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List of variables for P2D model

c Electrolyte concentration
cs Solid Phase Concentration
D Liquid phase Diffusion coefficient
Deff Effective Diffusion coefficient
Ds Solid phase diffusion coefficient
Ea

Activation Energy
F Faraday’s Constant
Iapp Applied Current
j Pore wall flux
k Reaction rate constant
l Length of region
R Particle Radius, or Residual
+t Transference number
T Time, Temperature
U Open Circuit Potential
W Weight Function
e Porosity
ef Filling fraction
q State of Charge
k Liquid phase conductivity
s Solid Phase Conductivity
F1 Solid Phase Potential
F2 Liquid Phase Potential
kc Proportional Gain
ti Integral Time Constant

List of subscripts

f Final, as for final time
k Represents the time instant
LB Lower Bound
UB Upper Bound
app Applied
eff Effective, as for diffusivity or conductivity
c Related to the electrolyte concentration

cs Related to solid-phase concentration
n Related to the negative electrode—the anode
p Related to the positive electrode—the cathode
s Related to the separator

List of superscripts

T Transpose
max Maximum
Set Setpoint
avg Average, as for solid-phase concentration
surf Surface, as for solid-phase concentration
s Related to solid-phase
1 Related to the solid-phase potential
2 Related to the liquid-phase potential

Lithium-ion batteries are now ubiquitous in applications ranging
from cellphones, laptops, electric vehicles, and even electric flights.
Safety and long recharging times along with capacity and power fade
remain some of the major concerns for lithium-ion batteries.
Advanced battery management systems (ABMS) that can counter
these issues and implement optimal usage patterns are critical for
efficient use of batteries. Various optimal charging strategies have
been proposed by researchers in recent times that minimize battery
degradation or charge the batteries faster.1–4 However, most of these
strategies have been derived either using reduced-order physics-
based models, or implemented as open-loop control profiles based
on offline calculations. While model order-reduction simplifies the
governing model and decreases the numerical stiffness of the
underlying full model, it often comes at the cost of simplification
of actual physics of the system. Additionally, lithium-ion battery
models have uncertainties due to low confidence in estimated system
parameters, or parameters that can change with time, which makes
open-loop control strategy less effective and necessitates a closed-
loop (feedback) control for optimal system performance.

Model predictive control (MPC) is an advanced closed-loop
control strategy, which due to its characteristics, can be incorporated
into ABMS to derive optimal charging protocols. This framework,
while satisfying physical and operational constraints, evaluates the
control objective based on the future predictions of the plant.
Various MPC techniques deriving optimal charging profiles usingzE-mail: venkat.subramanian@utexas.edu
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approximated porous electrode pseudo-2-dimensional (P2D) models
have been published in the literature. Xavier et al. proposed MPC
strategies for controlling lithium-ion batteries using equivalent
circuit models.5 Torchio et al. proposed a linear MPC strategy based
on the input-output approximation of the P2D model.6 Torchio et al.
also proposed health-aware charging protocols for lithium ion
batteries using a linear MPC algorithm along with piecewise linear
approximation and linear time-varying MPC strategies for lithium-
ion batteries.7,8 Klein et al. proposed a nonlinear MPC framework
based on a reduced-order P2D model.9 Lee et al. proposed an MPC
algorithm for optimal operation of an energy management system
containing a solar photovoltaic panel and batteries connected to a
local load in a microgrid.10 Liu et al. derived nonlinear MPC profiles
for optimal health of lithium ion batteries using a full single-particle
model.11 Traditionally, the high computational cost of online
calculations has been often cited as one of the main reasons for
not using detailed P2D models in MPC formulations.

While nonlinear MPC formulations based on battery models have
been developed before, we propose implementation of such strate-
gies using more robust and efficient numerical solvers along with
reformulated models, allowing us to significantly reduce the
computational time of this technique and enabling their use in
real-time ABMS platforms. In this work, we design a nonlinear MPC
controller capable of deriving optimal charging profiles using the
detailed isothermal P2D model in real-time. The nonlinear model
predictive control scheme is summarized in section 2, followed by a
discussion on the numerical optimization approach used for solving
the optimal control problem within the MPC framework. We then
implement the nonlinear model predictive control technique to
derive optimal charging protocols for the thin film nickel hydroxide
electrode, discussed in section 3, for setpoint tracking objectives.
Section 4 demonstrates the nonlinear model predictive controller
designed by using the detailed reformulated P2D model. Section 5
analyses the effect of tuning parameters on the performance of the
designed controller followed by a description of the computational
efficiency achieved by the controller while using the detailed P2D
model. Section 6 summarizes and outlines the future directions of
the work.

Nonlinear Model Predictive Control

Model Predictive Control (MPC) is a multivariable control
strategy with an explicit constraint-handling mechanism. This
strategy involves generating a sequence of manipulated inputs over
a control horizon, which optimizes a defined control objective over a

prediction horizon, using an explicit process model.12,13 If a
nonlinear process model is used within the framework, then this
strategy is termed as Nonlinear Model Predictive Control
(NMPC).12,14 A nonlinear optimal control formulation15 related to
the NMPC strategy given in literature is

Formulation—I:

( ( ) ( ) ) [ ]ò j=J x t u t t dtmin , , 1
T

0

f

Subject to:

( ) ( ( ) ( ) ) ( ( ) ( ) ) [ ]= =
dx t

dt
f x t u t t g x t u t t, , , , 0 2

( ) [ ] u u t u 3LB UB

( ) [ ] x x t x 4LB UB

• Equation 1 defines the control objective J with respect to a
continuous-time model computed for a time horizon [ ]T0, f over
which the cost function j is minimized.

• Equation 2 defines the equality constraints that describe the
dynamics of the nonlinear plant denoted by a set of differential
algebraic equations (DAEs), where functions f and g describe the
differential and algebraic relations, respectively, ( )x t represents the
states of the plant, and ( )u t represents the input signals to the plant.

• Equation 3 shows the bounds on the decision variables (input
variables) ( )u t for all [ ]Ît T0, ,f where uUB denotes the upper bound
and uLB denotes the lower bound.

• Equation 4 represents the bounds on the state variables for all
[ ]Ît T0, f where xUB denotes the upper bound and xLB denotes the

lower bound on the respective state variable.

The optimal control problem in Formulation I, defined by
Eqs. 1–4 is a constrained dynamic optimization which can be solved
using direct or indirect methods.15,16 This work implements a direct
method referred to as sequential dynamic optimization. The resulting
nonlinear program (NLP) used in this method is discussed in the
next subsection.

NMPC optimal control problem using sequential dynamic
optimization.—In Formulation—I the decision variable ( )u t of the

Figure 1. Converting the continuous decision variable to discrete decision variables in the sequential dynamic optimization method: (a) represents the
continuous input variable u(t), (b) represents the discrete input variable over the time window [0, Tf].

Journal of The Electrochemical Society, 2020 167 063505



optimal control problem is a continuous variable as shown in Fig. 1a.
In sequential dynamic optimization, the infinite-dimensional optimal
control problem is reduced to a finite-dimensional NLP through
discretization of the input signal ( )u t to N discrete node points,
where N is defined as the total time Tf over the sampling time Dt

( )=
D

N .
T

t
f 16 In this method, the input signal ( )u t is assumed to be a

piecewise constant at each sampling time instant Dt as shown in
Fig. 1b. To formulate the finite-dimensional NLP, the input signal
is discretized as Î U ,p a p-dimensional real-valued vector, where
p is the prediction horizon. The reformulated finite-dimensional
NLP is

Formulation—II:

( ( ) ) ( ( ) ) [ ]å j=
=

J x t U x t Umin , , 5
U

k
k

p

k
1k

Subject to:

( ) ( ( ) )

( ( ) ) [ ]

=

= =

dx t

dt
f x t U

g x t U k p

,

, 0, 1,..., 6

k

k

[ ]= = +-U U j m p, 1,..., 7j j1

[ ]= u U u k p, 1,..., 8LB k UB

[ ] x x x 9LB UB

Equation 5 is the objective function, minimizing the cost function
j, which is solved for a finite number of optimal input signals, at

time instants tk for = ¼k p1, , . The cost function j in Eq. 5 for the
setpoint tracking objective is written in the discrete-time formulation
as

( ) ( )

( ) ( ) [ ]

å

å

j = - -

+ - -

=

=
- -

v v Q v v

U U R U U 10

k

p

k
set

k
set

k

m

k k k k

1

T

1
1

T
1

where vk denotes the controlled variable at the time instant t ,k vset

denotes its desired setpoint, Uk denotes the predicted optimal
manipulated variable at the time instant t ,k and Q and R denote
weighting parameters for setpoint tracking and input variations,
respectively.

• Equation 6 are set of equality constraints imposed by the DAE
model equations for specific time interval Dt where [ ]D Î -t t t,k k1
for = ¼k p1, , instants.

• Equation 7 describes the control horizon m. This constraint
implies that the input signal beyond the control horizon assumes a
constant value until the end of the prediction horizon. This constant
value is equal to the value of the input signal at the end of the control
horizon ( )U .m

• Equation 8 describes the bounds on the input variables over the
prediction horizon p where = ¼k p1, , .

• Equation 9 describes the bounds on the state variables over the
prediction horizon p.

Formulation II (Eqs. 5–9) can now be numerically solved using
an optimizer along with a robust numerical integrator (DAE solver).
In any optimal control problem within the NMPC framework, the
optimizer is treated as an “outer-loop” and the DAE solver is treated
as an “inner-loop.”

At each iteration in optimization, the vector of the decision
variables U provided by the optimizer is fed to the DAE solver to
simulate the model for a finite number of time instants. The state
variable trajectories from the DAE solver are then used to evaluate
the objective and constraint functions. These functional values
are sent to the optimizer, which provides an updated vector of the
decision variables for the next optimization calculation. The
resulting sequence of simulation and optimization iterations is also
referred to as sequential simulation-optimization.16

Receding horizon approach.—In the MPC framework, after
obtaining the “p” optimal inputs, the first optimal input is sent to the
plant. The resulting feedback from the plant is incorporated by
estimating the states to minimize the plant-model mismatch, upon
which the resultant NLP is solved recursively at each sampling

Table I. NMPC Algorithm.

Given: Mathematical model f, initial condition ( )x 0 , prediction horizon p,
control horizon m, sampling time Dt, and weighting matrices Q and R

Step 1: At the current sampling time t ,k set ( ) ( )¬-x t x tk k1

Step 2: Solve Formulation II for a sequence of m optimal input variables
{ ( ) ( ) ( )}¼U U U m1 , 2 , ,

Step 3: Set ( ) ( )¬u t U 1k and inject the input to the plant
Step 4: At the sampling time instant +t ,k 1 obtain the plant measurement ym

Step 5: Corresponding to y ,m estimate the states ( )+*x tk 1

(this work assumes full state feedback, for which all the states are
measurable)

Step 6: Set ¬ +t tk k 1

Step 7: Shift the prediction horizon p forward and repeat Step 1

Figure 2. Schematic representation of a model predictive controller.
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instant. This recursive method is also termed as ‘receding horizon
control’13 which is described by the algorithm in Table I. A pictorial
illustration the NMPC algorithm is shown in Fig. 2.

The design parameters for the NMPC formulation are, (i)
prediction horizon p, (ii) control horizon m (m is specified so that
m ⩽ p), (iii) the sampling period Dt, and (iv) weighting parameters
[ ]Q R, (in the objective function of Formulation II, Eq. 10) for
setpoint tracking and input variations. The weighting parameter R
makes the response of NMPC sluggish. In this work, it is taken as
zero to enable fast charging strategy.

In real systems, it might not be possible to measure all the states
of the system. In that case, the states corresponding to the new plant
measurement at sampling instant +tk 1 need to be estimated (Step 5 in
Table I). In practice, nonlinear state estimators such as Extended
Kalman Filter (EKF) or Moving Horizon Estimator (MHE) are used
to estimate the states for the control algorithm. The use of these
estimators is under investigation by the authors and will be reported
in the future work. Here, the model is differentiated from the plant
by introducing model uncertainty by perturbing certain parameters
of the system, as described in the Appendix.

Thin Film Nickel Hydroxide Electrode Model

To illustrate the implementation of the control scheme, a two-
equation model representing the galvanostatic charge process of a
thin film nickel hydroxide electrode17 is described by the DAE
model:

( ) [ ]r
=

V

W

dy t

dt

j

F
111

[ ]a+ - =j j I 0 12app1 2
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1

1
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z t F

RT
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2 2

where the dependent variable y represents the mole fraction of nickel
hydroxide and z represents the potential difference at the solid-liquid
interface. The parameters used in the model Eqs. 11–14 are in listed
in Table II.

Control objective.—The control objective is defined as a setpoint
tracking problem. According to the control objective, an optimal

current density profile is computed that drives the mole fraction (the
controlled variable) from its initial state to the desired setpoint.
While fulfilling the objective, the bounds are simultaneously
imposed on the current density.

The defined control objective can be formulated as the NLP (for
scalar y):

Formulation—III:

( ( ) ) [ ]å -
=

y k ymin 15
I k

p
set

1

2

app

subject to the constraints: model differential and algebraic
Eqs. 11–14

( ) [ ]= ¼ I k I k p0 , 1, , 16app app
max

• Equation 15 is the setpoint tracking control objective where
( )y k denotes the nickel hydroxide mole fraction for all k sampling

instants over the prediction horizon p, with each sampling instant of
time Dt, and yset denotes the desired set point for the nickel
hydroxide mole fraction.

• Equation 16 defines the bounds on applied current density ( )Iapp
over the prediction horizon p, and Iapp

max denotes the upper bound on
the applied current density.

Simulation results.—The NLP Formulation III is solved using
NMPC algorithm discussed in Table I. The closed-loop trajectories
of nickel hydroxide mole fraction, potential difference at the solid-
liquid interface, and applied current density are shown in Fig. 3.
The controller tracks the nickel hydroxide mole fraction (con-
trolled variable) to a set point at 0.9. This case study used =Q 1
and =R 0, and { }=I 2, 3app

max -A cm 2 was considered to account
physical dissimilarities between different charging units. For
satisfying this control objective, the controller is designed with a
prediction horizon p of 3 sampling periods, control horizon m of 3
sampling periods, and sampling period Dt of 100 s. To study the
robustness of the controller, model-plant mismatch is introduced
by increasing the mass of the active material W by 10% in the plant
simulation.

The controller validates the observation that a higher maximum
input current density results in the mole fraction of the nickel
hydroxide electrode reaching its reference value more quickly than
for a lower maximum current density.

Bounds on additional state variables (such as voltage (z) in this
example) can also be introduced in the NMPC framework. Such
bounds will be illustrated in detail in the next section, where the
implementation of the NMPC strategy using the pseudo-2-dimen-
sional (P2D) model of a lithium-ion battery is discussed.

Table II. Parameters of the thin-film nickel hydroxide model.

Symbol Parameter Value Units

F Faraday constant 96, 487 C/mol
R Gas constant 8.314 J/mol-K
T Temperature 303.15 K
f1 Equilibrium potential 0.420 V

f2 Equilibrium potential 0.303 V
W Mass of active material 92.7 g
V Volume ´ -1 10 5 m3

i01 Exchange current density ´ -1 10 4 -A cm 2

i02 Exchange current density ´ -1 10 10 -A cm 2

I1 Scaling factor for applied current density ´ -1 10 5 unitless

r Density 3.4 -g cm 3
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Pseudo 2-Dimensional (P2D) Model of a Lithium-Ion Battery

The Pseudo-Two-Dimensional (P2D) model is one of the most
widely used physics-based electrochemical models for lithium-ion
batteries.18 The complete set of partial differential algebraic equa-
tions (PDAEs) describing the governing equations of the P2D model
are given in Table AI in the Appendix. The associated expressions
and parameters characterizing the model are listed in Tables AII
and AIII in the Appendix, respectively. The state variables of the
P2D model are:

c c, :p
s

n
s Solid-phase lithium concentration in the positive electrode and

the negative electrode of the battery
F :1 Solid-phase potential in both the positive and the negative

electrode
F :2 Electrolyte potential in the positive electrode, negative elec-

trode, and separator.
c: Lithium-ion concentration in the electrolyte phase across the

positive electrode, separator, and negative electrode

Assuming the battery to be limited by the anode capacity, the
bulk SOC is calculated as the average of the volume-averaged solid-
phase lithium concentration across the negative electrode:

⎛

⎝

⎜
⎜
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟
⎟
⎟⎟

( ) ⁎
( )

[ ]
ò q

q q
=

-

-
SOC t

c x t dx

100

,

, 17
L c

L

s
avg1

0
min

max min

n s
n

n

max ,

where cs
nmax , denotes the maximum solid-phase concentration of

lithium in the negative electrode, cs
avg denotes the volume-averaged

solid-phase concentration in each solid particle in the negative
electrode, and Ln denotes the length of the negative electrode of the
battery. qmin and qmax are states of charge at fully discharged and
charged states, that depend on the stoichiometric limits of the
negative electrode. This choice of controlled variable illustrates
the ability and speed of the NMPC algorithm. In general, the
batteries are often limited by the lithium concentration in the positive
electrode (cathode). Additionally, state variables such as cell voltage
or temperature can also be used as controlled variables, as they can
be measured directly.

Apart from the main reaction of lithium-ion intercalation, various
side reactions occur during charging which may potentially damage
the battery.9,19,20 For example, anodic side reactions may deposit
lithium on the surface of the negative electrode (lithium plating)
thereby resulting in the subsequent loss of the battery’s capacity.20,21

The lithium plating occurs when the over-potential at the anode
becomes negative.21 As the open-circuit potential of the lithium
plating side reaction is taken as 0 V (vs Li/Li+), the over-potential
of the lithium plating side-reaction is defined as

( ) ( ) ( ) [ ]h = F - Fx t x t x t, , , 18plating 1 2

It has been previously shown that lithium plating is more likely to
occur at the anode-separator interface at high charging rates19; hence
we apply constraints only at the anode-separator interface
throughout our analysis. As F1 and F2 are obtained as internal states
of the P2D model, the anode over-potential can be tracked at any
time during charging. By constraining the anode overpotential to be
non-negative during charging, it is possible to restrict lithium plating
side reaction, thereby mitigating battery degradation. The accuracy
of the underlying model plays a vital role in predicting and thereby
restricting the anode over-potential, as it cannot be directly
measured.20 Therefore, using a detailed physics-based model (P2D
model) for BMS helps in minimizing battery degradation, thereby
enabling the utilization of the battery to its full potential.

Control objective.—The control objective of the proposed
NMPC strategy for the P2D model is defined by

( ) ( )

( ) ( ) [ ]

å

å

j = - -

+ - -

=

=
- -

v v Q v v

I I R I I 19

k

p

k
set

k
set

k

m

app k app k app k app k

1

T

1
, , 1

T
, , 1

where vk denotes the controlled variable at the time instant t ,k in
which the controlled variable is either SOC or voltage for the system
considered; vset denotes the desired set point for SOC or voltage; and
Iapp k, denotes the predicted optimal applied current density (input
variable) at the time instant t .k The first term in Eq. 19 describes the
setpoint tracking objective and the second term represents the
changes in the applied current density. The weighting factor (Q)

Figure 3. NMPC time profiles from Formulation III for (a) current density, (b) mole fraction, and (c) potential. The simulations are performed using “ode15s”
from the MATLAB solver suite as the DAE solver and “fmincon sqp” as the NLP solver.
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for setpoint tracking is described by a scalar, due to the presence of a
single controlled variable in the electrochemical system under study
but can be a vector if there are multiple controlled variables.

For Li-ion batteries, the defined objective can be interpreted as
deriving a charge current profile that drives and maintains the
controlled variable at a desired operating condition. In doing so, it is
desired to simultaneously enforce physical and operational con-
straints for the safe and optimal charging of a battery. With SOC as
the desired controlled variable, the control objective (Eq. 19) is
reformulated as the NLP with specific constraints, to obtain the
optimal control problem ( )*Iapp with Q and R are set as 1 and 0,
respectively. The original governing PDAEs are spatially discretized
using the strategy described in Northrop et al.22 and the resulting
DAEs of the reformulated P2D model are used as constraints. The
convergence analysis on the spatial discretization strategy is
discussed in Appendix.

The objective defined in Eq. 19 can also be viewed as a pseudo
minimum charging time problem as it brings similar results
compared to a battery fast-charge problem (a battery fast-charge
problem is defined as finding the optimal charging strategy to charge
a battery from an initial SOC to the desired SOC, in the shortest
possible time, with given constraints on the voltage, current,
temperature, overpotential, or other variables, for the same sample
time).

Below is a discussion of the derivation of control profiles for
various constraints employed on cell voltage and overpotential at the
anode-separator interface. Model-plant mismatch and corresponding
uncertainty in the model are introduced by changing the parameter

values as shown in the Appendix. The tuning parameters and the
bounds used are

= = = =
= =

= = D =

-

Q R SOC V

V I

p m t

1, 0, 100, 2.8 V,

4.2 V, 63 A m ,

4, 1, 30 s

set
LB

UB app
max 2

Formulation—IV:

( ) [ ]å -
=

*
SOC SOCmin 20

I k

p

k
set

1

2

app

Subject to

[ ]DAEs Describing the reformulated P2D model 21

( ) [ ]= ¼ k k pV V V , 1, , 22LB cell UB

( ) [ ]= ¼ *I k I k p0 , 1, , 23app app
max

• The objective function in Eq. 20 is the minimization of the
normed distance between SOC and its setpoint SOC .set

• Equation 21 are the set of DAEs obtained in the reformulated
model after spatially discretizing the governing PDAEs given in the
Table AI.18

Figure 4. Comparison of model simulation at CC-CV (green) and NMPC strategy (blue) with out constraint on over-potential.
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• Equation 22 represents bounds on the overall cell voltage.
Imposing bounds on the overall voltage of the battery is essential for
its safe operation. Every battery is rated by the battery manufacturer
to be operated within a specified voltage window. Hence, for safety
(and legal warranty issues imposed by the battery manufacturer in
most cases), it is recommended to restrict the battery voltage within
a finite window described by (22).

• Equation 23 describes the bounds on the applied current
density over the prediction horizon p.

This study considers an isothermal model to demonstrate the
methodology and the computational time of the algorithm. However,
additional constraints on other state variables such as temperature
can also be included in the algorithm using a thermal model.

Figure 4 shows the comparison between traditional CC-CV
profiles and optimal control profiles obtained using Formulation
IV. NMPC strategy drives and maintains the SOC at its setpoint of
100% while enforcing the bounds on the applied current density and
cell voltage. Once the SOC reaches its setpoint, the controller
progressively drops current density to zero as expected, thereby
maintaining the desired setpoint conditions. This results in a control
profile that qualitatively follows the traditional CC-CV profile until
the desired SOC is reached, while essentially charging a battery to
the final SOC in the shortest possible time. However, it should be
noted that the overpotential for the lithium plating reaction at the
anode-separator interface becomes negative (h < 0plating ) at a certain
time while charging. As discussed before, this behavior while
charging might lead to the deposition of lithium on the surface of
the negative electrode, leading to capacity fade and dendrite

formation. Therefore, for ensuring safe operating conditions, con-
straints are imposed on the plating overpotential to avoid the regimes
where h < 0,plating as in Formulation V.

Formulation—V:

( ) [ ]å -
=

SOC SOCmin 24
I k

p

k
set

1

2

app

Subject to

[ ]DAEs Describing the reformulated P2D model 25

( ) [ ]= ¼ k k pV V V , 1, , 26LB cell UB

( ) [ ]= ¼ *I k I k p0 , 1, , 27app app
max

( ) ( ) [ ]h = F - F > = ¼k k k p0, 1, , 28plating 1 2

In addition to the constraints described in Formulation IV, Eq. 28
describes the constraints on the lithium plating overpotential over the
predictive horizon p. As previously discussed, this constraint
mitigates battery degradation due to lithium plating.

Figure 5 shows the comparison of the traditional CC-CV profiles
and optimal control profiles obtained after adding the constraints on
overpotential. The results in this case study show that the proposed
manipulated variable profiles drive the controlled variable to a
desired set point, in the least time possible, while enforcing

Figure 5. Comparison of model simulation at CC-CV (green) and NMPC strategy (blue) with constraint on over-potential.
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constraints on the mechanisms which degrade the battery life.
Achieving the same SOC levels using a conventional CC-CV
charging profile will lead to negative side overpotential which might
potentially degrade the battery performance. In other words, though
conventional CC-CV protocols are time tested, the significance of
optimal control profiles can be gauged when NMPC strategies are
implemented while experimentally cycling the cells.

Servo problem.—The explicit time dependence of the stage cost/
control objective and equality and inequality constraints (comprising
model equation constraints, input, and state variable constraints)
allow for the incorporation of dynamic setpoint trajectories in NLP
defined by (5)–(9).15 In certain applications, it may be desirable for
the batteries to experience specific dynamic voltage profiles. Here,
NMPC results are presented for a time-varying setpoint on the
voltage.

Formulation—VI:

( ) [ ]å -
=

V Vmin 29
I k

p

k
set

1

2

app

Subject to

( ) [ ]= ¼ k k pV V V , 1, , 30LB cell UB

( ) [ ]= ¼ *I k I k p0 , 1, , 31app app
max

( ) ( ) [ ]h = F - F > = ¼k k k p0, 1, , 32plating 1 2

where Vset is given by the “red” dashed line in Fig. 6d. The
controller, in this case, was designed with = =p m3, 2, and
D =t 30 s. Figure 6 shows the control profiles obtained for a
dynamic setpoint trajectory.

Computational Details

Traditionally, the incorporation of a detailed physics-based
model (P2D model) in BMS applications has been said to be
computationally expensive due to their large simulation times.7

Therefore, incorporation of such models for real-time simulation and
control applications necessitates efficient, fail-proof and fast solvers.
In our previous work, we demonstrated the simulation of the
reformulated P2D model with computation time of 15 to
100 ms.20,22–24 This reduction in the simulation time facilitates the
use of P2D model for real-time control applications using NMPC, as
demonstrated by the results obtained from this work. All the results
reported in this work are obtained using MATLAB. In this
environment, the single optimization call to identify optimal current
density for single prediction horizon using detailed P2D model was
approximately 60 s. The detailed summary of the computation time
(using MATLAB) for all cases is given in Table III. The computa-
tional time (including single optimization call and single model
simulation call) for the NMPC strategy with P2D model will be

Figure 6. NMPC time profiles for Formulation VI to identify optimal current density required to match dynamically varying set-points on cell potential.
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Table III. Summary of the Formulations.

Formulation Formulation Description

I Generic optimal control problem in NMPC framework in a continuous form
II The generic optimal control formulation through discretization of the continuous input signal of the NMPC framework into a set of finite number of control parameters

Computational Time (s)
In MATLAB

Formulation Case Study Single
Optimization

Call (s)

Single
Simulation Call

(s)

Remarks

III Thin-Film
Electrode

≈1 ≈0.0088 A simple example showing implementation of NMPC framework with bounds on applied
current density using sequential approach.

IV Isothermal
P2D

≈45 ≈0.8 Implementation of NMPC strategy without any constraints on over-potential. The bounds are
specified on cell potential and manipulated variable, current density (Iapp).

V Isothermal
P2D

≈55 ≈0.8 Included constraints on over-potential in Formulation—IV. Compared to Formulation—IV,
there is change in current density profile to avoid lithium plating. The optimal control profiles
is close to conventional CC-CV charging protocol. But optimal charging is always better
strategy as it has the ability to avoid over charging as well as plating compared to
conventional charging.

VI Isothermal
P2D

≈65 ≈0.66 In control theory, it is a servo problem. In practice, some of the applications can have dynamic
cell potential profiles. This case studies the ability to implement NMPC strategies that
manipulate current density to match dynamic set-points.
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lower (≈2 s) when deployed in the C environment. The obtained
computational efficiency demonstrates that a detailed P2D model
can be used for real-time control applications of BMS. Such detailed
models facilitate aggressive and optimal charging protocols, thereby
extracting maximum performance from the cell.

Note.—The robustness of this sequential approach relies on the
integration solver (odes15s in MATLAB or IDA in C) used in the
nonlinear programming problems. In general, the isothermal and
thermal battery models pioneered by John Newman are index-1
DAE’s. ODE15s is numerical integrator in MATLAB that can handle
only index-1 DAEs. There are more robust solvers for index-1 DAE’s
such as IDA in C developed by SUNDIALs or DASSL/DASSPL.25 If
pressure models are considered in addition to electrochemical models,
the resulting DAE’s are index-2 DAEs.26 The best solvers for index-2
DAEs are RADAU.27 The use of these solver requires the specification
of exact initial conditions for the algebraic variables and also requires
the identification of index 2 variables.

As of today, for higher index DAEs, the best option is to
reformulate and reduce these DAEs to index-1 DAEs and then solve
them using Pantelides Algorithm. The difficulty for higher index
DAEs are limited to sequential approach. Even for simultaneous
approach, there will be reduction in accuracy for higher index DAEs.

Summary

This article presents implementation of nonlinear model predictive
control on physics-based battery models for deriving optimal charging
protocols. We have shown that the designed NMPC controller is
efficient in satisfying the given control objectives in the presence of
different constraints on the internal state variable and applied current
density. It is shown that the proposed controller, through constraining
the plating overpotential, can efficiently derive health-conscious
charging profiles while still charging the battery to the desired setpoint
on SOC. Further, the effectiveness of the controller in tracking a
dynamically varying setpoint is also demonstrated. This study demon-
strates that a detailed P2D model can be incorporated in the design of
ABMS for enabling real-time control of Li-ion batteries. While the
objective has been formulated as set-point based on SOC or cell
voltage, it can easily be modified to minimize the capacity fade over a
charging period (provided that the capacity fade model is incorporated)
or minimize the total charging time with constraints on the total charge
stored, among others. The formulations discussed in this work are
summarized in Table III.

For future investigations, we plan to explore implementation of
simultaneous numerical optimization strategies instead of sequential
strategies for solving the NMPC optimal control problems.
Simultaneous strategies, apart from being computationally less
expensive, do not depend on a robust DAE solver for evaluating
the objective and constraint functions. Further, path constraints
through simultaneous strategy can be handled in a more efficient
way and need not be approximated as with sequential approach.
However, this requires careful and sufficient discretization strategies
in time (number of elements, method of discretization, etc.) which
will be reported in the future. Future publications will also report on
the implementation of an output feedback NMPC, where a nonlinear
state estimator is incorporated in the existing framework, for
providing the full state information at each sampling instant.
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Appendix

Numerical procedure.—The governing equations and boundary
conditions of the P2D model given in Table AI are a set of partial
differential equations (PDAEs). The additional expressions and
parameters are given in Table AII and Table AIII, respectively.
These PDAEs in each region are discretized using the coordinate
transformation and orthogonal collocation (OC) proposed by
Northrop et al.,22 The convergence analysis for OC =
{ }1, 2, 3, 4, 5 points in each region are performed for 3C charge
rate and the comparisons are shown in Fig. A1. The Fig. A1 shows
the convergence analysis for (a) overall cell potential, (b) temporal
plot of the overpotential at the negative electrode—separator inter-
face and (c) the spatial variation of the electrolyte concentration
across the three regions of the cell. Throughout this work in
Formulations IV–VI, OC = 3 points are taken to discretize the
PDAEs that results in spatially and temporally converged profiles for

Table AI. Governing PDEs for the P2D model.
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Table AII. Additional expressions used in the P2D model.
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Table AI. (Continued).

Governing Equations Boundary Conditions
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Figure A1. Convergence analysis of the P2D model discretized using co-ordinate transformation and orthogonal collocation. The analysis performed for
(a) overall cell potential, (b) overpotential at the anode—separator interface and (c) spatial variation of the electrolyte concentration across the three regions of
the cell at 3C charge simulation.

Table AIII. Parameters used in the P2D model.

Symbol Parameter Positive Electrode Separator Negative Electrode Units

Brugg Bruggeman Coefficient 1.5 1.5 1.5
ci

s
, max Maximum solid phase concentration 51830 31080 mol m3

ci
s
,0 Initial solid-phase concentration 18646 24578 mol m3

c0 Initial electrolyte concentration 1200 1200 1200 mol m3

Di
s Solid-phase diffusivity 2e-14 1.5e-14 m s2

F Faraday’s constant 96487 C mol
ki Reaction rate constant 6.3066e-10 6.3466e-10 ( )m mol s2.5 0.5

li Region thickness 41.6e-6 25e-6 48e-6 m
Rp i, Particle Radius 7.5e-6 10e-6 m

R Gas Constant 8.314 ( )J molK
T Temperature 298.15 K

+t Transference number 0.38
ef i, Filler fraction 0.12 0.038
ei Porosity 0.3 0.4 0.3
si Solid-phase conductivity 100 100 S m
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all internal variables, with less than 10 mV error in the voltage vs
time curve (Plots for OC > [3, 3, 3] lie on top of each other).

Model Uncertainty (Model-Plant mismatch).—For this work,
the plant is simulated by the same model equations. Uncertainty in
the model (signifying error in the model), and a corresponding
mismatch with the plant, is introduced by perturbing the model
parameters compared to the plant parameters. Figure A2 shows the

comparison of model vs plant dynamics for a simulation performed
at 3C charge rate, using parameters listed in Table AIV.
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Table AIV. Parameters used for plant and model simulations.

Parameter Values Plant Model

D s

p
2e-14 2.4e-14

kp 6.3066e-10 7.567e-10
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