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SUMMARY 
Robust performance is said to be achieved if the performance specifications are met for all plants in a 

specified set. Classical loopshaping was developed decades ago to design for robust performance for 
single-loop systems with simple uncertainty and performance specifications. Specifications are often not so 
simple-multiple real parameter variations are not handled by classical loopshaping, for example. Also, it 
is important for multivariable systems that uncertainty may be present at different locations, for example, 
actuator uncertainty is located at the input of the plant whereas sensor uncertainty is located at the output 
of the plant. In this work classical loopshaping is extended to multiple parametric and unmodelled 
dynamic uncertainty descriptions, to multiple performance specifications, and to the design of 
decentralized controllers. The authors refer to this more general loopshaping technique as robust 
loopshaping . Robust loopshaping is applied to a coupled mass-spring problem studied by numerous 
researchers. 
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1 .  INTRODUCTION 

Loopshaping involves directly specifying a transfer function that parametrizes the controller 
based on magnitude bounds on the transfer function. These bounds are either necessary 
conditions or sufficient conditions so that the closed-loop system satisfies desired stability and 
performance specifications. Examples of transfer functions that parametrize the controller 
include the sensitivity S = ( I  + P K ) - ' ,  the complementary sensitivity H = PK(Z + PK)-', and 
the open-loop transfer function L = PK.  The controller K is then calculated from the specified 
transfer function. 

Advantages of loopshaping are: (1) the controller complexity (e.g. low-order, PID) can be 
directly specified, (2) decentralized controllers can be designed, and (3) the properties of 
interest to the engineer are often directly in terms of the designed loopshape. 
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The technique of loopshaping was introduced by Bode3 for the design of feedback amplifiers. 
Doyle et al. '* review classical loopshaping, where the system is single-input single-output 
(SISO), the uncertainty can be represented as a single complex A-block, and the sole 
performance specification is a bound on the peak of the closed-loop sensitivity. Uncertainty and 
performance specifications are often not so simple-control problems may involve multiple 
performance specifications, and uncertainty may be more conveniently described as real 
parameter variations. Also, it is important for multivariable systems that uncertainty may be 
present at different locations, for example, actuator uncertainty is located at the input of the 
plant whereas sensor uncertainty is located at the output of the plant. 

In this work classical loopshaping is extended to multiple parametric and unmodelled dynamic 
uncertainty descriptions, to multiple performance specifications, and to the design of decentralized 
controllers. We refer to this more general loopshaping technique as robust loopshaping. 

The basic ideas behind robust loopshaping are as follows. First, the uncertainty and 
performance specifications are written in terms of p. Second, the uncertain system is 
parametrized in terms of a transfer function to be loopshaped. Third, necessary bounds and 
sufficient bounds on the Bode magnitude plot of this transfer function are calculated in terms of 
the achievement of robust performance. One of these bounds (the sufficient upper bound) was 
derived by Skogestad and Morari,2s*26 and in this paper we extend these results by deriving a 
new sufficient lower bound, as well as two new necessary bounds (upper and lower). These 
bounds are used in the subsequent loopshaping design. We show that robust loopshaping gives 
simple analytical expressions in the simple single-loop case. We then design a controller for a 
coupled mass- spring problem studied by numerous researchers. 

2. BACKGROUND 
Below we summarize robustness analysis via the structured singular value for analysing the 
stability and performance of uncertain systems, and provide formulas to parametrize uncertain 
systems in terms of transfer functions of interest, T .  These parametrizations will be required in 
the calculation of the robust loopshaping bounds. 

2 .l. Robustness analysis 
In practice the model is an inaccurate representation of the true process. To account for this 

plant/model mismatch, the true process is represented by a sef of plants. The term robust is 
used to indicate that some property (e.g. stability or performance) holds for a set of possible 
plants as defined by the uncertainty description. 

The uncertainty is modelled as norm-bounded perturbations (Ai) on the nominal system. 
Through weights each perturbation is normalized to be of size one 

where A, is complex for representing unmodelled dynamics (treating A i  as complex is equivalent 
to treating it as a stable proper rational transfer f~nc t ion ) , ' ~ .*~  and real for representing 
parametric uncertainty. The perturbations, which may occur at different locations in the system, 
are collected in the block-diagonal matrix Au (the U denotes uncertainty) 

Au = diag { A 1 
and the system is arranged to match the left block diagram in Figure 1. The interconnection 
matrix M in Figure 1 is determined by the nominal model ( P ) ,  the size and nature of the 



LOOPSHAPING FOR ROBUST PERFORMANCE 807 
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d 

Figure 1 .  Robust performance and the M - A block structure 

uncertainty, the performance specifications, and the controller (K). Without loss of generality 
we assume that each Ai is square. l 8  

The structured singular value p (also referred to as the robustness margin)'o~13~zo~z3~z4 provides 
a necessary and sufficient test for whether a particular controller stabilizes the set of plants given 
by the uncertainty description, that is, whether the controller provides robust stability. 
Frequency-domain performance specificatio:s can also be treated as complex uncertainty (the 
block A p  between normalized disturbances d and normalized controlled variables, 8, in Figure 
1) and these blocks are included in the calculation of a larger p problem which tests for robust 
performance. The necessary and sufficient test in both cases is 

system robustness p < 1 for all frequencies (3) 
where p is a function of M and the structure of the uncertainty A. For example, the test for 
robust stability is p A u ( M , , )  < 1 and the test for robust performance is p a ( M )  c 1. For details see 
Reference 20. 

In what follows we will need the definition of linear fractional transformations (LFTs). If 
we partition M to be compatible with A,, in Figure 1, then the transfer function between 
disturbances, (i, and controlled variables, ti?, is given by the linear fractional transformation 
(LFT) 

F,(M,AU) = Mzz+Mz1Au(~- ~IlAU)%Z (4) 

The LFT F , ( M ,  A u )  is well-defined if and only if the inverse of Z - M , , A u  exists. The subscript 
'u' on F ,  is used to denote that the upper loop of M is closed by A w  If the lower loop had been 
closed instead, then the transfer function between inputs and outputs would be the LIT 
F , ( M ,  Au) = Mi, + M i z T ( I -  ~ z z A u ) - ~ ~ z I -  

It is a key idea that p is a general analysis tool for determining robust stability and robust 
performance. Any system with uncertainty adequately modelled as in (1) and with frequency- 
domain performance specifications can be put into M - A form and robust stability and robust 
performance can be tested. Off-the-shelf softwarezB9 calculates the M and A ,  given the transfer 
functions describing the system components, the performance specifications, and the location of 
the uncertainty. Upper and lower bounds for p can be calculated in polynomial-time (the upper 
bound via transformation to a linear matrix inequality, and the lower bound via a power 
iteration) and are usually close.2~29 The pitfalls in attempting to calculate p exactly in the 
presence of real parametric uncertainties is discussed by Braatz et aL8 

Parametrize uncertain system in terms of T 

Here we show how to parametrize the uncertain system in terms of the transfer function T to be 
l~opshaped.'~ For example, T could be the complementary sensitivity H = PK(Z + P K )  -', the 
sensitivity S= (Z+PK)-', the open-loop transfer function L =  PK, or the controller K. 
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Figure 2. Equivalent representations of system M with perturbation A 

Mathematically, we need to find an LFT in terms of T which describes M (see Figure 2). In many 
cases, this is done by inspection. When this is not possible, the equations given below (which are 
derived in Reference 5 but can be confirmed directly via the definition of the LFT) can be used. 

To get an Lm in terms of T, begin with the interconnection structure in terms of G and K. 
The generalized plant G is determined by the nominal model, the location and magnitude of the 
uncertainties, and the performance specifications. The generalized plant G is found directly by 
rearranging the system's block diagram (the subroutine sysic does this in p-tools).' We calculate 
N for T = H (denoted as NH) directly from G (so that M = F , ( N H ,  H)): 

For T = S, L, and K, respectively, we have 

N ~ =  G (8) 
A simple program can be written that calculates NN, NS, NL, and NK, given the transfer 
functions describing the system components, the performance specifications, and the location of 
the uncertainty blocks Ai .  

3. ROBUST LOOPSHAPING BOUNDS 

Controllers which satisfy robust performance can be designed via robust loopshaping. To 
perform robust loopshaping, the robust performance conditions are expressed as norm bounds 
on the transfer function T to be loopshaped. 

Consider a system in M - A form as shown in Figure 2. The interconnection structures in 
Figure 2 are equivalent. The closed-loop transfer matrix M is written as a linear fractional 
transformation of the transfer function of interest, namely T. In the following let AT represent 
an arbitrary transfer function with the same structure as T. We define the set of norm-bounded 
perturbations 

(9) 

(10) 

A;= (a (AT)  Q c I AT has the same stmcture as T ] 

= { a(A,) 2 c I AT has the same structure as T ) 

and its near-complement 
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The following theorems provide sufficient bounds and necessary bounds on the magnitude of 
the transfer function T for robust performance to be achieved. The basic idea of the theorems is 
to treat T as an unknown perturbation ( A T )  and to use p theory to either provide guarantees that 
the worst-case A T  satisfies the original robustness condition p(M) c k (usually k = l), or 
guarantees that the best-case A T  cannot satisfy the robustness condition. More detailed existence 
conditions and proofs of all theorems in this paper are described in the Appendix. Remarks 
follow the theorems. 

Theorem 3.1 (Suficient upper bound for r o b ~ s t n e s s ) ~ ~ * ~ ~  
Let M = F, (N ,  T )  and k be a given constant. Define 

e(c) = sup pAa(&(N,AT) )  
A,EA; 

Assume there exists cy such that e(c;”) = k. Then p A ( M )  < k if 
O ( T )  < cy 

Theorem 3.2 (SuDcient lower bound for robustness) 
Let M = F,(N,  T )  and k be a given constant. Define 

f ( c )  = sup pA(&(N, A T ) )  
A , € &  

Assume there exists c;! such that f(c;!) = k. Then p A ( M )  c k if 

a(T) > c?. 

Theorem 3.3 (Necessary upper bound for robustness) 

Let M = F,(N, T )  and k be a given constant. Define 

g(c> = inf A T ) )  
ATE a; 

Assume there exists c y  such that g ( c y )  = k. Then p A ( M )  < k only if 

b(T) < cy  

Theorem 3.4 (Necessary lower bound for robustness) 

Let M = F, (N,  T )  and k be a given constant. Define 

h(c) = inf pA(&(N, A T ) )  
A,EA; 

Assume there exists c: such that h($ )  = k. Then p A ( M )  < k only if 

b(T)  > c: 

Remark 3.5 

Many parametrizations T exist for the controller K, for example, K can be parameterized by 
the sensitivity S, the complementary sensitivity H, the open-loop transfer function L = PK, or 
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just the controller K. Controllers can also be designed via loopshaping the IMC filter F ’ ,  or the 
IMC filter time constant A. I7 Pararnetrizations for decentralized controllers are based on defining 
similar open-loop or closed-loop transfer functions as are used in the SISO case, except with the 
diagonal part of the plant replacing the plant P (details are provided in Reference 5 ) .  

Remark 3.6 

When the necessary upper and the sufficient upper bounds are very close to each other, we 
have essentially a necessary and suficient upper bound for robust performance in terms of 6(T) .  
A similar statement holds for the necessary lower and sufficient lower bounds. 

Remark 3.7 

The bounds given by each theorem are the tightest bounds possible. For example, if we have a 
T, with a(T,) larger than c: defined by Theorem 3.1, then there exists a T ,  with 8(T,) = 6(T , )  
where T, does not meet robust performance. 

Remark 3.8 
The smallest upper and largest lower bounds are obtained when A ,  is a repeated scalar block. 

This makes necessary bounds for robust performance more restrictive, and sufficient bounds 
easier to satisfy. This latter property encourages the use of repeated scalar AT (i.e. assuming all 
loops are identical) when designing decentralized controllers for robust performance via 
loopshaping. When designing controllers to have failure tolerance properties, it can be useful to 
allow AT to consist of independent 1 x 1 blocks when calculating sufficient bounds for robust 
stability. For further details on the design of decentralized controllers to satisfy failure/fault 
tolerance specifications, see Reference 5.  

Remark 3.9 

The norm bounds on different Ts can be combined over different frequency ranges. For 
example, for T, = S and T ,  = H, robust performance is achieved if either of the conditions 
8(S( jw) )  < c;” or 6 ( H ( j w ) )  < c t  is met for each w. 

Remark 3.1 0 
Conditions for the existence of cT which solves the equalities in the above theorems are given 

with sketches of the proofs in the Appendix. Braatz’ describes in detail the interpretation of 
each of these existence conditions and when they are expected to hold when using cT for 
loopshaping design of controllers. 

Remark 3.11 

Methods for calculating the bounds cT given in the above theorems are provided by Braatz’ 
and for brevity are not given in detail here. In brief, it can be shown via the Main Loop 
Theorem” that the sufficient upper bound c? can be solved via a single p calculation. As was 
discussed above, AT is typically a repeated scalar block in the loopshaping design of SISO and 
decentralized controllers. In this case it can be shown via the Inverse LFT Theorem” that the 
sufficient lower bound c$ can be solved via a single p calculation. 
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The calculation of the necessary bounds is more difficult because these optimizations cannot 
be reparametrized as p calculations. When AT is repeated scalar (i.e. AT = t I ) ,  the optimizations 
(15) and (17) are over two parameters-the gain and phase of the repeated parameter t. By 
exploiting the monotonicity of g(c) and h ( c ) ,  both of the two-parameter optimizations can be 
replaced by a singZe one-parameter optimization m ( c )  over only the phase of t. The necessary 
lower bound and upper bound are given by the smallest and largest values of c which satisfy 
rn (c) = k, respectively. One-parameter optimizations can be solved via line search. Another 
approach that is useful in the SISO case is to replace p with its upper bound and convert the 
optimizations described by (15) and (17) into two coupled sets of linear matrix inequalities 
(LM1s)-one set of LMIs is over the D and G scales in the upper bound, the other set of 
LMIs is over the Youla parameter q. This conversion is standard in robust controller 
~ynthes is .~  Each set of LMIs forms a convex optimization. The joint optimization is not 
convex, but the ad hoc approach of iteratively solving these optimizations has been found to 
work well in practice. 

It is instructive to compare this iteration to that used in the most popular method for full 
robust controller synthesis, commonly referred to as p -~yn thes i s .~*~  When calculating 
loopshaping bounds, the iteration is performed independently at each frequency, with the 
computations involved with each set of LMIs being well conditioned. In contrast, the p- 
synthesis design procedure requires fitting stable transfer functions D (s) and G(s) to values 
for D u w )  and GGw) at a discrete set of frequencies.2 It is well-known that current robust 
control software239 has difficulty in fitting these transfer functions accurately or even 
consistently. In fact, improving the fitting of these transfer functions is an area of active 
research. ' 

Remark 3.12 

It is straightforward to derive alternative bounds in terms of g(T) = l/@(T-') by 
parametrizing in terms of T - '  and using one of the inverse LFT  lemma^.^ We will not explore 
this further here. 

4. CONTROLLER DESIGN VIA LOOPSHAPING 

In robust loopshaping design the nominal transfer functions are specified directly based on 
necessary bounds and sufficient bounds for robust performance. 

The control engineer has a choice whether to loopshape closed-loop (e.g. S or H )  or open- 
loop (e.g. K or L )  transfer functions. The advantage of loopshaping closed-loop transfer 
functions is that the properties of interest to the engineer are given by the closed-loop transfer 
functions. For example, the sensitivity specifies the capacity of the closed-loop system to reject 
disturbances at the output of the plant whereas the insensitivity of the output to measurement 
noise is specified by the complementary sensitivity. A simple form is usually chosen for S and 
H ,  and the controller is calculated via K = P - ' H S - ' .  

The advantage of robust loopshaping open-loop transfer functions is that the controller 
complexity (e.g. PID, or low-order) is directly specified. This is difficult to do using other robust 
controller design methods. For example, the DK-iteration method" tends to give controllers of 
very high order, though the order can be somewhat reduced using model reduction. I' 

In either case separate conditions are used to guarantee nominal stability. These conditions 
depend on whether open-loop or closed-loop transfer functions are being loopshaped. When 
designing an SISO controller via loopshaping closed-loop transfer functions, nominal stability is 



812 R.  BRAATZ, M. MORARI AND S .  SKOGESTAD 

guaranteed by pre-specifying parametrizations for S and H which are stable and satisfy the 
interpolation conditions'* (see Section 5 for an example) 

(19) 

(20) 

H ( z , )  = 0 and S ( z J  = 1 for all closed right half plane zeros zi 

S ( p , )  = 0 and H ( p J  = 1 for all closed right half plane poles p i  

The interpolation conditions are equivalent to the condition that the right half plane poles and 
zeros of the plant cannot be cancelled by the controller. These conditions are easy to satisfy 
when there are few right half plane poles and zeros; when there are more then the Internal 
Model Control (IMC) method can be used to stabilize the system, and the filter can be designed 
via loopshaping (for details see References 19 and 12). When loopshaping open-loop transfer 
functions, the phase of L is directly chosen to provide nominal stability (see Section 6 for an 
example). 

A general advantage of robust loopshaping over other robust controller design methods is 
that decentralized controllers can be designed. Controllers can also be designed to meet 
specified gain and phase margins, multiple performance specifications, and failure and fault 
tolerance specifications. 

5. ROBUST LOOPSHAPING AND CLASSICAL LOOPSHAPING 

Classical loopshaping was developed decades ago by Bode3 to design for robust performance for 
single-loop systems. Classical loopshaping bounds have been derivedI2 for the case where the 
uncertainty can be represented as a single complex A-block, and the sole performance 
specification is an upper bound on the closed-loop sensitivity. Below we compare the robust 
loopshaping bounds with classical loopshaping bounds. 

Formulation in terms of p 

Assume that we are interested in disturbance attenuation, then the performance condition is to 
keep the norm of the sensitivity function a(S) = 1 S 1 small. If we let the frequency-dependent 
performance bound be 1/ I w p  I , then robust performance is satisfied if B ( S )  < 1/ I wp I for all 
plants in the uncertainty description. Let the set of possible plants be given in terms of 
multiplicative uncertainty of magnitude I wp 1 (see Figure 3). From inspection of Figure 3 we 
see that robust performance is satisfied if and only if pu , (M)  < 1 for all frequencies, where 

A = [ A o  A d  

and A. and A p  are complex scalars representing the multiplicative uncertainty and performance, 
respectively. The generalized plant, G, is found from inspection to be 

With G and A given, N T  can be calculated using (5)-(7), and the robust loopshaping 
theorems can be applied. For this problem the robust loopshaping bounds can be calculated 
analytically. For brevity we do not show the details of the derivation here (see Reference 5 ) ,  but 
will only present the bounds and compare them with the classical loopshaping bounds. We will 
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Figure 3. The plant with output uncertainty A, of magnitude w,. Robust performance is satisfied if 6(wp(I  + PK ' )  s 1 
for all A. with 11 A. 11 ~ Q 1 

assume that either I w o  I or I w p  I is less than one for each frequency, since if this condition is 
not met, then robust performance cannot be met for any controller. 

Robust loopshaping bounds 
(1)  The sufficient upper bounds for I HI , S I, and I L I (bounds for K are immediately 

given by the bounds for L,  since I L 1 = I P I . I K I ) are 

(for frequencies where ] wp I < 1) (23) 
su 1 - lwpl 

p A ( , ( M ) < l  e= I H I < c / f =  
I wo I + I wp I 

1 +PI 
PA(M)<l  e ILI<c:=- (for frequencies where I wp 1 < 1) 

1 + J w o J  
(25) 

(2) The sufficient lower bound for I L I is 

1 + 1 WPl 
p A ( M ) c l  e ILI>c; '= -  (for frequencies where I wo 1 < 1) 

1 - lwol 
(26) 

The sufficient lower bound does not exist for closed loop transfer functions. 
(3) The necessary upper bounds are 

1 - lWPl 

two I - I wp I 
(for frequencies where I wo I > 1) 

(27) 
. I  

1 + ( W P (  

I wo I + I wp I 
(for frequencies where I wo I d 1) 

1 - lwol 

lwpl- lwol 
(for frequencies where I wp 1 > 1) 

(28) . ,  
1 + J W O J  

lwpl+ lwol 
(for frequencies where I wp 1 c 1) 

1 - [WPl  

Iwol- 1 
pC,(M) < 1 =3 JLI < c;= (for frequencies where I wo I > 1) (29) 
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(4) The necessary lower bounds are 

(for frequencies where I w, I > 1 )  (30) 
nl 1 - lwpl 

d 1 - lwol 

pA(M)<l l H l > c f f =  
lwol- lwpl 

I wp I - I wo I 
(for frequencies where I w, I > 1) (31) pA(M) c 1 IS1 >cS = 

Numerical example: DC motor 

bounds before tackling the more interesting benchmark problem given later in this paper. 
The purpose of the following example is to familiarize the reader with the robust loopshaping 

Description. Assume the nominal transfer function is the double integrator 

1 
P(s) = - 

S2 
(33) 

This could describe a DC motor with negligible viscous damping. The nominal model, uncertainty 
description, and performance specifications for this example come from Reference 12. 

We are interested in good tracking over a bandwidth of about 1. If I S I < 1/ 1 w, I , where 

10 
wp = 

s3 + 2s2 + 2s + 1 
(34) 

then the tracking error is at most 10% over the desired closed-loop bandwidth. The true plant is 
assumed to have a time delay, which was covered by a multiplicative uncertainty of magnitude 
I w,  I in Reference 12, where 

0.21s 
wo = ___ 

O.ls+ 1 
(35) 

Closed-loop design. The three loopshaping bounds on H and S in (23), (24). (27), (28). 
(30), (31) are shown together with an example design (solid line) in Figure 4. 

We see that the necessary upper bound on S and sufficient upper bound on S coincide at low 
frequencies. This is true in general when I w,  I % 1 > 1 w o  I , since in this case the bounds (24) 
and (28) both approach 

The necessary upper bound on H and sufficient upper bound on H coincide at high frequencies. This 
is true in general when I wo 1 ID 1 > I wp I , since in this case the bounds (23) and (27) both approach 

Iwo I 
(37) 
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Figure 4. Loopshaping bounds on H and S for DC motor. The upper plot is for H and the lower plot is for S. The 
dashed lines are necessary upper bounds, the dashed and dotted lines are necessary lower bounds, the dotted lines are 

sufficient upper bounds, and the solid lines are H and S for an example design 

When necessary bounds and sufficient bounds coincide, they become necessary and suficient 
for p < 1. The distance between the necessary bounds and sufficient bounds at a given frequency 
measures the conservatism in the bounds. 

Our design approach is to find an S that satisfies nominal stability, satisfies the necessary 
bounds on S and H for all frequencies, has the sufficient bound on S satisfied for low 
frequencies, and has the sufficient bound on H satisfied for the other frequencies so that p < 1 is 
guaranteed for all frequencies. 

The following S satisfies nominal stability (interpolation condition (20)) 

S' 

A's2 + 2As + 1 
S =  

The complementary sensitivity is specified from H = 1 - S. From Figure 4 we see that the 
necessary bounds on S require a bandwidth (defined by -3 dB roll-off) between 2 and 30 whereas 
the necessary bounds on H require that a bandwidth between 1.5 and 20. The design shown in 
Figure 4 with A = 1/4 satisfies these bandwidth requirements. The sufficient upper bound on H 
ensures that p < 1 for frequencies above 3 and the sufficient upper bound on S ensures that p < 1 for 
frequencies below 6; thus p < 1 for all frequencies. The controller corresponding to S and H ,  

15 * 1 
K=(SP)- ' ( l  - S ) = - - s  + - s + l  

16 2 
(39) 
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is improper, so it is augmented with a second-order filter: 

Figure 5 is a plot of the structured singular value for the proper controller. The value for p is 
less than one for all frequencies, as was implied by the satisfaction of the sufficient bound on S 
and/or H for each frequency. 

The loopshaping bounds directly specify the relative ease or difficulty in meeting the stability 
and performance specifications. For example, the necessary bounds on S at high frequency are 
very lenient (far apart). This implies that the closed-loop system can maintain robust 
performance for much'more uncertainty than was used to cover the time delay in the plant. This 
is confirmed by the structured singular value plot which is much less than 1 at high frequencies. 

Open loop design. Using the same specifications as above, Braatz designs an open-loop PD 
controller via loopshaping L (the details are omitted here for brevity). One interesting result was 
that the PD controller determining via loopshaping was very close to the p optimal PD controller 
determined through extensive global search. This suggests that loopshaping can provide nearly 
optimal controllers, at least for single-loop systems. The pareto-optimallity of loopshaping 
controllers has been shown by Doyle et a1.12 

Comparison of robust loopshaping with classical loopshaping 

For the above SISO problem, the robust loopshaping bounds for L agree with classical 
loopshaping.'2 Similarly, the sufficient bounds on the closed-loop transfer functions agree with 
those given by Doyle et ~ 1 . ; ' ~  however, their necessary bounds were incomplete. Knowing the 
necessary bounds at all frequencies provides the engineer with precise a priori bandwidth 
ranges which must be satisfied by the controller. The distance between the necessary and the 
sufficient bounds at a given frequency quantifies the conservatism of the bounds; thus the 
control engineer has some indication where the sufficient bounds can be violated without 
jeopardizing robust performance. 

It is instructive to compare the robust loopshaping method with Quantitative Feedback Theory 
(QFT).'' In QFT, loopshaping of the open-loop transfer function L = PK is performed on a 
Nichols chart. In contrast, robust loopshaping can be performed with any of the common open- 

frequency 

Figure 5 .  p for robust performance for DC motor 
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0 0 1 0 x 1  
0 0 0 1 x 2  

-k/m, kfm, 0 0 

kfm, -kfm2 0 0 - -  

and closed-loop transfer functions and is performed on a Bode plot. Until recently, calculating 
the loopshaping bounds used in QFT required gridding of the uncertainty set, which becomes 
computationally prohibitive as the number of parameters increases. Calculation of the robust 
loopshaping bounds does not involve gridding over the uncertainty set. Braatz has recently used 
ideas similar to those used in the development of robust loopshaping to remove the reliance of 
QFT on gridding of the uncertainty set.6 

Uncertainty and performance specifications are often not as simple as in the above SISO 
problem-control problems may involve multiple performance specifications, and uncertainty 
may be more conveniently described as real parameter variations. Also, it is important for 
multivariable systems that uncertainty may be present at different locations, for example actuator 
uncertainty is located at the input of the plant whereas sensor uncertainty is located at the output 
of the plant. In such cases the loopshaping bounds cannot be derived analytically, but must be 
obtained numerically using Theorems 3.1 -3.4. The following example shows how this is done 
for a specific SISO problem. 

- -  

+ 
x3 

x4 - 

6. BENCHMARK PROBLEM; A COUPLED MASS-SPRING SYSTEM 

We apply loopshaping to design a robust controller for an undamped pair of coupled masses 
with a noncolocated sensor and actuator. This simple problem captures many of the features of 
more complex aircraft and space structure vibration control problems, and numerous researchers 
have applied a variety of robust control design methodologies (see Reference 28 for a partial 
list) to it, most of which have had a very limited amount of success.27 Braatz and Morari7 used 
the DK-iteration method to design a controller which met all the specifications, though the 
design procedure required several iterations of input-output weights before arriving at an 
acceptable controller. Part of the difficulty in selecting input-output weights was that available 
controller design does not directly address real uncertainty. Available software can 
be used to analyse robustness with real uncertainty, and this software is used in the calculation 
of the robust loopshaping bounds. By using robust loopshaping instead of DK-iteration we 
avoid iterations over weights and instead directly specify the controller to meet the control 
requirements. 

Problem description. Consider the two-massfspring system in Figure 6, which is a generic 
model of an uncertain dynamical system with noncolocated sensor and actuator. The system is 
represented in state-space form as 

y = x 2 + v  

z = x2 

0 

0 
0 

lfm2 

W (40) 

where x i  and x, are the positions of body 1 and body 2, x3 and x, are the velocities of body 1 
and body 2, u is the control input acting on body 1, y is the sensor measurement, w is the 
disturbance acting on body 2, v is sensor noise, and z is the output to be controlled. The spring 
constant is denoted by k, the mass of body 1 by m,, and the mass of body 2 by m2. 



818 R. BRAATZ, M. MORARI AND S .  SKOGESTAD 

I-- I-+ x2 

U ml m2 W 

0 0  0 0  

Figure 6. Coupled mass-spring system 

The coupled spring-mass system is assumed to have negligible damping. The spring constant 
and masses are assumed to be uncertain. The actuator is located on body 1 while the sensor is 
located on body 2, i.e., the sensor and actuator are noncolocated. This makes the system much 
harder to control than in the colocated case. 

Certain control specifications of the benchmark problem described in Reference 28 are 
given concretely, while other specifications were left to the control designer. Here we include 
additional practical requirements to make the problem more realistic (and hence more 
difficult), while slightly relaxing the settling time requirement to allow the specifications to be 
achievable. 

Design specifications. 

(i) 

(ii) 

The stability margin with respect to the three uncertain parameters m,, m2, k whose 
nominal values are m, = m2 = k = 1 is required to be at least 30%. 
For w ( t )  = unit impulse at t = 0, the performance variable z must have a settling time of 
20 seconds for the nominal system m, = m2 = k = 1. The settling time is defined to be the 
time required for the output to reach and stay within 10% of its peak value. 

(iii) The control system can tolerate Gaussian white noise with variance of 9 x 
(iv) Because of finite actuator response time, the controller bandwidth must be s50 rad/s. 
(v) The control input u ( t )  is limited to 1 u 1 < 1. 
(vi) The number of controller states should be S4. 
(vii) The gain margin should be at least 2 and the phase margin at least 45". 

Though G can be determined analytically (using a similar development as in Reference 7), this 
is not required since off-the-shelf software builds G from the state-space equations (40)- (42) 
and the uncertainty specifications (i). We will plot the loopshaping bounds including only the 
robust stability requirement-the performance requirements will be met by directly specifying 
the open-loop transfer function. The plant P the open-loop transfer function L for an example 
design, and the robust stability loopshaping bounds calculated numerically using Theorems 
3.1-3.4 are shown in the Bode magnitude plot in Figure 7 (a small amount of complex 
uncertainty was added to the real perturbation blocks to improve the numerical conditioning as 
described by Reference 21). 

The nominal plant has two poles at s = O  and a pair of poles at s = i i f i .  The peak in the 
necessary lower bound around o = fi reflects the fact that the controller is not allowed to cancel 
poles of any of the perturbed plants. 

Usually a necessary upper bound exists at high frequencies which requires that I L I roll off to 
satisfy robust stability. Notice that no necessary upper bound exists in Figure 7. The lack of a 
necessary upper bound and the predominance of the sufficient upper and lower bounds at both 
high and low frequencies illustrate that robust stability is completely determined by the 
behaviour of L at intermediate frequencies. It would have been difficult to learn this from a 
black box design method. 

Now we design a controller which meets the specifications. 
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frequency (radsec) 

frequency (radsec) 

Figure 7. Bode plots with loopshaping bounds on I L I for the benchmark problem. In the magnitude plot, the 
sufficient regions have dotted boundaries and the sole necessary region is shaded. The dashed line represents ten times 
the plant (1OP) and the solid line represents L for an example design. The phase of L for the example design is 

shown in the lower plot. The plant P has phase of - 180" for w <*and -360" for o > fi. 

Open-loop design. We chose the following form for the controller: 

k(ts + l)(z,'sZ - 25J, + 1) 

(z,s' + 2Epzp + 1y 
K(s) = (43) 

with k = 0.05, t = 10, z, = 0-6, tz = 0.5, zp = 0-4, and sp = 0.6. 
The crossover frequency (i.e. the frequency where the phase of the open-loop transfer 

function is - 180") must be less than w = fi because the imaginary axis poles of the plant 
provide 180" phase lag at this frequency which is detrimental to nominal stability. Thus we 
need at least 45" phase lead for some frequency range below crossover to satisfy the phase 
margin specification-this suggests that the controller should have a left half plane (LHP) 
zero here. Choosing t= 10 provides enough phase so that the phase margin can be met, 
without providing too large a gain at crossover ( w  = 1) which gives poor gain margin (see 
Figure 7). 

For plants with lightly damped or undamped poles, it is necessary to consider the phase 
margin ujier crossover. The phase must roll off rapidly at crossover to ensure at least a 45" 
margin. This rapid phase roll-off is provided by the RHP zeros. We choose a pair of zeros with 
mild damping ( E ,  = 0.5) so we can get temporary gain roll-off just at crossover which gives 
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Figure 8. p for robust stability for the benchmark problem 

10 20 30 -0.5' ' 
0 

time 

Figure 9. Time-responses for the controlled variable and control input 

better gain margin. The value for t, must be approximately 0.6 for the phase to roll off at the 
proper frequency to give good gain margin. 

We need four poles to make the controller strictly proper. For simplicity we used two sets of 
poles at the same location. Setting 5, = 0.6 gives the simplest gain roll-off since in this case the 
poles are neither appreciably underdamped or overdamped. These poles were chosen as fast as 
possible and the controller gain as large as possible to give the best performance which also 
satisfies the robustness and margin specifications. These parameters were also chosen to satisfy 
the necessary lower bound in Figure 7. Figure 8 is a plot of ,LA which tests for robust stability 
with up to 30% independent uncertainty in the parameters. The peak value of ,LA is 0.97, so 
robust stability (specification (i)) is guaranteed. This agreed with time responses calculated for 
the full range of parametric uncertainty. As expected p is much less than 1 at low and high 
frequencies as guaranteed by the sufficient loopshaping bounds in Figure 7. 

The nominal time responses for the controlled variable z and control input u to a unit impulse 
disturbance and Gaussian measurement noise are shown in Figure 9. We see that specifications 
(ii), (iii). and (v) are satisfied. The controller bandwidth can be read from its Bode magnitude 
plot to be 10, which satisfies specification (iv). The controller has four states, satisfying 
specification (vi). The gain margin is 2.2, and phase margin is 45.1", satisfying specification 
(vii). Thus this simple loopshaping design meets all the specifications. No input-output weight 
iteration is required, though the parameters of the controller must be iterated a few times before 
achieving a satisfactory design. 

7. CONCLUSIONS 

Robust loopshaping bounds have been derived for general parametric and unmodelled dynamic 
uncertainty descriptions. These can be used to design low-order robust controllers to meet 
multiple performance specifications. Robust loopshaping was shown to agree with and extend 
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classical loopshaping bounds when applied to simple SISO systems. Robust loopshaping was 
applied to a coupled mass-spring problem studied by numerous researchers. 

APPENDIX 

Existence conditions 

The following lemmas provide existence conditions for the robust loopshaping bounds. 

Lemma 8.1 

In Theorem 3.1, there exists c; such that e(c;“) = k if and only if 

(i) det(Z - N 2 J )  # 0 
(ii) e(0) = pA(Nll)< k,  and 
(iii) e(-)> k 

Lemma 8.2 
In Theorem 3.2, there exists cy such thatf(cg) = k if and only if 

(i‘) det(Z - NJ) # 0 

AT 
(ii’) f (0) = SUP PA(&(N, AT)) > k, and 

(iii’) f ( - )  c k 

Lemma 8.3 
In Theorem 3.3, there exists cy such that g ( c y )  = k if and only if 

(i”) det(Z - N,,T) + 0 

(ii”) g(0) = inf pA(&(N,AT)) c k, and 
AT 

(iii“) g(-) > k 

Lemma 8.4 

In Theorem 3.4, there exists c;! such that h(c;!) = k if and only if 

(i”‘) det(Z - NJ) # 0 

(ii”‘) h(-) = inf pA(&(N, AT)) c k, and 
AT 

(iii’”) h(0) = p A ( N , , )  > k 

(45) 

(47) 

Proofs of bound theorems and existence conditions 

We will only give the proof of Theorem 3.3 since the other proofs are similar. 
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Proof. Assumption (i) is a necessary (and sufficient) condition for the LIT M = F , ( N ,  T) to 
be well-defined. Now if 6 ( T )  b cT then the inequality 

holds because the right-hand side is an element of the set minimized on the lefthand side. It 
follows that 

inf pA(&(N, A,)) = k pA(M) 2 k 
A T € 6 ;  

(49) 

provided that there exists cT which satisfies g(c,) = k. Since the function g ( c T )  is monotonically 
non-decreasing with cT, g ( c T )  = k is satisfied for some positive cT if and only if g(0) c kc g(-). 

Q.E.D 
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