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SUMMARY

Most distributed parameter control problems involve manipulation within the spatial domain. Such prob-
lems arise in a variety of applications including epidemiology, tissue engineering, and cancer treatment. This
paper proposes an approach to solve a state-constrained spatial field control problem that is motivated by a
biomedical application. In particular, the considered manipulation over a spatial field is described by partial
differential equations (PDEs) with spatial frequency constraints. The proposed optimization algorithm for
tracking a reference spatial field combines three-dimensional Fourier series, which are truncated to satisfy
the spatial frequency constraints, with exploitation of structural characteristics of the PDEs. The computa-
tional efficiency and performance of the optimization algorithm are demonstrated in a numerical example. In
the example, the spatial tracking error is shown to be almost entirely due to the limitation on the spatial fre-
quency of the manipulated field. The numerical results suggest that the proposed optimal control approach
has promise for controlling the release of macromolecules in tissue engineering applications. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In spatial field control, manipulation within a distributed parameter system (DPS) occurs as a spa-
tial field. Spatial field control problems arise in a variety of applications including active control of
communicable disease carriers [2], the engineering of biological tissues and organs [3], and cancer
treatment [4]. The ability to manipulate within the spatial domain provides much more controllabil-
ity than the heavily studied boundary control problems (e.g., [5]). On the other hand, the enhanced
manipulation requires the determination of many more degrees of freedom. For example, for spa-
tial field control problems with three spatial dimensions, the manipulated variable is a function of
time and three spatial variables in domain, compared with boundary control in which manipulation
is defined only on the external surface.

While many theoretical results have been derived for variety of classes of spatial field control
problems [6-8], few contributions have proposed numerical algorithms that address all of the chal-
lenges that arise in real applications. Although nonlinear programming methods for solving optimal
control problems such as control vector parameterization [9, 10] and direct transcription [11, 12]
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are directly applicable to boundary control and many other optimal control problems, spatial field
control for real applications problems must be carefully formulated to arrive at a computationally
feasible solution.

Consider, for example, an attempt to solve a simple open-loop spatial field control problem using
control vector parameterization with a standard finite-difference discretization of a single partial
differential equation (PDE) over time and the three spatial dimensions with 100 grid points in each
dimension. The resulting nonlinear program with 100* = 10® optimization variables is too compu-
tationally complex to be solved with existing computer hardware and software. The spatial control
problems that arise in real applications can be more complicated, involving multiple PDEs and
typically requiring the satisfaction of spatial constraints on the state or manipulated fields.

This paper addresses a state-constrained spatial field control problem for a system described by
tightly coupled PDEs. As is common in the optimal control of PDEs, basis function expansions are
used to reduce the number of degrees of freedom to a manageable size [1, 13—15]. As the basis
function, this paper uses Fourier sine series, which results from the spectral decomposition of the
system. Instead of problem-independent basis functions such as Legendre polynomials, radial basis
functions, and proper orthogonal decomposition that have become very popular in the last decade
or so [16-20], basis functions arising from spectral decomposition are used to reduce computational
complexity. The methodology is presented in the context of a spatial field control problem motivated
by tissue engineering [3, 21-25], in which a molecular species is released within a biological tissue
from fixed embedded polymer microparticles designed to provide controlled release [26, 27]. The
transport of the molecular species is described by reaction—diffusion—convection equations in three
spatial dimensions, and the control problem is to provide a desired spatial and temporal uptake of
the molecular species throughout the biological tissue. The reader is directed to a past article [3] for
additional details on the biological motivation for the optimal control problem, including additional
references to relevant tissue engineering literature.

2. MATHEMATICAL NOTATION
For brevity purposes, this paper uses the notations:

Q:=10, 1]x[0, 1]x [0, 1], (1)
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3. SPATIAL FIELD CONTROL PROBLEM

This paper considers a system where a molecular species is initially located in small biostable bio-
compatible polymer microparticles that are embedded in a tissue scaffold along with cells [24, 25].
Over time, the molecules are released from the microparticles and taken up by the surrounding cells,
which cause the cells to change their behavior. The control objective is to provide a desired spatial
and temporal cellular uptake rate, which is related to the local molecular species concentration.

The model consists of two kinds of systems that are interconnected (Figure 1). System 1 is a
microparticle, which is a microscopic system with molecular species diffusing within the micropar-
ticle. System 2 is the tissue construct, in which a large number of microparticles are embedded.
System 2 is a macroscopic system that describes the dynamics of the molecular species within the
tissue construct as the molecules diffuse, convect because of fluid flow, and are consumed by the
cells. System 1 locally provides the manipulation to System 2, or in other words, System 1 deter-
mines the source term for System 2. The collection of System 1 consists of a large number of
microparticles and is treated as a continuum with respect to System 2, that is, each point in the
macroscopic space is associated with several microparticles that determine the source of that point.
This continuum assumption is most accurate for length scales larger than the diameter of a cell
(about 10 wm). Also, the effective transport due to Brownian motion is assumed to be spatially
uniform for both systems.

System 1
Each polymer microparticle is assumed to consist of a polymer core that initially contains a uniform
concentration of molecular species to be released and a polymer shell that initially does not contain
the molecular species. The inclusion of a polymer shell provides a much greater variety of release
rates than microspheres, including the creation of a delay in the release profile [26]. Technology
is available for manufacturing these core-shell microparticles to have precisely specified physical
properties [26].

The transport of species through a biostable and biocompatible polymeric core-shell microparticle
is described by a PDE for the concentration field of the species in the microparticle, C,(r, x, y, Z, ),

aC, (azc, 29C,

— , 1>ty 0r <R, 9
ot 8r2+r8r) P " p ©)

with initial condition

—— System 1 —
Outer Shell

- /]

System 2 Inner Shell

Figure 1. Overview of the system.
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| Cro(x,y,2), 01 <rp,
Cr(r,x,y,z,tp)—{ 0, rp <1 < Rp, (10)
and boundary conditions
aC,
=0, (11
or r=0
Cr(Rp,X,y,Z,[)kaC(X,y,Z,[), (12)

where k¥ > 0 is the effective diffusion coefficient within the core-shell microparticle, which is
assumed to be the same in the polymer core and polymer shell and can be modified by changing the
polymer chemistry, molecular weight distribution, porosity, or tortuosity [28], r is the radius of the
polymer core, R, is the outer radius, k, is the partition coefficient that can be modified by changing
the polymer chemistry, and 7, is the time for which the core-shell microparticles are activated by
a spatially uniform environmental trigger. Regarding 7,, many environmental triggers have been
demonstrated in tissue engineering applications, including pH, temperature, pressure, light, glucose,
electric current, ultrasound, magnetic field, enzymes and other proteins, and ionic strength [29-33].
These environmental triggers can be activated with spatial uniformity across the biological tissue.
C(x,y,z,t) is the molecular species concentration field in the engineered tissue construct, and C
and C, are concentrations of the same molecular species. Equation (12) relates the concentration at
the microparticle boundary to the macroscopic concentration.

To simplify manufacturing of the tissue construct, the core-shell microparticles are assumed to be
identical except for having different initial loading C;¢. The spatial variation is constrained because
of manufacturing and restricted to lower spatial frequencies, given in terms of M, N, and L as

MNL
Cro(x.y.2) = Y Cromme ™™tz (13)
—MNL

for some complex numbers Cyg mp; for —-M <m < M,—N <n<Nand—-L <[ < L

Interconnection
The manipulated field u(x, y, z, t) represents the flux of the species from the microparticles into the
tissue and is related to the core-shell microparticles by

u(x,y.z.1t) = 4mpR5J (14)

r=Rp’

where 4 R?, is the external surface area and p is the number density (the number of microparticles
per unit volume) of the core-shell microparticles. The flux at the surface of a single core-shell
microparticle is

aC,
ar

Jly—g, = — K (15)

r=Rp

Here, the system is continuous in the sense that each point in the spatial domain is associated with a
number density of microparticles. Technology exists for embedding a specified spatial distribution
of such microparticles within a tissue matrix [34, 35]. Changing the number density has exactly
the same effect on the spatiotemporal release as changing the initial loading, so the number density
p is assumed to be spatially uniform in (x, y, z) without changing the achievable value for the
control objective.

*The complex numbers Cyq_ 57 Will be selected so that Cro(x, ¥, z) is real.
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System 2
The concentration field C(x, y, z,t) in the engineered tissue construct is modeled by the reaction—
diffusion—convection equation,

aC 5
5= DV*C —v-VC —g(C)+u(x,y,z,t), ¥t > 0,(x,y,2) € Q, (16)
which is a parabolic PDE with manipulated field u(x, y, z, ¢) representing the flux of the molecular
species from the microparticles into the tissue, D > 0 is the effective diffusion coefficient, v is the
spatially uniform velocity vector field, €2 is the spatial domain as the unit cube (1), and g(C) is the
net species consumption by cellular uptake and species degradation. The effects of the molecular
species reversibly binding with the extracellular matrix can be included with minor modifications of
the model. To simplify the presentation, assume the zero initial condition

C(x,y,2,t) =0, t < tp, (17)
and the Dirichlet boundary condition
C(x,y,z,t) =0 on 09. (18)

Control Objective
The control objective is to provide a desired spatial and temporal cellular uptake rate, which is
related to the local molecular species concentration by

Ruptake(-xv y’Z,f) = fuptake(c(-xa y717t))7 (19)

where f,pake s an invertible algebraic function that can be identified from in vitro cell culture exper-
iments [36, 37]. To simplify the mathematical formulation, (19) is inverted to derive an expression
for a reference concentration field

Cd ()C, Y.z, [) = fu;tZIke (Ruptake,des ()C, Y, Z, t)) ’ (20)

for the desired cellular uptake rate Ripiake,des(X, ¥, 2, ) so that the mathematical control objective
is to determine properties of the polymer microparticles that minimize the error between the ref-
erence and model species concentration fields. The reference concentration field Cy(x, y, z,¢) is
assumed to be continuously differentiable in time and twice continuously differentiable in the spatial
directions and satisfies the zero initial condition

Cq(x,y,2,t1)=0,1<0 (1)
and the Dirichlet boundary condition
Ci(x,y,z,t) =0 on 02Q. (22)

The spatial field control problem is to determine the optimal properties of the polymer micropar-
ticles

{p»varp’kvaytp’CrO(x’y’Z)} (23)

that specify a manipulated field u(x, y, z, t) of constrained spatial variation that minimizes the error
between the reference and model species concentration fields,

E =//(Cd(x,y,z,t)—C(x,y,z,z))Zdde, 24)
TI/Q

where T = [to,tr] is the time range of interest with the final time 7y and the initial time
to = min{0,7,}. A negative ¢, allows the microparticles to be activated to give a nonzero manipu-
lated field u(x, y, z, t) for negative ¢, while the reference field C;(x, y, z, 1) is zero. The objective
function (24) takes into account the error during ¢, < ¢ < 0.
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4. OPTIMIZATION IN THE OUTPUT FIELD

This section considers the case where there is no convection term and reaction term is linear in the
concentration for System 2.
4.1. Casel:v=20,g(C)=kC,k, =0

For a system with no convection, linear uptake kinetics g(C) = kC for some k and zero partition
coefficient, the set of optimization variables is

{Iov Rp’erKvtP’CrO(xry’Z)}' (25)

By applying separation of variables [38] with k, = 0 and #, = O (the case of a nonzero time
shift is introduced later), the analytical solution to the microparticle equations (9)—(12) is

2.2
2Cr0(X,y.2) 1y . jur —SEFSt( R, | jur iy
Cr(r,x,y,z,t)ZLy)E WAL P sin I _ o5 I70R)
r — j
j=1

Rp Jmrp Rp Rp
=W (1)
(26)
Inserting this equation into (15) gives the flux at the microparticle surface,
J _ 2KTPCrO(X,y7Z) i(—l)j—i_lw([) 27)
r=Rp R% : J ’
j=1
=:w(t)
which inserted into (14) gives the manipulated field
u(x,y,z,1) = 8upkrpCro(x, y, 2)w(t). (28)
To remove redundancy in the optimization variables, define
a(x.y.2) 1= 81pkrpCro(x. .2), (29)
Fp
= 30
B R, (30)
K
= —, 31
Y R €2y
then
—yj2n?t (sir{jﬂﬂ — cos | ) £>0
wi(t) =1 i~ OSITb) (32)
0,t<0,
and
u(x,y,z,t) = alx,y, 2)w(r). (33)

These expressions indicate that the optimization in the spatial component depends only on «, and
the temporal component depends only on 8 and y. Equations (29)—(31) are used throughout the rest
of this paper.

For v = 0 and g(C) = kC, the cosine terms in (13) do not contribute to the concentration field
C because the eigenfunctions of the system are sine functions. Hence, the parameter « that satisfies
the spatial frequency constraints on the manipulated field can be written as a truncated Fourier
sine series
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MNL
alx,y,2) = Z Qmpy Sinmax sinnwysinlnz =: aynr(x, y,2), (34

where the real 3D Fourier sine series coefficients «,,,; are to be determined. Insertion into (33)
results in the manipulated field

u(x,y,z,t) =apynr(x,y, 2)w(t). (35)

Expressions for the manipulated field (34) and the Green’s function G of (16) with v = 0 [39] can
be used to derive an analytical solution for the concentration field:

t
C(x,y,z,1) :f/u(x,y‘,z,r)G(x,y,z,x,y‘,z,t —1)dVdr
0JQ

MNL (36)
= Z UmniCmni (1) sinmmx sinnmy sinlxz
where
ad 2 2 2y 2
G(x,y.2.%.7,2,1) = 826_(]')(’" +n*+1%)w* k)t 37)
X sinmmx sinnwy sinlnz sinmnax sinnmy sinlmz
and
R (O e
Cmni (1) (_1)]+ wj (). (38)

:;(D(mz—l—nz—i-lz)—yjz)nz—l—k

The reference field C; written in terms of the 3D Fourier series (also known as its spectral
decomposition [40]) is a Fourier sine series with the given boundary condition (18),

[e.¢]
Ci(x,y,z,t) = Z Cd.mni(t)sinmmxsinnmwysinlnz, 39)

where
Camni(t) =8 / Cy(x,y,z,t)sinmaxsinnmysinlmzz dV. (40)
Q
By taking into account a potentially nonzero trigger time f,, the optimization (24) can be written
equivalently as, by application of orthogonality,
MNL

) . tr 2
min E <  min Z / (camni(t) — CmniCmni (t —1p))" dt
to

UnnlBvitp Ui BYitp
Xty )
+> / (Camni())° dt.
+1 Yo

Note that ¢g ympi () = 0, YVt < 0 and recall that ¢ ¢ is the final time of interest and ty = min{0, 7,}.
This previous analysis reduces the set of optimization variables to

(41)

{amnls ﬂv ys tp}» (42)
where «,,,,,; is the (m, n, [) 3D Fourier series coefficient of «(x, y, z).
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The optimization (41) is largely decoupled and is solved by a combination of gridding and
analytical methods:

1. grid B, y, and ¢, over ranges that are guaranteed to include the global solution,

2. for each combination of these parameter values, analytically determine the optimal «,,,; for
each m, n, and / (the expressions are given in the succeeding text),

. calculate and store the value of the optimization objective E,

. repeat Steps 2 and 3 for each grid point,

. select the minimum £ for all grid points, and

. refine the grid until the optimal objective no longer reduces significantly.

AN B~ W

An initial estimate for the trigger time ¢, can be obtained by first solving the optimization for ¢, = 0
and then shifting 7, by the difference in the times in which the maximum desired and achieved
concentration fields occur. The optimization over a,,,; in Step 2 is convex and so can be determined
by basic calculus as

i c t)c t—t,)dt
d,mnl l
. fto mn ( mn ( )4 ‘ ( )

Sl (Cmmi (2 = tp))” di

For initial ranges for 8, y, and ¢, that include the global minimum, the convexity of the optimiza-
tion over o,,,; and the continuity of the solution of the PDEs as a function of the optimization
parameters imply that the optimization algorithm will converge within any specific tolerance to the
global optimum.

4.2. Casell: v=0,g(C)=kC,k, #0

For a system with no convection, linear uptake kinetics g(C) = kC and a nonzero partition
coefficient, the set of optimization variables is again

{p’ Rp,rva,ZpycrO(xyy,Z)}- (44)

The analytical solution to the microparticle equations (9)—(12) is

2C,0(x ¥,2) Z rp

r
Cr(rax7y7zvt)_ lniwj(t)
RP

(45)

2 k
p Zs ( 1)1+11n/ C(x,y,z,7)e ¥ @D g7
and the flux at the microparticle surface from (15) is

_ 2rpCro(x, y,2) 2%%kp o, o —yi2n2 (=)
Tlr=r, = > w(t) + =32 (jm)? | C(x.y.z.1)e dt,  (46)
RP Rp j=1 0

which inserted into (14) gives the manipulated field:

82 pk ) — ‘ -
u(x, y,z,1) = 8rkprpCro(x, y, Jw(r) + R—p Z(jﬂ)Z/ C(x,y,z,0)e V™09
=1 0
> ! 2.2
=a(x,y,2)w(t) + 4 Z(jff)zf C(x,y,z,0)e V™= g 47
0

j=1
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where

_ 8uk?pk,
R,

5 (48)

By choosing the initial loading in terms of a truncated Fourier sine series, the output field is also
expressed by a truncated Fourier sine series, that is,
MNL

C(x,y,z,t) = Z Cmni(t) sinmax sinnmy sinlmz (49)

for some ¢, ;. Because most of the error in (41) is due to the spatial constraint (we will see this in
the numerical example),

Emnl(t) ~ Cd,mnl(t)- (50)
By using this approximation,
MNL
u(x,y,z,t) = Z Umni(t) sinmmx sinnmysinlrz, 51
where
> ! 2.2
a1 0) % g 0(0) 4 8 3G [ ca (e 7, (52)
i—1 0

and the output field is

t
C(x,y,z.,t)=/ /u()'c,ﬁ,Z,T)G(x,y,z,i,)lé,t—r)dVdf
0 Q

MNL (53)
= Z Cmni(t) sinmmx sinnwy sinlmxz,
where
! D 2 2 12 2 k
Cmn1 (1) = i / w(r)e” POt HITHOD g1 8y i (1), (54)
0
=Cmni () asin (38)
and

0 t T

5d,mnl(l) - Z(]n)zf / Cd’mnl(f)e—w2ﬂ2(r—r)d.Ee—(D(m2+n2+l2)n2+k)(t—r)d.L._ (55)
. 0 0
j=1

The optimization strategy is similar to Case 1. By taking into account a potentially nonzero trigger
time f,, the optimization (24) becomes, by application of orthogonality,

MNL ty )
min E s min Z/ (Cd,mnl(t) - amnlcmnl(t - tp) - Ed,mnl(t)) dt. (56)

UnniBv.8.tp AmnisBv.8.tp to

Note that ¢ mu;(t) = 0, V¢ < 0 and recall that ¢ is the final time of interest and 7o = min{0,7,}.
These steps reduce the set of optimization variables to

{Olmnl, ﬂ’ %8’[1)}' (57)
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DOI: 10.1002/0ca



OPTIMAL SPATIAL FIELD CONTROL 977

The optimization (56) is largely decoupled and is solved by a combination of gridding and
analytical methods:

1. grid B, y, 8, and ¢, over ranges that are guaranteed to include the global solution,

2. for each combination of these parameter values, determine the optimal «,,,; for each m, n,
and / (this can be performed analytically, as discussed in the succeeding paragraphs),
calculate and store the value of the optimization objective E,

repeat Steps 2 and 3 for each grid point,

select the minimum E for all grid points, and

6. refine the grid until the optimal objective no longer reduces significantly.

vk W

The optimization over «,,,; in Step 2 is again convex and so can be determined by basic calculus as
tr ~
_/;;({ (cd,mnl(t) - cd,mnl(t)) Cmni1 (t — tp)dt
- .
ftbf Cmni(t — lp)zd[

As before, for initial ranges for §, y, §, and ¢, that include the global minimum, the optimization
algorithm will converge within any specific tolerance of the global optimum.

(58)

OUmnl =

5. OPTIMIZATION IN THE MANIPULATED FIELD

This section briefly describes optimization in the manipulated field, which is useful if the compu-
tational cost is expensive when trying to minimize the error in the concentration field as defined in
(24). Such cases include when g(C) is nonlinear, where analytical solution to (16) is not possible,
or when there is a convection term, that is, v 7% 0, where the solution to the PDE (16) is no longer a
Fourier sine series and orthogonality cannot be used in (41).

5.1. Justification

For a given PDE (16) and a reference field C , let

u(x,y,z,t) = argmin/ /(Cd(x,y,z,t)—C(x,y,z,t))dedt, 59)
A TJQ

u(x,y,z,t) = argmin/ / (Ca(x,y,2,1) —C(x,y,z,1))*d Vdt, (60)
B TJQ

where
e A is the set of functions u(x, y, z, ¢) that satisfies the spatial frequency constraint

MNL )
U, Y. Z0) = Y U (1)L (61)
—MNL

e [ is the set of functions u(x, y, z,t) produced by System 1 with design parameters (25) that
satisfy the spatial frequency constraint (13).

Recall that Cy is continuously differentiable in time and twice continuously differentiable in the
spatial directions, and let

Uges(X,,2,1) i= 88% —DV2Cy 4+ v-VCy + g(Cy), (62)

then
Ca(x.y,z,1) 1= G(uges) (63)
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:968-984
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where G is a nonlinear map that maps the input u to the solution to the PDE (16). Note that (62)
defines u 45 only for ¢ > 0, but it is a perfect control under the assumption that C; is zero for time
t < 0asin (21). Similarly, write

C_‘(x,y,z,t) = G(u) (64)

C(x.y.z.t) = G(@). (65)

Then the minimum error between the reference and concentration fields over the optimization
parameters can be bounded previously as follows:

~ 2
E=f/(Cd(x,y,z,t)—C(x,y,z,t)) dvdt
T JQ

= — G(i =\ )2
= /T /Q (G(uges) — G(u) + G(u) — G(u))~dVdt )

(2 o
<2/T/Q(G(udes) G(u))* dVdt +2/T/Q(G(u) G@))2 dVdt .

error due to spatial constraint error due to physics of System 1

Note that C(x, y, z,t) in (24) is replaced by ¢ (x, y,z,t) because the optimal concentration is due
to u by definition (65). The error due to the spatial constraint is a manufacturing limit that cannot be
made smaller, which motivates the minimization of the error in the last term of (66). Assuming that
the solution to the PDE depends continuously on the manipulated field, it is motivated to minimize
the error in the manipulated field

/ /Q (i1 — 1) dVdt. (67)
T

In fact, if g(C) is linear, by Young’s inequality for convolutions, error due to physics of System 1 is
bounded previously as follows;

fT/Q(G(ﬁ)—G(ﬁ))Zdth=/T[Q(Go,;l_Goﬁ)dedt

s(/T/Q|G|dth)2/TfQ(a—ﬁ)2dde,

where o denotes the convolution, and G becomes an appropriate Green’s function.

52. Casel: k, =0

For zero partition coefficient, ug.5(x, y, 2, t) in (62) gives a perfect control to System 2. Under the
spatial constraint,

o0
Im2)i
Udes (X, Y, Z, t) = Z Udes,mnl (t)e(myrx-i-nny—i- 2)i s (68)
—0o0
where
Udesmni (1) = / Uges(X,y. 2, 1)e” Xty HTR gy, (69)
Q
is truncated to
Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:968-984
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MNL

1 ] —
udes,MNL(x’ y.2.1) = Z udes,mnl(t)e(mnx+nﬂy+ T — u(x,y,z,t). (70)
—MNL

On the other hand, from (13), (14), (15), and (29), any manipulated field that is produced by System
1 with the spatial constraint is in the form of

MNL
MMNL(X,JHZ?I) = Z amnle(mnx-i-nﬂy-i-lnz)iw(t). (71)
—MNL
By substituting (70) and (71) into (67),
/ / (1 —1)* dVdt
TJQ
ty MNL . 2
[ / ( udes,mnl(t) - amnlw(l - tp)) e—(mn’x-‘rnny-i-lnz)z) dvdt
MNL
MNL 2
< SMNL/ / ”des,mnl(l) — U w(t — lp)) e—(mﬂx+nﬂy+lﬂz)l dVdt
2 _MNL
t‘
S8MNL Z / |(“desmnl(t) amnlw(l—lp) ’ d[/ ‘ —(mmx+nmy+inz)i dV
—MNL
MNL 5
=8MNL Z / ‘udes,mnl(t) _amnlw(t - tp)| dr.
—MNL

(72)

If the right-hand side of (72) becomes small, the error in the manipulated field (67) also becomes
small. Note that ¥ es mn1(¢) is already known from the reference field C4(x, y, z,¢), and w(t —¢p)
is known for a fixed dynamics of System 2 and ¢,. By replacing the objective function by the right-
hand side of the previous equation, the optimization is decoupled for determining the «,,,;. The
optimization steps are similar to minimization in the concentration field. The inequality becomes
an equality if ug.5 prnvz is a Fourier sine series or a Fourier cosine series. Finally, a(x, y, z) is
constructed by

MNL
Ot(x, y,z) = Z amnle(mnx-i-nny-i-lnz)z‘ 73)
—MNL

5.3. Casell: kp #0
As before, replace C(x, y, z,t) by C4(x, y, z,t) in the PDE to obtain

upNL (6, 3, 201) = aarvn (v, 3, (1) +82(m/ Camni(x. 7,2, e P 700 4,

Jj=1

(74)
where § is defined in (48), and

MNL
Cd,MNL(x9y$Z’t) = Z cd’rnnle(”l]r.)c-f‘fl?'[y"l‘l]'[Z)l7 (75)

—MNL
Cdmnl = f Ca(x, .2, [)e—(mnx+nny+lnz)idV (76)

Q

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2015; 36:968-984

DOI: 10.1002/oca



980 M. KISHIDA, D. W. PACK AND R. D. BRAATZ

With the time shift,
i MNL o0 : o
/ / Z ua’es,mnl(t) — Qppw(t — tp) -4 Z(jn)ycd,mnl(f)e_yj T (t_r)df
fo SR\ _mNL j=1 0
2

e—(m:rx+nrzy+lnz)i) dVdt

MNL tf o0 t 5 2
< Z / udes,mnl(z) — g w(t _tp) _SZ(J']T)Z/ Cd,mnl(r)e_w i (t_r)df dt. (77)
—MNL"’% j=1 0

The optimization is decoupled for determining «,,,;, and the optimization steps are similar to
minimization in the concentration field.

6. NUMERICAL EXAMPLE

Consider the spatial field control problem (24) with the dimensionless constants D = 1, k = 0.1,
v = 0, and the reference field

1 1

B
038 08
06 06

N N

0.4 04
02 02

y ) .

0 0 b 49

B 2

TN N g

y 0.5 \Y/o-5x y 0.5 \)(/O-SX
00 00

Figure 2. (Left) Reference field showing isosurfaces of 0.01, 0.008, 0.006, and 0.004 from inside to outside
at t = 0.7. (Right) Optimal «(x, y, z) for the microparticles showing isosurfaces of 16, 12, 8, and 4 from
inside to outside for M = N = L = 10.

1 Error Convergence
0.3 = —
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0.4 |
5 02}
0.2 g
O
0 2015} J
1 3 :
& °
05 o1y e
]
y LEC RPN 900 g
005 - - -
0 5 10 15 20
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Figure 3. (Left) Approximated reference (magenta) and optimal concentration (cyan) fields for M = N =

L = 10 showing the isosurface of 0.01 at # = 0.7. (Right) The minimum control error (41) is the red circles,

the second term in (41) is the blue crosses, and both are plotted relative to the error 5.45 x 10~3, which is
the case when no molecules are released.
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Ci(x,y,z,t) = (e — e_3x) (e — e_4y) (e_zz — e_4z) (7" = e_Zt) ) (78)

The manufacturing process that places microparticles within the 3D tissue scaffold is the most effi-
cient when the spatial variation in the initial loading in the microparticles is constrained to low
frequencies. First consider the objective of determining the optimal microparticle properties (25)
when the maximum spatial frequency in any spatial direction is 10r (M = N = L = 10).

1\ /1

y 0.5 \Y/o-5x
00

M=N=L=20 M=N=L=20

1

0.8 0.8
0.6 0.6
N N
0.4 0.4
0.2 0.2
0 0
1

N R

00 00

4
X

Figure 4. Optimal (left column) and approximated reference (right column) concentration fields showing
isosurfaces of 0.01, 0.008, 0.006, and 0.004 from inside to outside at # = 0.7 and the minimum control error,
for varying number of basis functions.
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x 10
.01 :
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- g" 7
Ct,=0
I' \\ 6
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Figure 5. Reference C, approximate (truncated) reference Cz, and optimal concentration profiles C at the
center position (x = y = z = 1/2, left) and at an off-center position (x = y = z = 1/4, right) for
M =N =L =10.

Figure 2 shows the reference field Cy4 (78) at a representative time. The optimal properties of the
microparticles are

{rp/Rp.k/R%,1,} = {0.48,0.08,—0.20} (79)

with «(x, y, x), which is proportional to the optimal initial loading, shown in Figure 2 (right). The
negative trigger time 7, indicates that the core-shell microparticles should be activated before the
given Cy is initiated, which is possible because the desired uptake rate is known a priori. The num-
ber density p and initial loading C,¢(x, y, z) of the core-shell microparticles appear as a product in
a(x,y,x), so that the extra degree of freedom can be used to simplify manufacturing. For example,
for a fixed optimal «(x, y, x), the number density p could be reduced so that fewer microparticles
would need to be positioned in a 3D tissue scaffold, by increasing the initial loading. Similarly, the
effective diffusion coefficient « and radius R, of the microparticles affect the molecular species
release through the inverse time scale k/R2, so this extra degree of freedom can also be used to
simplify manufacturing. By manufacturing to specify the pore size, the porous polymer microparti-
cles can be made with « having any specified value from arbitrarily small to nearly the value of the
effective diffusion coefficient D. This flexibility can be used to select the microparticle radius R,
small enough that the initial loading Cy¢(x, y, z) and concentration in the model (16) behave like a
continuum (R, < 1/max{M, N, L}). For example, «/ R?, = 0.08 could be obtained by selecting
R, = 0.01 <« 1/10, which is small enough to spatially resolve the initial loading, and selecting
k = 0.08(0.01)% = 8 x 107, which can be implemented by using very small pore diameters in the
polymeric microparticles.

The spatial complexity of the optimal initial loading in Figure 2 indicates that it is unlikely
that a person would be able to design the optimal initial loading by intuition,® which motivates
the application of numerical optimization. The concentration field obtained with optimal polymer
microparticles is nearly indistinguishable from the approximated reference field Cy (truncated sum
of (39)), indicating that the microparticles provide a very high degree of controllability within the
constraint on the spatial resolution (see Figure 3).

If the microparticles can be spaced more closely together, then M, N, and L increase, and
the differences between the optimal and reference fields become smaller (compare Figure 4 with
Figure 2). These differences vary with position. For example, the optimal concentration is mostly
higher than the reference for the center of the spatial domain but mostly lower than the reference for
the off-center position x = y = z = 1/4 (see Figure 5).

Zeroing the trigger time increases the minimum control error (24) by a factor of 7, indicating
that the trigger time is a useful optimization variable. Although the respective optimal concen-
tration fields look similar at first glance (see Figure 5), the zero trigger time is associated with

$The optimal initial loading is much smaller in the center of the spatial domain than in the surrounding region.
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an initial concentration increase at + = O that is less sharp, which is the primary contribu-
tion to the control error. A tissue engineer would have to assess whether the improvement in
tracking the 3D concentration field is worth the extra experimental effort of implementing an
environmental trigger.

7. CONCLUSIONS

This article is the first (other than a related conference paper) to explicitly account for the dynamics
within polymer microparticles while optimizing their spatial and temporal release of macro-
molecules within an engineered tissue construct. With its incorporation of state constraints in the
form of PDEs for the microparticles and limitations on spatial frequencies, the mathematical for-
mulation for the spatial field control problem is significantly more sophisticated than spatial field
control problems described in the literature. Spectral decomposition was a useful approach for direct
satisfaction of the spatial frequency constraints and reduction of the large number of degrees of free-
dom in the optimization problem. In the simulation results, the control error was mostly due to the
limitation on the spatial resolution, which can be overcome by using smaller microparticles spaced
more closely together.

Several directions are promising for future work. Microparticles of different design such as
microcapsules or particles constructed with biodegradable polymers could be investigated. Non-
linear cellular uptake kinetics, molecular degradation kinetics, and molecular interactions with the
extracellular matrix are also of practical importance. The ultimate objective of this research is to
develop a suite of mathematical tools for controlling the spatial and temporal development of an
engineered tissue construct that can be used to guide experimental designs and reduce trial-and-
error experimentation.
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