�/

�
� 0 (10)

for every 	 2 ‚;
3. There exists a Lyapunov matrix X.	Œk�/ D XT.	Œk�/ D

Pnv
jD1 �j .	Œk�/Xj � 0 and G of

compatible dimensions such that

�
X.	Œk�/ AT.	Œk�/G

T

GA.	Œk�/ Sym.G/ �X.	ŒkC1�/

�
� 0 (11)

for every 	 2 ‚, or equivalently,�
Xj AT

jG
T

GAj Sym.G/ �Xi

�
� 0; 8i; j D 1; : : : ; nvI (12)
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4. There exists a Lyapunov matrix Y.	Œk�/ D Y T.	Œk�/ D
Pnv
jD1 �j .	Œk�/Yj � 0 and H of

compatible dimensions such that�
Sym.H/ � Y.	Œk�/ H TAT.	Œk�/

A.	Œk�/H Y.	ŒkC1�/

�
� 0 (13)

for every 	 2 ‚, or equivalently,�
Sym.H/ � Yj H TAT

j

AjH Yi

�
� 0; 8i; j D 1; : : : ; nv: (14)

The inequalities (11) and (13) are jointly affine in the uncertain parameter vectors 	Œk� and 	ŒkC1�.
The LMIs (12) and (14) that check feasibility only at vertices follow from the next standard lemma,
which follows from the convexity of linear matrix inequalities. The positive-definite matrix X is
used to refer to a primal Lyapunov solution, while the positive-definite matrix Y is used to refer to
a dual variable for the associated dual Lyapunov solution. The matrix inequalities in terms of the
Lyapunov matrix X have a different structure than the matrix inequalities in terms of the Lyapunov
matrix Y , as seen by comparing (11)–(12) with (13)–(14). As seen in Section 3, the matrix inequal-
ities in terms of X in (11)–(12) have a structure that enables the derivation of design methods for
systems with uncertainties in the output channel, and the matrix inequalities in terms of Y in (13)–
(14) have a structure that enables the derivation of design methods for systems with uncertainties in
the input channel.

Lemma 6
Let ‚ be a convex hull and ‚v be the set of its vertices, each vertex having a finite number of
elements. For a given matrix-valued function F W Rm 	 ‚ ! SN�N that is affine in the second
argument, the set S.F;‚/ , ¹x 2 Rm W F.x; 	/ � 0; 8	 2 ‚º, whose cardinality is not
necessarily finite, is nonempty if and only if the finite set S.F;‚v/ is nonempty.

Remark 1
Note that no product terms of Xj , Yj , and Aj appear in (11)–(14), which is indispensable to
reducing the corresponding controller synthesis problems in the next sections to LMIs or ILMIs.

2.7. Static output feedback for LTI systems

The closed-loop LTI system

xŒkC1� D AxŒk� C BuuŒk�; yŒk� D CyxŒk�; (15)

is GAS with an output feedback controller uŒk� D KoyŒk� if and only if the matrix AC BuKoCy is
Schur stable, that is, the eigenvalues of AC BuKoCy are inside the open unit circle in the domain
of complex variables. This condition for a stabilizing controller is equivalent to the existence of a
gain matrix Ko that satisfies discrete-time Lyapunov inequality

.AC BuKoCy/
TY.AC BuKoCy/ � Y � 0 (16)

for some Y D Y T � 0, which can be rewritten in terms of the dual version of an equivalent
continuous-time Lyapunov inequality

.Ad C Bu;dKoCy;d /Xd CXd .Ad C Bu;dKoCy;d /
T � 0; (17)

where

Ad ,
�
�0:5I 0
A �0:5I

�
; Bu;d ,

�
0
Bu

�
; Cy;d ,

�
Cy 0

�
;

and Xd D diag¹X;Xº with X D Y �1.
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The LMI (17) contains bilinear terms in the unknown (decision) matrices X and Ko, separated
by constant system matrices. Checking the feasibility of the inequality (17) is a nonconvex problem
that is known to be NP-hard [54, 55]. This nonconvex inequality (17) can be reduced to a simpler
set of coupled linear matrix inequalities [54] given in the next lemma, which follows from applying
Finsler’s lemma (Lemma 2) to (17).

Lemma 7
The matrix inequality (17) holds for some Ko and X (or Y ) if and only if X (or Y ) satisfies the two
matrix inequalities:

B?u;d
�
AdXd CXdA

T
d

� �
B?u;d

	T
� 0; (18)

�
C T
y;d

	? �
AT
dYd C YdAd

� 
�
C T
y;d

	?�T

� 0; (19)

where XY D YX D I such that XdYd D YdXd D I.

Finding X D XT � 0 and Y D Y T � 0 that jointly satisfy the two matrix inequalities (18)
and (19) with YX D XY D I is still a nonconvex problem, but search methods to obtain a local
suboptimal solution have been developed based on iterative sequential solutions of the two LMI
problems with respect to X and Y (6). By substituting a solution X (or Y ) for (18) and (19) into
(17) or (16), a stabilizing static output feedback control gain matrix Ko can be computed for the
system (15).

3. OUTPUT FEEDBACK CONTROL OF DISCRETE-TIME LURÉ SYSTEMS

This section derives static and fixed-order dynamic output feedback controller design equations for
discrete-time Luré systems with either � 2 N̂ ˛sb or � 2 ˆj˛jsb .

3.1. Static output feedback controller design

Consider the SOF control problem for the Luré system

xŒkC1� D AxŒk� C BuuŒk� � Bp�.qŒk�; k/

yŒk� D CyxŒk�; qŒk� D CqxŒk�;
(20)

where �.�; �/ is in a specific class N̂ ˛sb or ˆj˛jsb . The triplet .A;Bu; Cy/ is assumed to be stabilizable
and detectable.

For SOF controller synthesis for the nominal Luré system (20), replacing A by AC BuKoCy in
the LMI (3) results in the optimization

min
Y;Ko




s.t. Y � 0;

2
664

�Y � � �

0 �I � �

AY C BuKoCyY �Bp �Y �

CqY 0 0 �
I

3
775 � 0: (21)

The LMI constraint (21) can be rewritten in the same form as (17):

�
NA� C NBuKo NCy

�
NY C NY

�
NA� C NBuKo NCy

�T
� 0; (22)
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where

NA� ,

2
664
�0:5I 0 0 0

0 �0:5I 0 0

A �Bp �0:5I 0

Cq 0 0 �0:5
I

3
775 ; NBu ,

2
664

0
0
Bu
0

3
775 ;

NCy ,
�
Cy 0 0 0

�
; NY , diag¹Y; I; Y; Iº:

A sufficient LMI condition for the nonconvex problem (17) derived by [56] is used below to
derive suboptimal static output feedback controller design methods.

Theorem 1
Consider the system (20) with Cy of full row-rank and the SDP

min
Y;N




s.t. Y � 0;
NA� NY C NY NA

T
� C

NBuN NCy C NC
T
yN

T NBT
u � 0:

(23)

The closed-loop system (20) with � 2 ˆ˛
�

sb , where ˛� D 1=
p

� and 
� is the optimal value of

(23), is globally asymptotically stabilized by the static output feedback controller Ko D NM�1

where the full rank matrix M satisfies MCy D CyY .

Proof
The proof is straightforward from the results of Theorem 1 in [56]. As Cy is a full row-rank matrix,
there exists a unique solution M 2 Rny�ny satisfying the linear matrix equation M NCy D NCy NY ,
which is equivalent to MCy D CyY . Thus, if N and Y solve the SDP (23), then setting
Ko D NM�1 solves the inequality (22) and gives a stabilizing output-feedback control law
u D Koy for the system (20) where the nonlinear operator is � 2 ˆ1=

p
��

sb . �

Theorem 2
Consider the system (20) with Bu of full column-rank and the SDP

min
X;N




s.t. X � 0;
NX NA� C NA

T
�
NX C NBuN NCy C NC

T
yN

T NBT
u � 0;

(24)

where NX D diag¹X; I; X; Iº. The closed-loop system (20) for � 2 ˆ˛
�

sb where ˛� D 1=
p

� and


� is the optimal value of (23) is globally asymptotically stabilized by the static output feedback
controller Ko DM�1N where the full rank matrix M satisfies BuM D XBu.

Proof
The proof is similar to the proof of Theorem 1. As Bu is a full column-rank matrix, there exists a
unique solution M 2 Rnu�nu satisfying the linear matrix equation NBuM D NX NBu, which is equiva-
lent to BuM D XBu. Thus, if N and X solve the SDP (24), then setting Ko D M�1N solves the
inequality (22) and gives a stabilizing output-feedback control law u D Koy for the system (20)
where the nonlinear operator is � 2 ˆ1=

p
��

sb . �

Apart from the previous design methods to compute stabilizing SOF controllers based on param-
eterization of the control gain Ko, the next theorem proposes another approach using the Finsler’s
lemma to solve the inequality (22) from which a stabilizing SOF control gain Ko can be obtained.
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Theorem 3
There exists a stabilizing SOF controller gain matrixKo for the system (20) with � 2 N̂ ˛sb and upper
sector bound ˛ , 1=p
 if there exists Y D Y T � 0 such that

NB?u
�
NA� NY C NY NA

T
�

� �
NB?u
�T
� 0; (25)

�
NC T
y

�? � NX NA� C NAT
�
NX
� ��
NC T
y

�?	T
� 0; (26)

where NY D diag¹Y; I; Y; Iº and NX D NY �1.

Proof
The proof directly follows from (22) and Lemma 7. �

The SDPs in Theorems 1–3 can be reformulated to compute stabilizing SOF controllers of the
Luré system whose nonlinear operator is described by a more general class of sector conditions, � 2
ˆ
j˛j
sb , which is defined as being componentwise. This reformulation is accomplished by replacing

the matrices NA� , NY , and NX in the LMIs of each design criterion by

NAS˛ ,

2
664
�0:5I 0 0 0

0 �0:5I 0 0
A �Bp �0:5I 0
Cq 0 0 �0:5S˛

3
775 ;

NYT , diag¹Y; T; Y; T º;

NXT , diag¹X; T;X; T º;

respectively, where S˛ D diag¹1=˛21 ; : : : ; 1=˛
2
np
º and T � 0 is a diagonal matrix.

3.2. Fixed-order dynamic output feedback control

When the desired order of a dynamic output feedback controller is less than or equal to the order of
the nominal system, that is, nc 6 n, the design problem can be reformulated as an equivalent static
output feedback design problem, in the same manner as for LTI systems [57]. Consider a state-space
realization of the dynamical output feedback controller

�ŒkC1� D Ac�Œk� C BcyŒk�; uŒk� D Cc�Œk� CDcyŒk�; (27)

which has the transfer function C.´/ D Cc.´I � Ac/�1Bc CDc , where

u´ D C.´/y´; (28)

and u´ and y´ are the ´-transformations of uŒk� and yŒk�, respectively. The closed-loop Luré system
obtained with (27) can be written as

NxŒkC1� D NA NxŒk� C NBuuŒk� � NBp�. NqŒk�; k/;

NyŒk� D NCy NxŒk�; NqŒk� D NCq NxŒk�;
(29)

where NA , diag¹A; 0º, NBu , diag¹Bu; Iº, NBT
p ,

�
BT
p 0
�
, NCy , diag¹Cy ; Iº, NCq ,

�
Cq 0

�
,

Nx , .xT; �T/T is the concatenated state, and uŒk� is the output of a static output feedback controller
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uŒk� D Kdof NyŒk�I Kdof ,
�
Dc Cc

Bc Ac

�
: (30)

Hence, all of the static output feedback control results presented in this paper can be applied to
dynamic fixed-order feedback control problems when nc 6 n by using the transformed state-space
realization

NG.´/ ,

2
4 NA NBu NBp
NCy 0 0
NCq 0 0

3
5 : (31)

4. OUTPUT FEEDBACK CONTROL FOR POLYTOPIC DISCRETE-TIME LURÉ SYSTEMS

This section derives static output feedback controller design equations for polytopic uncertain
discrete-time Luré systems with either a nonlinear function � 2 N̂ ˛sb or � 2 ˆj˛jsb in Figure 1.

4.1. With parametric uncertainties in the output channel

Consider the system

xŒkC1� D A.	Œk�/xŒk� C BuuŒk� � Bp�.qŒk�; k/;

yŒk� D Cy.	Œk�/xŒk�; qŒk� D CqxŒk�;
(32)

where xŒk� 2 Rn is the state and uŒk� 2 Rnu is the control input at time k 2 ZC, and 	Œk� 2 ‚
specifies the parametric uncertainty, where ‚ 
 Rn� is a polytope that is closed and compact.
Assume that the mappings A W ‚ ! Rn�n and Cy W ‚ ! Rny�n are continuous in 	.k/ 2 ‚
which is Lebesgue measurable for all k 2 ZC. The parametric uncertainty is described in terms of a
polytopic linear differential inclusion (PLDI) [1] in which the state and output matrices in (32) are
affinely dependent on the time-varying parameter vector 	 W ZC ! ‚,

�
A.	/ Cy.	/

�
2 �AC , Co

�
�vAC

�
; 8	 2 ‚; (33)

where �vAC ,
®�
A1 Cy;1

�
; : : : ;

�
Anv Cy;nv

�¯
and nv D 2n� .

Two different SOF controller design schemes are proposed for the system (32) with PDLFs given
in Section 2.6.

Theorem 4
Consider the system (32) with .A.	Œk�/; Cy.	Œk�// represented as a PLDI (33) and assume that Bu is
of full column-rank. If there exist matrices X.	Œk�/ D

Pnv
jD1 �j .	Œk�/Xj , G, Mg , and Ng such that

the LMIs

Figure 1. Polytopic uncertain Luré system controlled by output feedback.
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BuMg D GBu2
664

Xj � � �

0 I � �

GAj C BuNgCy;j �GBp Sym.G/ �Xi �
Cq 0 0 
I

3
775 � 0
Xj � 0

(34)

are feasible for all i; j D 1; : : : ; nv , then Ko D M�1g Ng is a stabilizing SOF control gain, that is,
the feedback control signal

uŒk� DM
�1
g NgyŒk� (35)

stabilizes the system (32) whose uncertain model is represented by the PLDI (33).

Proof
Consider the LMI condition (3) and replace the matrix A by A.	Œk�/ C BuKoCy.	Œk�/. From the
equivalent conditions in (11) and (12), if there exist Xj D XT

j � 0, G, and Ko such that the
matrix inequality

2
664

Xj � � �

0 I � �

GAj CGBuKoCy;j �GBp Sym.G/ �Xi �
Cq 0 0 
I

3
775 � 0 (36)

holds for all i; j D 1; : : : ; nv , then uŒk� D KoyŒk� is a stabilizing controller for the system (32)
whose uncertain model is represented by the PLDI (33). Consider a parameterization of SOF
control gains Ko D M�1g Ng where Mg solves the matrix equality BuMg D GBu for the full
column-rank matrix Bu. Then the inequality (36) reduces to the conditions in (34). �

Theorem 5
There exists a stabilizing SOF control gain matrix Ko for the system in Theorem 4 if there exist
matrices G, H , and X.	Œk�/ D XT.	Œk�/ D

Pnv
jD1 �j .	Œk�/Xj � 0 that satisfy the LMIs


1

2
666664

Sym.H/ �X�1j � � � �

0 I � � �

AjH �Bp Sym.G�1/ � �

CqH 0 0 
I �

0 0 G�T 0 X�1i

3
777775 


T
1 � 0; (37)



.j /
2

2
664
Xj � � �

0 I � �

GAj �GBp Sym.G/ �Xi �
Cq 0 0 
I

3
775
�


.j /
2

	T
� 0; (38)

for all i; j D 1; : : : ; nv , where 
1 , diag¹I; I; B?u ; I; Iº and 
.j /2 , diag¹.C T
y;j /
?; I; I; Iº.

Proof
See Appendix B.1. �
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4.2. With parametric uncertainties in the input channel

Consider the system

xŒkC1� D A.	Œk�/xŒk� C Bu.	Œk�/uŒk� � Bp�.qŒk�; k/;

yŒk� D CyxŒk�; qŒk� D CqxŒk�;
(39)

where xŒk� 2 Rn is the state and uŒk� 2 Rnu is the control input at time k 2 ZC, and the parameter
vector 	Œk� 2 ‚ where ‚ 
 Rn� is a polytope that is closed and compact. The mappings A W ‚!
Rn�n and Bu W ‚ ! Rn�nu are assumed to be affine and continuous in 	 2 ‚ which is Lebesgue
measurable:

�
A.	/ Bu.	/

�
2 �AB , Co

�
�vAB

�
; 8	 2 ‚; (40)

where �vAB ,
®�
A1 Bu;1

�
; � � � ;

�
Anv Bu;nv

�¯
, nv D 2n� , and 	 W ZC ! ‚ is a time-varying

vector.
Two SOF controller design schemes are proposed for the system (39) by considering PDLFs given

in Section 2.6.

Theorem 6
Consider the system (39) where .A.	Œk�/; Bu.	Œk�// are within a PLDI (40) and Cy is assumed to be
full row-rank. If there exist the matrices Y.	Œk�/ D

Pnv
jD1 �j .	Œk�/Yj , G, Mg , and Ng such that the

LMIs

MgCy D CyG2
664

Sym.G/ � Yj � � �

0 I � �

AjG C Bu;jNgCy �Bp Yi �

CqG 0 0 
I

3
775 � 0
Yj � 0

(41)

are feasible for all i; j D 1; : : : ; nv , then Ko D N�1g Mg is a stabilizing SOF control gain, that is,
the feedback control signal

uŒk� D N
�1
g MgyŒk� (42)

stabilizes the system (39) whose uncertain model is represented by the PLDI (40).

Proof
The proof is similar to Theorem 4. Consider the LMI condition (3) and replace the matrix A in (3)
by A.	Œk�/C BuKoCy.	Œk�/. From the equivalent conditions in (13) and (14), we have that if there
exist Yj D Y T

j � 0, G, and Ko such that the LMIs

2
664

Sym.G/ � Yj � � �

0 I � �

AjG C Bu;jKoCyG �Bp Yi �

CqG 0 0 
I

3
775 � 0 (43)

hold for all i; j D 1; : : : ; nv , then uŒk� D KoyŒk� is a stabilizing controller for the system (32) whose
uncertain model is represented by the PLDI (33). Consider a parameterization of SOF control gains
Ko D M�1g Ng , where Mg solves the matrix equality MgCy D CyG for the full row-rank matrix
Cy . Then the inequality (43) reduces to the conditions in (41). �
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Theorem 7
There exists a stabilizing SOF control gain matrix Ko for the system in Theorem 6 if there exist
matrices G, Y.	Œk�/ D Y T.	Œk�/ D

Pnv
jD1 �j .	Œk�/Yj � 0, and H such that the matrix inequalities



.j /
3

2
664

Sym.G/ � Yj � � �

0 I � �

AjG �Bp Yi �

CqG 0 0 
I

3
775
�


.j /
3

	T
� 0; (44)


4

2
666664

Sym.G�1/ � � � �

0 I � � �

HAj �HBp Sym.H/ � Y �1i � �

Cq 0 0 
I �
G�1 0 0 0 Y �1j

3
777775 


T
4 � 0; (45)

hold for all i; j D 1; : : : ; nv , where 
.j /3 , diag¹I; I; B?u;j ; Iº and 
4 , diag¹.C T
y /
?; I; I; I; Iº.

Proof
See Appendix B.2. �

The numerical algorithms that implement the results in this section are described in Appendix A.

5. NUMERICAL EXAMPLES

This section applies the results of the previous section to design static output feedback controllers
for some uncertain Luré systems. The numerical examples are intended for comparisons, especially
in terms of conservatism of the different design methods. The LMIs were solved using off-the-shelf
software [58, 59].

Example 1
To enable a comparison of all of the design methods in Section 4, this example has uncertainty only
in the A-matrix. Consider the system (32) or (39) with

A.	Œk�/ 2 Co.¹A1; A2º/; Bu D
�
0:0758

0:7576

�
; Bp D

�
�0:6711
�0:4003

�
;

Cq D
�
�0:0071 0:2107

�
; Cy D

�
0:3939 0:0303

�
;

where

A1 D

�
0:9697 0:1515

�0:3030 0:5152

�
; A2 D

�
0:9753 0:1235

�0:2469 0:2346

�
;

and nonlinearities are within the set � 2 N̂ ˛sb. Suppose that the control objective is to maximize
the upper bound ˛ on the sector such that the closed-loop system (32) or (39) is stabilized by
the static output feedback controller uŒk� D KoyŒk�. The values for ˛� and K�o computed from
using the results in Theorems 4–7 are reported in Table I. This example indicates that the different
design methods can produce controllers with different levels of conservatism for systems that only
have uncertainty in the state matrix A. The least conservatism was obtained by the design methods
presented in Theorems 5 and 7.

Example 2
This example compares the two different design methods in Section 4.1. Consider the system
(32) with
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Table I. The maximal upper bound on the sector
and optimal SOF control gains for Example 1.

Design methods ˛� K�o

Theorem 4 1.0827 �0:6507
Theorem 5 1.4497 �0:2701
Theorem 6 1.3412 �0:8133
Theorem 7 1.4497 �0:9091

Table II. The maximal upper bound on the sector and
optimal SOF control gains for Example 2.

Design methods ˛� K�o

Theorem 4 0.6277

�
0:3858 �0:2707
�0:0245 �0:0195

�

Theorem 5 0.8972

�
0:1572 �0:0695
�0:0695 �0:0038

�

Figure 2. Trajectories of system states and control signals with two different design schemes for Example 2.

A.	Œk�/ D

2
4�0:12 1 0

0 0:1C 	1;Œk� 0

0 0 0:6C 	2;Œk�

3
5 ;

Bu D

2
4 1 0

0 1

1 �1

3
5 ; Bp D

2
4 0:6 0:4

�0:4 �0:6

�0:35 �0:65

3
5 ;

Cq D

�
1 0 0

0 1 0

�
; Cy.	Œk�/ D

�
1C 1:4	1;Œk� 0 �2

1 1C 	2;Œk� 0

�
;

nonlinearities within the set � 2 N̂ ˛sb, and bounds for the uncertain parameters as 	1;Œk� 2 Œ�0:5; 0�
and 	2;Œk� 2 Œ0; 0:5� for all k 2 ZC. Suppose that the control objective is to maximize the upper
bound ˛ on the sector such that the closed-loop system (32) is stabilized by the static output feedback
controller uŒk� D KoyŒk�. The values of ˛� and Ko computed from Theorems 4 and 5 are shown
in Table II. As in Example 1, the design method in Theorem 5 achieved the larger value of ˛� than
for the design method in Theorem 4. Figure 2 shows the state and control input trajectories for the
closed-loop system (32) with �.q/ D ˛� tanh.q/, where the uncertain parameters are randomly
generated in ‚ with a uniform distribution. The main differences in closed-loop state trajectories is
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that one design method has faster response for x1 and the other design method has faster response
for x3.

Example 3
This example compares the two different design methods in Section 4.2. Consider the system
(39) with

A.	Œk�/ D

2
4�0:12 1 0

0 0:1C 	1;Œk� 0

0 0 0:6C 	2;Œk�

3
5 ;

Bu.	Œk�/ D

2
4 1 0

0 1C 1:4	1;Œk�
1C 1:2	2;Œk� �1

3
5 ;

Bp D

2
4 0:6 0:4

�0:4 �0:6

�0:35 �0:65

3
5 ; Cq D

�
1 0 0

0 1 0

�
; Cy D

�
1 0 �2

1 1 0

�
;

nonlinearities within the set � 2 N̂ ˛sb, and bounds for the uncertain parameters as 	1;k 2 Œ�0:5; 0�
and 	2;k 2 Œ0; 0:5� for all k 2 ZC. Suppose that the control objective is to maximize the upper bound
˛ on the sector such that the closed-loop system (39) is stabilized by the static output feedback
controller uŒk� D KoyŒk�. The values of ˛� and Ko computed from Theorems 6 and 7 are shown in
Table III. As in Example 1, the design method in Theorem 7 achieved the larger value of ˛� than the
design method in Theorem 6. Figure 3 shows the state and control input trajectories for the closed-
loop system (39) with �.q/ D ˛� tanh.q/, where the uncertain parameters are randomly generated
in the given bound ‚ with uniform distribution.

Table III. The maximal upper bound on the sector and
optimal SOF control gains for Example 3.

Design methods ˛� K�o

Theorem 6 0.5808

�
0:4782 �0:8366
�0:0852 0:1144

�

Theorem 7 0.8833

�
0:3556 �0:1069
�0:1069 0:1295

�

Figure 3. Trajectories of system states and control signals with two different design schemes for Example 3.
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In Examples 1–3, the design methods in Theorems 5 and 7 had larger values for the achieved
maximum upper sector bound for which the closed-loop system is GAS than for the design methods
in Theorems 4 and 6.

6. CONCLUSIONS

Static and fixed-order dynamic output feedback control design methods are derived for polytopic
uncertain Luré systems with sector-bounded nonlinearities. The nonconvex matrix inequality for-
mulations for output feedback controller design are provided in a mathematical form for which
iterative numerical algorithms have been developed. Each iteration of the numerical algorithms is
formulated in terms of linear matrix inequalities that are solved using off-the-shelf software. The
design methods are compared in three numerical examples.

APPENDIX A: NUMERICAL METHODS FOR OUTPUT FEEDBACK CONTROLLER
DESIGN AND CONVERGENCE ANALYSIS OF ALGORITHMS

All of the output feedback control design equations considered in this paper reduce to tests of
feasibility for two matrix inequalities of the forms (18) and (19). This section summarizes two
numerical algorithms for finding feasible solutions X and Y for (18) and (19) that satisfy a non-
convex condition XY D YX D I. The min/max algorithm has demonstrated good convergence in
numerical examples, although its convergence properties have not been well established, whereas
the alternating projection algorithm has well-understood convergence properties [60–62]. A cone
complementary linearization algorithm that is originally developed to solve the cone complemen-
tary slackness condition of positive-semidefinite matrices [63] can be also used to solve the same
nonconvex optimization. These computational methods can be seen as sequential SDP relaxations,
that is, methods to iteratively solve semidefinite programs to obtain a suboptimal solution to the
original nonconvex problem. Some properties such as convergence of these numerical algorithms
are also discussed in the succeeding discussions. This appendix is not a new contribution and is only
included to provide a self-contained and concise overview of the algorithms and their convergence.

For notational convenience, define the two convex sets of positive-definite matrices:

C1 D ¹X 2 Sn W X � 0; .18/º ; (46)

C2 D ¹Y 2 Sn W Y � 0; (19)º : (47)

A.1. The min/max algorithm [46, 47]
In the min/max algorithm, the optimization problems

Xn D argmin¹`C W X 2 C1; I � Y
1=2
n XY 1=2n � `CIº;

YnC1 D argmax¹`� W Y 2 C2; `
�I � X1=2n YX1=2n � Iº:

are solved iteratively to compute the best X or Y at each step.
A.2. Alternating projection algorithm

Successive projection mappings for (18) and (19) can be formulated as alternating projection
problems in which an optimization is solved at each projection step. As stated more formally in the
succeeding discussions, the optimization at each projection step is a minimum distance problem in
a metric space equipped with the Frobenius norm, which is a Hilbert space with the inner product
defined by hA;Bi D Tr.ATB/ D Tr.BAT/.

Lemma 8
Let C1 and C2 be the convex sets described in (46) and (47). Then the projections Xn D PC1.Yn/

and YnC1 D PC2.Xn/ can be characterized as the unique solutions to the SDPs
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Xn D PC1.Yn/ WD argminX2C1 jjY
�1
n �X jjF ;

YnC1 D PC2.Xn/ WD argminY2C2 jjY �X
�1
n jjF ;

(48)

where jj�jjF indicates the Frobenius norm, that is, jjAjjF ,
p

Tr.AAT/ for a matrixA of compatible
dimension.

The objective of solving the sequential optimization (48) is to find a solution X 2 C1 \ C�12
or, equivalently, Y 2 C�11 \ C2, where C�1 denotes a set of inverse matrices from the set C .
The algorithm can be described as finding the limit of a sequence, and the existence of the limit is
guaranteed if the set of feasible solutions C1 \ C�12 or C�11 \ C2 is nonempty.

Corollary 1
Consider the sequences of feasible solutions ¹Xnº and ¹Ynº for (48). Define a sequence of matrices
¹Znºn2N that is given as

Zn WD

´
XnC1

2
for n odd;

Yn
2

for n even
(49)

Then the limit X1 WD limn!1Z2n�1 exists if and only if the set C1 \ C�12 is nonempty. Equiva-
lently, the limit Y1 WD limn!1Z2n exists if and only if the set C�11 \C2 is nonempty. Furthermore,
they satisfy the relation X1Y1 D Y1X1 D I.

Proof
This result follows from the monotone convergence theorem (for example, [64]). �

A.3. Cone complementary linearization algorithm
The same nonconvex optimization can be solved using the cone complementary linearization

method. Its SDP formulation [49] is summarized in the succeeding discussions. First, introduce the
optimization

min Tr.XY /

s.t. .X; Y / 2M 1;2
X;Y , C1 	 C2 \MX;Y ;

(50)

which is equivalent to (48), where

MX;Y ,
²
.X; Y / 2 SN�NC 	 SN�NC W

�
X I

I Y

�
� 0

³
:

The objective function of the aforementioned optimization is nonconvex but can be solved by the
linearization algorithm [49]:

1. Choose the initial guess .X0; Y0/ 2M 1;2
X;Y and set the iteration index n as 0.

2. Solve the SDP to move one step forward:

.XnC1; YnC1/ WD argmin
°

Tr.XYn CXnY / W .X; Y / 2M 1;2
X;Y

±
;

tnC1 WD Tr.XnC1Yn CXnYnC1/:
(51)

3. If the stopping criterion

jtnC1 � tnj < � (52)

is satisfied for a specified error tolerance � > 0, then the algorithm has converged. Otherwise,
go to step 2 with the increased iteration index n D nC 1.
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This sequential optimization can be described as finding the limit of a sequence, and it follows
from the monotone convergence theorem [64] that the existence of the limit is guaranteed if the set
of feasible solutions C1 \ C�12 or C�11 \ C2 is assumed to be nonempty.

Corollary 2
Consider the sequential SDP (51). There exists a limit point .X1; Y1/ for every initial condition
.X0; Y0/ 2 M 1;2

X;Y . A limiting point .X1; Y1/ achieves t1 D 2Tr.X1Y1/ D 2N if and only if
X1Y1 D Y1X1 D I.

APPENDIX B: PROOFS OF THEOREMS 5 AND 7

B.1. Proof of Theorem 5

Proof
Consider the matrix inequality (36) that is a BMI for decision variables .Xi ; Xj ; G;Ko; 
/. This
inequality can be rewritten as

NG
�
Ai;j

�
Xi ; Xj ; G

�1
�
C NBuKo NCy;j

�
C
�
Ai;j

�
Xi ; Xj ; G

�1
�
C NBuKo NCy;j

�T NGT � 0 (53)

where

Ai;j
�
Xi ; Xj ; G

�1
�
,

2
6664
1
2
Xj 0 0 0
0 1

2
I 0 0

Aj �Bp I � 1
2
G�1Xi 0

Cq 0 0 1
2

I

3
7775 ; NG , diag¹I; I; G; Iº;

NBu ,
�

0 0 BT
u 0

�T
; NCy;j ,

�
Cy;j 0 0 0

�
:

From Finsler’s lemma (Lemma 2), the existence of a feasible solution Ko solving the matrix
inequality (53) is equivalent to the feasibility of two LMIs

NB?u
�
Ai;j

�
Xi ; Xj ; G

�1
�
NG�T C NG�1Ai;j

�
Xi ; Xj ; G

�1
�� �
NB?u
�T
� 0;

. NC T
y;j /
?
�
NGAi;j

�
Xi ; Xj ; G

�1
�
CAi;j

�
Xi ; Xj ; G

�1
�
NGT
� ��
NC T
y;j

�?	T
� 0:

(54)

The second matrix inequality in (54) can be rewritten as (38). The first matrix inequality in (54) can
be rewritten as

NB?u

2
664
Xj 0 AT

j C T
q

0 I �BT
p 0

Aj �Bp Sym.G�1/ �G�1XiG�T 0
Cq 0 0 
I

3
775� NB?u �T

� 0: (55)

Applying the Schur complement lemma and a congruence transformation with an invertible
matrix results in the equivalences:


1

2
66664
Xj 0 AT

j C T
q 0

0 I BT
p 0 0

Aj �Bp Sym.G�1/ 0 G�1

Cq 0 0 
I 0
0 0 G�T 0 X�1i

3
77775 
T

1 � 0; (56)
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, 
1

2
666664

X�1j 0 X�1j AT
j X�1j C T

q 0
0 I �BT

p 0 0
AjX

�1
j �Bp Sym.G�1/ 0 G�1

CqX
�1
j 0 0 
I 0

0 0 G�T 0 X�1i

3
777775 


T
1 � 0: (57)

From Lemma 5, feasibility of (57) is equivalent to (37) in which a dummy variable H is intro-
duced. �

B.2. Proof of Theorem 7

Proof
Consider the matrix inequality (43), which is a BMI for the decision variables .Yi ; Yj ; G;Ko; 
/.
This inequality can be rewritten as

�
Ai;j .Yi ; Yj ; G

�1/C NBuKo NCy;j
�
NG C NGT

�
Ai;j .Yi ; Yj ; G

�1/C NBuKo NCy;j
�T
� 0 (58)

where

Ai;j .Yi ; Yj ; G
�1/ ,

2
6664

I � 1
2
YjG

�1 0 0 0
0 1

2
I 0 0

Aj �Bp
1
2
Yi 0

Cq 0 0 1
2

I

3
7775 ; NG , diag¹G; I; I; Iº;

NBu;j ,
�

0 0 BT
u;j 0

�T
; NCy ,

�
Cy 0 0 0

�
:

From Finsler’s lemma (Lemma 2), the existence of a feasible solution Ko solving the matrix
inequality (58) is equivalent to the feasibility of two LMIs

NB?u;j
�
Ai;j

�
Yi ; Yj ; G

�1
�
NG C NGTAi;j

�
Yi ; Yj ; G

�1
�� �
NB?u;j

�T
� 0;�

NC T
y

�? � NG�TAi;j
�
Yi ; Yj ; G

�1
�
CAi;j

�
Yi ; Yj ; G

�1
�
NG�1

� ��
NC T
y

�?	T
� 0:

(59)

The first matrix inequality in (59) can be rewritten as (45). The second matrix inequality in (59) can
be rewritten as

�
NC T
y

�?
2
664

Sym.G�1/ �G�TYjG
�1 0 AT

j C T
q

0 I �BT
p 0

Aj �Bp Yi 0
Cq 0 0 
I

3
775
��
NC T
y

�?	T
� 0: (60)

Applying the Schur complement lemma and a congruence transformation with an invertible matrix
results in the equivalences:


4

2
666664

Sym.G�1/ 0 AT
j C T

q G
�T

0 I �BT
p 0 0

Aj �Bp Yi 0 0
Cq 0 0 
I 0
G�1 0 0 0 Y �1j

3
777775 


T
4 � 0; (61)
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, 
4

2
666664

Sym.G�1/ 0 AT
jY
�1
i C T

q G
�T

0 I �BT
pY
�1
i 0 0

Y �1i Aj �Y �1i Bp Y �1i 0 0
Cq 0 0 
I 0
G�1 0 0 0 Y �1j

3
777775 


T
4 � 0: (62)

From Lemma 5, feasibility of (62) is equivalent to (44) in which a dummy variable H is intro-
duced. �
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