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Abstract: This study develops numerical algorithms to compute an ellipsoidal set of input parameters, called a design
space, that ensures that the system outputs lie within a set of design specifications in quality-by-design. The algorithm is
based on a proposed skewed spherical structured singular value vs, for which this study derives upper bounds and proves
the (scaled) main loop theorems and small-gain theorem for the Frobenius norm. Three examples are included to illustrate

applications of the numerical algorithms.

1 Introduction

One of the tenets of quality-by-design (QbD) initiatives is the
determination of a set of input parameters, called a design space,
that ensures that the system outputs lie within a set of design spec-
ifications in spite of perturbations in the manufacturing process [1].

A common industrial practice for the construction of a design
space is to collect data from a large number of time-consuming
and expensive experiments (e.g. see [2] for a description of the
state-of-the-art in industrial practice in the pharmaceutical indus-
try). Some companies take a more sophisticated approach, in which
a first-principles, grey-box, or black-box model of the manufactur-
ing process is constructed, the parameter space is gridded, and a
large number of simulations are run to determine parameter val-
ues that satisfy the output specifications. While this latter approach
requires fewer experiments, gridding is a computationally expen-
sive approach for constructing a design space. A grid of 100 values
for each of the n parameters, for example requires running 100"
simulations, which becomes infeasible when n is large and the
simulation time is long. In addition, gridding does not theoreti-
cally guarantee accurate characterisation of the design space due
to non-linearities and non-convexities in the full set of allow-
able parameters that satisfy the output specifications. In particular,
defining a set around parameter vectors that satisfy the output
specifications does not ensure that every parameter within the box
satisfies the output specifications. It is certainly preferable to have
rigorous assurances that all parameters within a design space are
valid indicators of output performance, as well as to reduce the
computational cost from exponential to polynomial time.

Existing methods for the construction of design spaces for
non-linear systems are described by box constraints on the input
parameters, which can limit the sizes of the design space specifica-
tions [3]. On the other hand, there is a strong motivation to continue
using a convex set to characterise a design space, so that the set
can be directly inserted into monitoring and feedback control algo-
rithms with minor increases in computational cost. Motivated by
this observation, as well as by the plotting of many input spaces
that are consistent with specified target regions, this paper consid-
ers the characterisation of an ellipsoidal design space, which can
be a better representation for a design space than a box set [4].

For this purpose, this paper introduces the skewed spherical
structured singular value, vg, which is a generalisation of both the
skewed structured singular value [5] and the spherical structured
singular value [6], and allows the box set to be replaced by an
ellipsoidal set. The structured singular value [7-9] has been used
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to analyse the performance and robustness properties of linear feed-
back systems. Although the computation of the structured singular
value is known to be NP-hard [10], various methods have been
developed to compute tight upper and lower bounds with a com-
putationally tractable cost, i.e. in polynomial time [11-14]. Later,
a family of structured singular values, such as the skewed struc-
tured singular value and the spherical structured singular value,
were introduced (see Section 3 for relevant definitions), which
allows different scalings of the perturbations and different uncer-
tainty descriptions, respectively. The skewed spherical structured
singular value treats the spherical (ellipsoidal) uncertainty defined
by the Frobenius norm, similarly to how the skewed structured
singular value is defined from the structured singular value.

The main loop theorem [12, 15, 16] and the scaled main loop
theorem [5, 17, 18] form the basis for the use of the structured
singular value for the analysis and design of controllers for uncer-
tain linear systems. To the authors’ knowledge, all the main loop
theorems in the existing literature employ the maximum singular
value norm (i.e. the matrix norm induced by Euclidean norms on
the input and output). However, the Frobenius norm must be used
in the analysis of systems with ellipsoidal uncertainty. Therefore,
this paper also discusses a variation of the main loop theorem and
the scaled main loop theorem for the Frobenius norm, which are
then used in the development of a numerical algorithm for QbD.

The organisation of this paper is as follows. Section 2 cov-
ers the requisite preliminary mathematical background. Section 3
introduces the skewed spherical structured singular value vy and
derives an upper bound on vs. Section 4 discusses the scaled main
loop theorem and the main loop theorem for the Frobenius norm.
Section 5 presents an algorithm for the construction of an ellip-
soidal design space by using vg. Section 6 proposes extensions
to more general cases. Section 7 presents three numerical exam-
ples that apply the proposed algorithm and theorems. Section 8
concludes the paper.

2 Mathematical preliminaries

The set of real numbers, real vectors of length n, and real matri-
ces of size n x m are denoted by R, R”, and R"*", respectively.
The set of complex numbers, real vectors of length n, and real
matrices of size n x m are denoted by C, C", and C"*", respec-
tively. For a vector v € R”, vT denotes the transpose of the vector
v, v; denotes the ith element of v, and ||v|]2» = vvTv. For a matrix
M e R"™™ MT denotes the transpose of the matrix M, for a matrix
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M e C"™™ M* denotes the conjugate transpose of the matrix M,
and mj; denotes the i,j-element of M. The n x 1 vector of ones is
denoted by 1,, the n x n identity matrix is denoted by /,,, the n x n
zero matrix is denoted by 0, and the subscripts 7 are dropped when
the dimensions are clear from the context. diag[v] for some vector
v is a diagonal matrix with v; on the diagonal and diag[4,...,4,]
for some matrices A4; is a block-diagonal matrix with 4; on the
diagonal. det(M) is the determinant of M and tr(M) is the trace of
M. The maximum singular value norm of a matrix M is denoted
by ||M]||2. The Frobenius norm of a matrix M € R"*™ is defined

as |M|lF = Vor(MTM).
For a given matrix block structure IC = (rq,...,r,), let
Ak r

1 1
= {A = diag [—rléllrl,...,—rénlrn] : i € R} R
v A/ 'n

BAx r

1

1
::{A:diag[—éllrl,... (MM]: SieR, |AllF < 1}

and
kBAx
= {A:diag [L(Sllrl,...,iénlrn]: Si € R, ||AllF Ek},
VT Vrn

where 1/,/r; are normalising factors. In fact, |A||r < I holds if
and only if 8T8 < 1 and similarly |A|F < k holds if and only if
8T8 < k.

For matrices

My M
M =
[le Mzz]

and A of compatible dimensions, the upper linear fractional
transform (LFT) is

Fu(M, A) = My + Moy Al — My A) "My,
and the lower LFT is
Fi(M,A) := Myy + MiaAU — My A) ™My

A non-invertible I — Mj1A or I —MyA occurs for some
perturbation A of interest if and only if the LFT is ill-posed. The
well-posedness of the LFT with A under consideration can be eval-
uated using the structured singular value (e.g. [16]). To simplify
the presentation, this paper assumes that this verification is car-
ried out before applying the algorithms. Note that the LFT for any
particular function is not unique.

A set of equalities utilised throughout this paper are obtained
by considering determinants for block matrices [19] for A =
diag[A1, Az] with compatible dimensions:

For non-singular / — M A» :
det(/ — M A) = det(I — My Ay) det(I — Fj(M, Ay)Ay),
For non-singular 7 — Mj1Ay :

det(l — MA) = det(I — My Ay) det(I — Fo(M, A1) As).
(1)

Remark 1: Any well-posed rational function can be written in the
LFT form by using block-diagram algebra (e.g. [16]) or through the
application of multidimensional realisation algorithms (e.g. [20]).
Multidimensional model reduction algorithms (e.g. see [21] and
references cited therein) can also be applied to an LFT to reduce
its dimensions.

Lemma 1 (Sylvester’s determinant): 1f A is an n X m matrix and B
is an m X n matrix, then det(/ + AB) = det(/ + BA).
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Lemma 2 [22]: A matrix family A is non-singular if there exists
another matrix C (multiplier) such that the AC + CTAT > 0 for all
de A

Lemma 3 (Schur product [23]): If X; > 0 and X = X] o X3, then
X >0.

Lemma 4 [24]: For vectors a and b of the same length, if 4 =
diag[a] and B = diag[h], then AXB = X o (ab").

Lemma 5 (Schur complement [25]): Suppose 4 = A* and C = C*.
Then

o [E’* g] >0iff C>0and 4 —BC~'B* > 0,

. [é‘* g]inffA>OandC—B*A_leo.

Proposition 1 (Application of Schur complement): For a vector v €
R", 1 —vTy >0 if and only if 7 —wl >o0.

Proof: Use Lemma 5 for
[ : V}
T .
1
Y m

3  Skewed spherical structured singular value

Definition 1 (Spherical structured singular value [6]): For M €
C™ ™M and IC, the spherical structured singular value is defined by

1
min{k > 0 :det(/ —kMA) =0, A € BAxr}

Ms, IC M) =

unless no k exists that makes / — kM A singular for any A €
BAx r, in which case us (M) = 0.

Definition 2 (Skewed spherical structured singular value): For M €
R™™ and K1, Ky, the skewed spherical structured singular value
is defined by

vS,’C],’Cz(M)
B 1
N i [ K= 01 det = MA) =0, A = diag[A1, kA,
Ay € BAg, r, Ay € BAg, F

unless no k exists that makes / — M A singular for any A; €
BAy, r and Ay € BA, , in which case vy i, 1c, (M) = 0.

The skewed spherical structured singular value is a natural
generalisation of the skewed structured singular value [5] to the
Frobenius norm on the perturbation matrix, and a direct gener-
alisation of the spherical structured singular value [6] to have a
different scaling on two sets of perturbations.

Theorem 1 (Upper bound for vs i, 1c,(M)):

Vex e, (M) < inf
DieDx;,Gedc

{y>0:

MT((Dy+Dy) o )M — Dy +j(GM —M"G) — y*D, <0},
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where

Ki= 11505710
Ko = (21, s72m),

Dr, = {diag[Ql,Oq] :D, e R, p, =DT > 0},

p= Zrl,i,

D, = {diag[Op,Qz] :D, eR?4, D, = DI > o},

9= Z r2,is
Ok =
{diag[G\.1...., G4, G2ol, ..., Gl : Gi = G, jG; € R}
Proof: The proof is similar to the proofs for the upper bound
for the spherical structured singular value [24, 26, 27]. First, con-

sider the conversion between the scalar uncertainty and structured
uncertainty. Let

A = diag [%81’1]“1, AU %,nslsnlrl,n] R
51 = [51,], .. ,51,,,] s
01 :diag[ : 81 11m,-.-,L31n1r1 ],
then
A1 = diag[0141]. 2)
Similarly, for
Ay = diag [;82 ryyseens ;82”,[,2”1] s
& = [52’1, - ,Sz,m] N
O =diag|: ! 5211,21,...,;52,"1,«2 ],
it holds that
Ap = diag[0262]. A3)

To prove the upper bound, use that det(/ — M A) # 0 if and only if
det(/ — AM) # 0 (from Lemma 1), and a sufficient condition for
det(/ — AM) # 0 is that there exists C such that C(/ — AM) +
(I — AM)TC* is non-singular (from Lemma 2).
Let
C=Di+y’Dy+;M'G

for some y > 0, D; € Di;, and G € Gxc. Then, by using Lemma 4,
(2), and (3), (see (4))

where

W(Dy,D5,G) = M ((Dy + D3) o [) M — Dy
+j(GM = MTG) — y*D,.

Therefore, if (4) is positive definite, then det(/ — M A) # 0. The
second term of (4) is non-negative because it is a squared form
with D; > 0. The last term of (4) is also non-negative because the
following equivalences hold

IAllF < 1and |As]lp <y~

& (0160T(0181) < 1 and (0282)7(0287) < y 2
[ (2) and (3)]

&1 — (01800181 > 0 and I — y*(0282)(0282)T = 0

(." Proposition 1)

ol [<Q161)<Q161)T

VZ(Q252)(Q232)T] z0.

Lemma 3 implies that, for D1 + Dy > 0

(D + Dy) o (1 _ |:(Q151)(Q151)T 0.

VZ(Q232)(Q252)T]> =

Thus, the last term of (4) is non-negative. Hence, if
W (D1,D7,G) < 0, then det(/ — M A) # 0 for all |Aj]|r <1 and
lA2llF <y~ L. Therefore, an upper bound on v can be obtained
by minimising y, while satisfying W (D1, D, G) < 0. O

4  Scaled main loop theorem

The main loop theorem [16] does not hold if bounds on the mixed
structured perturbation are given in terms of the Frobenius norm
(usually the maximum singular value norm is used), because the
main loop theorem relies on the equivalence

A 0
1ALz < 1and [[Az]l2 < 14 A2 < 1 for A = [ 3 Az],

®)

which does not hold for the Frobenius norm. Instead
IAIE = A7 + A2

therefore, it holds that (see (6))

Equation (5) is critical in the original proof of the main loop
theorem, hence modifications are required in order to apply the
main loop theorem to the Frobenius norm. The modification
utilises (6).

On the other hand, the invalidity of (5) does not pose any prob-
lems in our statement of the scaled main loop theorem, because the
combined mixed structured uncertainty matrix A never appears;
instead, each mixed structured uncertainty is treated separately.
This section carefully investigates how the (scaled) main loop
theorems differ for the Frobenius norm.

The following two theorems are revisions to the main loop
theorem so as to be applicable to the Frobenius norm.

CUI—AM)+ (I — AM)TC*

_ _ T 2 _ T ~ [isn@isnT®
=-V(D1,D:,G)+ U - AM) (D1 +y"D) — AM) + M ((D1+Dz)0<1 [ VZ(Q252)(Q252)TD>M’ 4)

A |A1r 0 _ DA | AL
{A.A_[O A2:|,IIA||F§1}—=A.A_|:O
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0
Az]’ IALF <€ [[A2llF < V1 —€?, VGE[O,I]}- (6)
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Theorem 2 (A variation on the main loop theorem):

s (M) <1

Msjc, (M) < 1,

=
€ max

M gc (F1(M, A2)) | <1, Ve €[0,1],
Arev/ lfézBA)CzJ:

where K1 and K, are the uncertain structures for A = diag[A1, Az]
with A; € Ag, r for given K.

Proof: (M) < 1 implies that

det <1 -M [Aol AOzD #0, VA = diag[A1, A2] € BAx r.
(7

This equation must hold for A} =0 € BAk, r, which implies that
det(/ — M»nAr) #0, YAy € BAk,

and
Ms i, (M22) < 1, (®)
which guarantees the well-posedness of F;(N,A,) for Aj €
BAk, r and hence for Ay € v/1 —€2BAy, p for any € € [0,1].
Equations (7) and (8) with (1) imply that
det(I — Fi(N, A2)Ap) # 0,
VA1 € eBAk, F, VA2 €VI1 — €2 BAx, r

for any € € [0, 1]. Therefore

€ max s ic, F1(M, Az)) | <1, Ye €[0,1].
AreV1—€?BAx, r

Theorem 3 (A variation on the main loop theorem):

M e, (M) < 1,

nsicM) <1<«
’ max i, (F1(M, A2)) < 1,
AZEBA)CZ.F

where K is the uncertain structure for A = diag[A, Az] with Aj €
Ax, r and Ay € Ax, , for given K and 5.

Proof: The inequality s, (M22) < 1 implies that
det(/ — M»nA2) #0, YAy € BAg, F. )

Similarly, the
implies that

inequality MaxA,eBAx s s jc, 1M, Az)) < 1

det(l — Fi(M,Ay)A1) #0, YA € BAx, r, YA2 € BAg, F.

(10)
With (1), (9) and (10) imply that
det( — MA) #0, YA = diag[A1, Az],
A1 € BAx, r, Ay € BAk, F. (11)

Since BAx r C {A = diag[A1, Az] : Ay € BAk, 7, Az € BAg, r ),
(11) implies that det(/ — M A) # 0 for all A € BAx . Therefore,
psic (M) < 1. O
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The scaled main loop theorem for spherical uncertainties, which
is one of the main results of this paper, is stated below.

Theorem 4 (Scaled main loop theorem for vy i, xc,(M)):

M jc, (M22) < a,
Vs M) <a & r]nax /’LS,]Cl(FI(M’ Ar) < 1.
AZEEBAKz,F

Proof: The proof is similar to those of the main loop theorem [16]
and the scaled main loop theorem [18] for the skewed structured
singular value.

(&) The inequality ugxc, (M) < o implies that

1
det(/ — M»nAr) #0, YAy e —BAg, r. (12)
o

Similarly, the inequality MaX p, e LgA ., Mo K (Fi (M, Ar)) <1
implies that : '

1
det(I — Fy(M,A2)A) #0, VA; € BAx,r, YAy € —BAg,r.
o

(13)
With (1), (12) and (13) imply that

det(/ — MA) #0,
A1 € BAg, F,

VA = diag[A1, As],

1
Ay € —BAg, F.
o
Therefore,

Ay 0
det <I—M|: 0 lA i|) #0, VA e BAg, r, YA € BAk, F,
— A2
o

which implies that vy ic, 1c, (M) < .
(=) vsi,.x,(M) < o implies that

Al 0 1
det <1 —M|: b Az]) #0, VAI € BAx, 5 VA2 € ~BAx, .

(14)
Equation (14) must hold for A} =0 € BAg, r and hence
1
det(/ —M»nAr) #0, YAz e —BAx,r
o
and
Hs e, (M22) < o, (15)

which guarantees the well-posedness of Fj(N, Aj). Equations (14)
and (15) with (1) imply that

1
detd — Fi(N,A2)A1) #0, YAy € BAx, r, YAy e —BAg,r
o

and

max i, (F7 (M, Az)) < 1.
AZEéBAKZ,F

O

The well-known small-gain theorem also holds with the Frobe-
nius norm.

Theorem 5 (Small gain theorem with Frobenius norm [28]): For
the matrix M € R"*™,

[Mll, min {|AllF : detd — MA) =0} = 1.
AeRme
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Proof: For any square matrices A and M, if det(/ — M A) = 0 then
there exists x # 0 such that (/ — M A)x = 0, which implies that

llxllz = 1M Axll2 < [M 21| Ax]l2
[l Ax|l2
2
llxl2
< IMI2lIAll2 = M2 AllF-

= 1< M|

Completing the proof just requires showing that there exists a A
in the set that shows that the latter inequality can be replaced by
an equality. Choose
1
= vu"
1M112

where a singular value decomposition of M is M = USVT and v
and u are columns of U and V' that correspond to the maximum sin-
gular value. Then A is a matrix of rank one with ||A|F = 1/||M|2
that satisfies

1
I-—MANu=u—-USVT vilu=u—u=0,
1M ]2

so I —MA has a non-trivial null space and det(/ — MA) =
0. Hence the inequality holds as an equality and the proof is
complete. g

The next theorem is used when developing the proposed QbD
algorithm.

Theorem 6 (A variation on the small-gain theorem for vga, a,):
For Ky = (1),

max [|F, (M, ADl2 = Vrivs, i, (M).
A1eBAx, F

Proof: For the right-hand side of Theorem 4, the following
statements are equivalent.

vS,K[,Kz (M) <o

Msic, (M) < «a,
&
max  pgxc, (F1(M, Az)) < 1
AinBA;cz,p
det(/ — M Az) # 0, det(l — Fi(M, A2)Ay) # 0,
< 1
VA1 € BAk, F, YAy € —BAg, F
o

det(/ — M1 Ay) #0, det(I — F,(M, A1)Az) # 0,
1
) IVA| € BA, r, YAy € —BAf, F
o

det(/ — Mi1A1) #0, YA € BA, F,
max F,M,A < Jra,
N7 £ ( D2 < V1

where (x) is from (1) and i, (M11) < 1, which can be shown
in a similar manner as in (8). Therefore, from Theorem 4, it must
hold

1
Ve ok, (M) = —  max - [[F,(M, Ay

ATl D1€BAK, F

5 Application to QbD

This section develops a numerical algorithm to determine a set of
input parameters that ensures that the system output lies within a set
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of specifications. Functions relating the input and output of the sys-
tem are assumed to be rational, so that an LFT can be constructed
using multidimensional realisation algorithms.

Other non-linearities can be approximated with an LFT, by first
expanding the system output by a multivariate polynomial or ratio-
nal function of perturbations of the real parameters, which is then
written as an LFT (see [3] for a detailed discussion). Tight bounds
can be computed on the approximation error, which can be intro-
duced as an additional perturbation in the analysis to ensure that
all parameters in the constructed design space are valid for the
original non-linearity.

5.1 Problem setup

Problem 1: Consider a system described by a rational map y :
R” — R, that maps a parameter vector p € R” to an output y(p) €
R. Suppose that bounds ypmi, and ymax on y(p) are given such
that there exists at least one parameter vector po that satisfies
Ymin < ¥®0) < Ymax. The objective of the QbD analysis problem
is to determine a matrix £ = ET > 0 and a vector p. such that an
ellipsoid in the parameter space expressed by

E={p:(p—p)"Ep—pc) <1}

has the maximum volume among all the ellipsoids in the parameter
space whose elements consist only of model parameters p satisfying

Ymin = Y(P) < Ymax- (16)

The matrix £ determines the shape of the ellipsoid and the vector
pec is the centre of the ellipsoid.

Due to the non-linearity in y(p), it is straightforward to modify
the proof of the NP-hardness of the p analysis in [10] to show that
the exact calculation of this design space £ is NP-hard. The follow-
ing subsection proposes a method for approximating the solution
to Problem 1 with skewed spherical structured singular values.

5.2 Approach

The proposed approach to Problem 1 considers two subproblems.

5.2.1  Approximation problem: Determine a target shape of
the uncertainty ellipsoid £ = ET > 0 and the centre of the ellipsoid
pe for an initial estimate of a set

E=lp:(p—p)TE@—p) <1},

for which the most elements of {:’ satisfy (16) and the most
parameters p satisfying (16) are in £.

This approximation problem can be skipped, if the nominal
parameter vector p. is known and the objective is to find a design
space centred at the nominal parameter vector with a specified
shape of the ellipsoid, such as a sphere.

5.2.2 Tuning problem: By scaling the initially estimated set
&, find the maximum-volume ellipsoid of the form

E=:p—p)"E@—p) <1, where E = o*E for some « € R}
17)

such that Vp € € satisfies (16).

Here p. and E are known from the approximation problem and
« is a tuning parameter that is used to maximise the volume of the
ellipsoid.

This problem can be further simplified by using a unit ball,
instead of an ellipsoid, by noting that the parameter set £ defined
in (17) can also be expressed by

— 1
E={p:p=petaVE sq I6gla<1 acR), (18

where pe, E, and « are the same as in (17). With 8q in (18),
the output of the system can be expressed using a different map
7 :R"” > R and the revised tuning problem is below.
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5.2.3 Tuning problem’ (revised): Since the map is rational,
it can be written in the form of an LFT. Suppose that the LFT
has minimal dimension of A, so as to minimise the computational
cost.

Find the smallest o for M («) such that

Ymin < Fy(M (@), A1) < Ymax, (19)

where
y(p) =3(8q) = Fy(M(a), Ay) (20)
and M («) takes the form of

—1
o "My My
M(a) =
(@) [a—lel Mzz]’

and

. 1 1 1
Ay = diag |:_rl§qllr1, _rz‘SCIZIrza cees _(Sinrn]

o s N

satisfies A; € BAi, r given that ||8g|» < 1.

5.2.4 Algorithm for the approximation problem: Step I:
Approximate the region of p that satisfies (16) using a polytope
P = {plaiTp < b;,i=1,...,n}, which is used to obtain a better
approximate solution to the problem in Step 2. The set P depends
on n and a;, which can be determined by the first-order Taylor
series approximation of the system y(p), or alternatively, some
points on the boundary (namely, several p that satisfy y(p) = ymin
or y(p) = Ymax) can be chosen as vertices. If y(p) is polynomial
in p, then finding the extreme values of y(p) on the boundary
of a given ellipsoid can be formulated in terms of linear matrix
inequalities [29].

Step 2: With a fixed P, find a maximum-volume ellipsoid

E={p:@p-p)"E@—po) <1}

inside the polytope P. .
This problem of finding p. and E can be written as (e.g. [30])

max log det E~!
Epc

such that £ = £T > 0,
ECP,

which can be cast as the max-det problem

max log det !
Ep.

such that £ = ET > 0

——1
(b,-—aiTpc)I \/E a;

. >0, i=1,...n
aiT\/E b,'—aiTpC

This max-det problem can be solved by using algorithms given in
[31, 32].

5.2.5 Algorithm for the tuning problem: The tuning prob-
lem scales the initially estimated ellipsoid by iteratively applying
bisections and the main loop theorem for the skewed spherical
structured singular value. The steps and pseudocode are given
below in Algorithm 1 (see, Fig. 1).
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Algorithm 1 :

Input: Ymax, Ymin, £, pe, € > 0 (tolerance)
Output: F

1: Step 1 (Initialisation):

Choose a; = 0 and ap > 0 such that «; satisfies (19) and a; does not satisfy
(19).}
2. Step 2 (Bisection):
3: while oy —as > ¢ do
4 o= (o +as) /2
5 Step 2-1 (write in shifted forms):
Choose large enough ¢ > 0 and write

y=Fy(M(a.), &)
= F,(M{a.),A) +e—c
= F,(M(a.), M) —e+e

6 Step 2-2 (apply the skewed structured singular value to compute bounds
with unstructured Ka):

¥ = Vs iy Ko (Miasc(cee)) — e,
¥ =~V i, Kz (Mumin(e)) + ¢

7. Step 2-3 (update bisection parameters):
8 if yuin <y and § < yax, then

& replace ary by a.
10:  else

1L replace avp by a.
12. end if

13 end while

Fig.1 Algorithm for the tuning problem

Compute a maximum-volume uncertainty ellipsoid

Step 1: Prepare to apply the bisection algorithm by choosing two
appropriate ellipsoids, one small and one large such that any p in
the small ellipsoid satisfies (16), but the larger ellipsoid contains a
p that does not satisfy (16).

Step 2: Apply the bisection algorithm. The values of the maximum
and minimum of F, (M (c.), A1) need to be computed to continue
the bisection algorithm.

Step 2-1: For a sufficiently large ¢ > 0, F,(M(a;), A1) +c =
Fy(Mpyax(cte), A1) > 0 for any Ay € BAg, r, and

max F,(M(a:), A1) = max
AieBAk,, " ¢ A1eBAk, ,

max  |Fy(Mmax(ac), Ap)| —c.

AleBA}ch

Fy(Mmax (ae), Ap) — ¢

Note that, for a scalar y, ||y|l2 = |y|. Similarly

min  F,(M(ae), A1) = A rlr?.nAn Fy(Muin(ae), Ay) +¢

AIGBA;CLF 1€BAK, £

— max  |Fy(Muyin(ac), AD| +c.

A1€BA)C1F

Step 2-2: By using Theorem 6, the maximum and minimum of the
output range with parameter o can be found by

max  Fy(M(ac), A1) = s,k (Mmax (@) — ¢,

AIEBA)CIJ.-

min  F,(M(a.), A1) = —Vs,KC1,K, (Mmin (cee)) +c.
AIEBA)CIJ.-

Step 2-3: By using Step 2-2, determine if F,, (M («.), A1) remains
inside the given bounds for any A; € BAx, r and update the
bisection parameters.
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6 Extensions

Some extensions to multiple outputs are described in this section.

6.1 Box bounds on multiple outputs

Suppose that a system is described by a non-linear map y : R” —
R” in the form of an LFT that, for a parameter vector p, yields
an output vector y(p) € R”, and that vectors yni, and ymax are
given as bounds on the output vector, such that yynin < y(®) < Ymax-
Then, the same analysis can be applied to each output, and the final
allowable set of parameters is the intersection of the » allowable
sets for each output. This proposed method can be applied to any
type of mathematical model in which the output is a continuous
function of the model parameters, including grey- and black-box
models, as well as first-principles models.

6.2 Ellipsoidal bound on multiple outputs

Suppose that the bound on the output is given in the form of a
hyperellipsoid

y(p) ' Ay(p) < 1

for some matrix 4 = AT > 0, instead of bounds on each output
Ymin < Y®) < Ymax. With (20), this constraint can be written as

INAF, (M (@), A2 = [|Fu(M' (@), A2 < 1, 21
where
szm%wlqu.

This ellipsoidal bound on a vector output can be handled by
replacing Step 2 of the tuning problem with checking whether

IFu(M (), AD2 < 1

for a given a..

7 Numerical examples

Three examples are presented in this section. The first example is

somewhat artificial, while the second example is to determine a

possible parameter range for a nasal spray so that the plume width

is in a desirable range. The last example considers conditions for

avoiding the occurrence of bifurcations, which corresponds to the

case of box bounds on multiple outputs as discussed in Section 6.
In each example, four sets are compared

B: a box set computed by (non-spherical) v upper bounds, as
proposed in [3],

Eg: an ellipsoidal set computed by bisection with spherical n
gridding,

Ep: an ellipsoidal set computed by bisection with spherical w
upper bound, and

Ev: an ellipsoidal set computed by spherical v upper bound using
Theorem 1.

In the computations of Eg and Ep, Algorithm 2 (see Fig. 3) in
the appendix is used.

Example 1: Possible parameter values for x and y
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An output is given by

1057

=% 10

where x and y are scaled factor values of two parameters x and y,
respectively, with

C2—20)
X = =
30-10° 7

200 — 5)
7-3 "

It is desired to keep —0.2 < f < 0.2.

Example 2: Possible parameter values for /' and C.
A model for the plume width R of a nasal spray given by Guo
et al. [33] is

R =26.71+ 832V —8.13C — 4.34V% + 434C?,

where V' and C are the scaled factor values for velocity
and carboxymethylcellulose (CMC) concentration, respectively,
defined by

- 2(velocity — 50)

C— 2(CMC concentration — 1%)
70 — 30 ’ '

N 2% — 0%

It is desired that the nasal spray has a plume width of 15 < R < 30.
See [3] for the construction of an LFT for this example.

Example 3: Possible parameter values for p1, p2, and p3 (a higher-
dimensional case)
A predator-prey model is given by [34, 35]

. P1X1Xx2
xp=x1(1-x1) — ———,
p3 +x1
. P1X1X2
Xy = —paxp + ——,
p3+xi

where x; and x, are scaled population numbers, and p1,p2, p3 are
parameters that characterise the behaviour of the system. For this
system to avoid bifurcations, the parameters must satisfy two con-
ditions: one to avoid a steady-state bifurcation and one to avoid a
Hopf bifurcation; these conditions can be simplified to two scalar
conditions [36].

71 Discussion

Figs. 2a—c show the sets of allowable parameters.

For a fair comparison of box and ellipsoidal sets, the simulations
are performed with fixed nominal parameters, which are denoted
by a red dot in each figure. It is possible to scale and/or change the
centre location of the square box to obtain a larger box; however,
such a framework may require more computational effort (see [37]
for a description of how to optimise the centre location).

To solve approximation problem, an initial estimate of a poly-
tope is obtained from four vertices on the boundary in Example 1,
three vertices on the boundary in Example 2, and two faces by lin-
earising the bifurcation conditions around the nominal parameters
Pe = [9,2,2]17 and four planes by forcing 7 < p; <11 and 0 <
p2 < 4 in Example 3.

In all the figures, the ellipsoidal set covers a larger region than
a box; nevertheless, both the set based on the known spherical p
upper bound [26] (Ep) and the set based on the derived spherical
v upper bound (Ev) are conservative. The upper bound in Theorem
1, Ev, is less conservative than Ep in Example 1, but vice versa
in Example 2. The conservativeness comes from the conservative-
ness of LMI upper bounds for spherical uncertainties, as Eg, which
replaces the LMI upper bounds by gridding, gives tight results in
all examples.
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a Example 1
b Example 2
¢ Example 3

8 Conclusions

This paper introduces the skewed spherical structured singular
value and describes its use in a numerical algorithm to construct
design spaces in QbD. In particular, an upper bound, the scaled
main loop theorem, and the small-gain theorem for the skewed
spherical structured singular value are derived for the algorithm.
Numerical examples show that an ellipsoidal design space can
produce a larger region than a box design space; while motivat-
ing further research toward the development of better algorithms
for computing polynomial-time upper and lower bounds on the

spherical structured singular value.
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Appendix

A regular (non-spherical) skewed structured singular value can
be obtained from a regular structured singular value using fixed
point iteration [39]. However, this approach is not straightforward
from the spherical structured singular value to the skewed spher-
ical structured singular value. An approach that uses bisection is
described in Algorithm 2 (see Fig. 3).

This algorithm utilises the fact that the second uncertainty block

is scalar for the examples. The initial value «; = 0 comes from

2210

k > 0 in Definition 2, and oy = 1/|M22| comes from det(/ —
M A) # 0 from (1). max{ps c(M1), us c(M2)} < 1 is the con-
dition that vy i, 1, (M) is greater that k.

Algorithm 2 :

Input: M, K, Ka, €
Output: v, x, i, (M)

1
2
3
4

11

Fig

. (Initialisation): &y = 0 and ks = 1/|Maa|.
: (Bisection):
: while |1 — £y /ks| > ¢ do

ke t= (k1 + k2) /2

M1 = (Myy + keMya/(1 — keMag) May)

M2 = (Myy = keMya/(1 4 ko Mag) May )
if max{p. c(M1), paxc(M2)} <1, then
replace ky by k.
else
replace ks by k.
end if

: end while
D Ve xcy k(M) = 1/k,

.3 Compute spherical v using spherical n
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