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a b s t r a c t 

This paper proposes a locality preserving discriminative canonical variate analysis (LP-DCVA) scheme for 

fault diagnosis. The LP-DCVA method provides a set of optimal projection vectors that simultaneously 

maximizes the within-class mutual canonical correlations, minimizes the between-class mutual canonical 

correlations, and preserves the local structures present in the data. This method inherits the strength 

of canonical variate analysis (CVA) in handling high-dimensional data with serial correlations and the 

advantages of Fisher discriminant analysis (FDA) in pattern classification. Moreover, the incorporation of 

locality preserving projection (LPP) in this method makes it suitable for dealing with nonlinearities in the 

form of local manifolds in the data. The solution to the proposed approach is formulated as a generalized 

eigenvalue problem. The effectiveness of the proposed approach for fault classification is verified by the 

Tennessee Eastman process. Simulation results show that the LP-DCVA method outperforms the FDA, 

dynamic FDA (DFDA), CVA-FDA, and localized DFDA (L-DFDA) approaches in fault diagnosis. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Data-driven process monitoring has shown high value in pro-

oting informed decision-making and enhancing efficient and

afe operations of industrial processes (e.g., for reviews and to

ain a thorough perspective on the history of the field, see re-

iews ( Chiang et al., 2001; Joe Qin, 2012; Joe Qin, 2003; Wise

nd Gallagher, 1996; Duda et al., 2001; Nomikos and MacGregor,

994; Venkatasubramanian et al., 2003; Himmelblau, 1978; Dunia

t al., 1996; Jiang et al., 2015 ) and citations therein). The ob-

ective of most industrial process monitoring systems is the de-

ection of faults, which are defined as abnormal process opera-

ions. Examples of data-driven fault detection methods include

rincipal component analysis and partial least squares, which are

ultivariate statistical methods that are widely applied in indus-

ry, and state-space identification methods that have been widely

tudied in the academic literature, e.g., Jiang et al. (2015) and

reasure et al. (2004) . Another objective of interest in process

onitoring described in the above reviews is fault diagnosis – de-

ermining the type and root cause of faults – which can be chal-
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enging for modern industrial processes containing a large number

f process variables and complicated correlations among variables

ue to process dynamics and controllers. 

Among various methods for fault diagnosis, FDA has received

xtensive attention due to its efficiency and simplicity in fault clas-

ification ( He et al., 2009 ). Given labeled data sets from several

aults, FDA provides projection vectors to map the original data

nto a lower-dimensional space in which the between-class scat-

er matrix is maximized while minimizing the within-class scatter

atrix. FDA is particularly effective for data that are free of se-

ial correlations ( Duda et al., 2001 ). Nevertheless, most industrial

rocesses are slow in dynamics and equipped with fast-sampling

ensors. To handle the serial correlations, dynamic FDA (DFDA) has

een put forward to augment the observation with its lagged val-

es to capture the dynamic information ( Chiang et al., 2001 ). Incor-

orating time lags into auto-correlated data can attenuate the over-

apping between different classes of augmented data, leading to

mproved fault classification ( Chiang et al., 2004 ). However, similar

o dynamic partial least-squares (PLS) and dynamic PCA ( Ku et al.,

995 ), the performance of DFDA is limited by its implicit assump-

ion of a restrictive noise structure ( Jiang et al., 2015 ). 

On the other hand, the last decade has witnessed growing at-

ention on CVA methods ( Chiang et al., 2001; Larimore, 1997 ).

https://doi.org/10.1016/j.compchemeng.2018.06.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
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Fig. 1. Illustration of the within-class and between-class mutual canonical correlations. 

Table 1 

A summary of tuning parameters for the LP-DCVA algorithm. 

Tuning parameters Note 

Lags h and l in (3) and (4) Determined by cross validation 

The parameter σ in the heat kernel (17) Suggested value 
∑ n 

i =1 

∑ n 
j=1 x i − x j 

2 / ( n 2 − n ) ( Sun & Chen, 2007 ) 

The # of nearest neighbors κ in (17) Determined by cross-validation 

The # of projection vectors a Suggested value ( c − 1 ) , where c is the # of classes 

Table 2 

The process faults involved in the simulation ( Sun et al., 2016 ). 

Variables Description Type 

Case study 1: 

IDV(3) D Feed Temperature (Stream 2) Step 

IDV(4) Reactor Cooling Water Inlet Temperature Step 

IDV(11) Reactor Cooling Water Inlet Temperature Random variation 

Case study 2: 

IDV(2) B Composition, A/C Ratio Constant (Stream 4) Step 

IDV(5) Condenser Cooling Water Inlet Temperature Step 

IDV(8) A, B, C Feed Composition (Stream 4) Random variation 

IDV(12) Condenser Cooling Water Inlet Temperature Random variation 

IDV(13) Reaction Kinetics Slow drift 

IDV(14) Reactor Cooling Water Valve Sticking 

Table 3 

Misclassification rates for Faults 3, 4, and 11. 

Method Misclassification rates for testing data 

Fault 3 Fault 4 Fault 11 Overall 

FDA 0.3738 0.1125 0.5687 0.3517 

DFDA 0.2286 0.1456 0.4687 0.2810 

CVA-FDA 0.3103 0.0421 0.4674 0.2733 

L-DFDA 0.2656 0.1507 0.3627 0.2597 

LP-DCVA 0.2259 0.0945 0.3052 0.2085 
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In contrast to PCA and PLS, CVA constructs a more accurate and

parsimonious state-space model that allows a general noise struc-

ture. CVA relies on maximizing the correlations between combina-

tions of past and future data vectors, which can be transformed

into a singular value decomposition (SVD) problem ( Simoglou

et al., 2002; Negiz and Çinar, 1997 ). CVA is mainly employed to

estimate the canonical states of the process, which are further uti-

lized to develop a state-space model from the process data. As CVA

does not take account of the label information associated with data

sets, the application of CVA to fault classification remains rare and

is usually combined with FDA ( Jiang et al., 2015 ). In addition, the

potential loss of discriminative information in the CVA model re-

quires extra attention since the CVA criterion may not be compati-

ble with that of FDA ( Yu and Yang, 2001 ). However, the superiority

of CVA in modeling dynamic relations in the data supplies a valu-

able resource to enhance the performance of current techniques

for discriminant analysis with large-scale dynamic data. 
CVA has a close link with canonical correlation analysis (CCA)

 Larimore, 1996 ). The usage of CCA for discriminant analysis has

een reported in the computer vision area. A technique known

s discriminant CCA (DCCA) ( Sun et al., 2008 ) incorporates the

lass label information into CCA to extract more discriminative fea-

ures. In DCCA, for data sets with two views, a set of optimal pro-

ection vectors are obtained that maximize the canonical correla-

ions between two views of within-class data and minimize those

f between-class data, in an analogy to the idea of FDA. Other

ariants of DCCA have been presented in Kan et al. (2016) and

im et al. (2007) . It is shown that DCCA yields a better dis-

riminant performance than CCA and PLS for feature recognition

 Sun et al., 2016 ). However, to the best of the authors’ knowledge,

ncluding class label information into CVA as a discriminative CVA

DCVA) method to address the fault diagnosis problem has not

een reported in the literature. Note that a critical distinction be-

ween DCVA and DCCA is that the data for DCVA usually involve

erial (predictive) correlations due to the utilization of past and

uture data vectors, in addition to the spatial correlations, whereas

CCA only considers the spatial correlations between variables. Be-

ides, DCVA differs from CVA-FDA ( Jiang et al., 2015 ) in that the

oal of DCVA is not estimating the canonical states for a state-

pace model, but rather directly exploring the discriminant fea-

ures by examining the relations between data sets from different

lasses. 

All aforementioned methods only use the global structure

nformation. To better mine the information hidden in the

ata, locality preserving methods have been proposed to handle
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Fig. 2. Flow chart for the Tennessee Eastman Process ( Chiang et al., 2001 ). 
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onlinearities in the form of local structures such as multi-

odality ( McClure et al., 2014 ). Locality preserving projection (LPP)

 He and Niyogi, 2004 ) paves the way for the research on local

tructure exploration in data analysis. LPP is a linear dimension-

lity reduction method that preserves local manifold structures of

he original data in the lower-dimensional space after projection.

ssentially, LPP decomposes nonlinear dimensionality reduction

nto a set of linear local dimensionality reductions. The combina-

ion of LPP and CCA has been explored in Sun and Chen (2007) and

uan et al. (2016) . In the realm of fault diagnosis, locality preserv-

ng methods have been merged with discriminant analysis meth-

ds such as FDA and kernel FDA to boost the fault classifica-

ion performance ( Van and Kang, 2015; Yu, 2011; Sugiyama, 2007 ).

n this article, we present a locality preserving discriminant CVA

ethod, known as LP-DCVA, for fault diagnosis. This method ex-

ends the discriminant CCA idea in computer vision and image

ecognition to the field of fault classification. Specifically, we com-

ine the strengths of CVA and FDA into DCVA to better handle the

ynamic data with highly serial correlations. Besides, we present

 way to integrate the objectives of DCVA and LPP together to ex-

lore local structures in the data to further improve the perfor-

ance of fault classification. 

The rest of this article is organized as follows. Section 2 briefly

evisits CVA , FDA , and LPP. The proposed DCVA and LP-DCVA ap-

roaches are presented in Section 3 . The effectiveness of the pro-

osed approaches is demonstrated in the Tennessee Eastman pro-

ess in Section 4 , followed by conclusions in Section 5 . 

. Review of CVA, FDA, and LPP 

.1. CVA 

CVA is a well-known multivariate dimensionality reduction

ethod that maximizes the correlation between two set of vari-
bles. CVA was first proposed by Hotelling ( Hotelling, 1936 ) and

hen employed as a system identification approach to develop

RMA ( Akaike, 1974 ) or state-space models ( Larimore, 1997 ). Sup-

ose that the input data u (t) ∈ R n u and output data y(t) ∈ R n y are

enerated according to a linear state-space model 

 ( t + 1 ) = Ax ( t ) + Bu ( t ) + v ( t ) , (1) 

 ( t ) = Cx ( t ) + Du ( t ) + E v ( t ) + w ( t ) , (2)

here x ( t ) ∈ R d is the state vector; A , B , C , D , and E are system ma-

rices with compatible dimensions; and v ( t ) and w ( t ) are respec-

ively the sequences of state and measurement noises with zero

ean and constant covariances. A feature associated with the CVA

pproach is the separation of collected input-output data into past

nd future information vectors. The state is estimated by maximiz-

ng the predictive correlations between the past and future data

ith the CVA algorithm. Specifically, for a time instant t within

he interval 1 ≤ t ≤ n , where n is the number of samples, the past

nformation vector p ( t ) consists of a window of past input and out-

ut data up to time t − 1 , i.e., 

p ( t ) = 

[
y T ( t − 1 ) , . . . , y T ( t − h ) , u 

T ( t − 1 ) , . . . , u 

T ( t − h ) 
]T 

, (3) 

nd f ( t ) contains a window of current and future outputs with the

orm 

f ( t ) = 

[
y T ( t ) , y T ( t + 2 ) , . . . , y T ( t + l − 1 ) 

]T 
. (4) 

here h and l represent the lags for the past and future vectors. 

Assume that the state order is k . For the CVA algorithm, a pro-

ection matrix J k is computed to linearly map the past p ( t ) into the

memory” vector m ( t ) with the form 

 ( t ) = J k p ( t ) . (5) 

The m ( t ) is referred to as the memory vector instead of the

tate vector since in practice it may not necessarily contain all the
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Fig. 3. Classification results with three methods on the validation data. 
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information in the past and thus is regarded as an approximation

of the state. With the memory vector, a state-space model is ob-

tained by establishing the optimal prediction of the future based

on the current memory. In other words, the goal of the CVA al-

gorithm is seeking the optimal project matrix J k to minimize the

w  

c  
veraged prediction error ( Larimore, 1996 ) 

 

{[ 
f ( t ) − ˆ f ( t ) 

] T 
�† 

[ 
f ( t ) − ˆ f ( t ) 

] }
, (6)

here ˆ f (t) is the linear optimal forecast of f ( t ) based on the

urrent memory, i.e., ˆ f (t) = � f m 

�−1 
mm 

m (t) , where �fm 

is the
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ovariance between f ( t ) and m ( t ) and �mm 

is defined similarly. The

ositive semidefinite weighting matrix � reflects the relative im-

ortance among output variables. With the CVA algorithm, the op-

imal projection can be obtained by solving the SVD problem 

−1 / 2 
pp �p f �

−1 / 2 

f f 
= U �V 

T , (7) 

here U and V are respectively the left and right singular vectors,

contains the singular values along its diagonal, and the projec-

ion matrix J k (solution to (6)) is calculated as 

 k = U 

T 
k �

−1 / 2 
pp , (8) 

here U k stands for the first k columns of the orthonormal matrix

 . 

.2. FDA 

Process data collected under different faults are categorized into

lasses in which each class of data represents a particular fault.

DA is a classical pattern classification method that maximizes the

eparation among classes of data from different faults. This goal

s achieved by finding linear transformation vectors to maximize

he scatter between classes while minimizing the scatter within

lasses. Given n samples of m -dimensional observations from c

lasses stacked into a data matrix X ∈ R 

m ×n , the element x 
( j) 
i 

∈ R 

m ,

 = 1 , . . . , n j , j = 1 , . . . , c, of X refers to the i -th sample from class j ,

here n j is the number of observations for the j th class. The total

catter matrix S t is defined as 

 t = 

c ∑ 

j=1 

n j ∑ 

i =1 

(
x ( 

j ) 
i 

− x̄ 

)(
x ( 

j ) 
i 

− x̄ 

)T 

, (9) 

here x̄ is the total mean of X . The within-class scatter matrix is

xpressed as 

 w 

= 

c ∑ 

j=1 

n j ∑ 

i =1 

(
x ( 

j ) 
i 

− x̄ j 

)(
x ( 

j ) 
i 

− x̄ j 

)T 

, (10) 

here x̄ j is the mean vector of class j . Similarly, the between-class

catter matrix is formulated as 

 b = 

c ∑ 

j=1 

n j 

(
x̄ j − x̄ 

)(
x̄ j − x̄ 

)T 
. (11) 

Note that the total scatter matrix is the sum of the within- and

etween-class scatter matrices, S t = S w 

+ S b . 

The objective of FDA is to supply a set of projection vectors, W ,

o maximize the criterion 

ax W � =0 
W 

T S b W 

W 

T S t W 

. (12) 

It is shown that this optimization is equivalent to a generalized

igenvalue problem, 

 b w k = λk S w 

w k , (13) 

here w k is the k th column of W , and a larger eigenvalue λk in-

icates better separability among all classes by projecting the data

nto w k . Note that the rank of S b is less than c , thus there are

t most c − 1 nonzero eigenvalues and only the eigenvectors cor-

esponding to nonzero eigenvalues are useful for separating these

lasses of data. 

With the obtained projection vectors, the data in the (c − 1 )-

imensional space is represented as 

 i = W 

T 
a x i , (14) 

here x i is the i th observation of X , and W a represents the first

 columns of W . To address the serial correlation in the dynamic

ata, DFDA has been proposed and widely used in fault diagnosis.

t  
he idea of DFDA is to append the data at time t with its past

alues and then apply FDA to this augmented data matrix. Defining

he selected lags of past data as h , the augmented data matrix is 

 ( h ) = 

⎡ 

⎣ 

x t . . . x t+ h −n 

. . . 
. . . 

. . . 
. . . 

x t−h . . . x t−n 

⎤ 

⎦ . (15) 

The augmented vector provides richer information than a sin-

le observation and is effective to uncover the dynamic patterns

n the process data. Thus, the DFDA can in general lead to better

lassification performance than traditional FDA when extensive se-

ial correlations are present. 

.3. LPP 

The LPP method is particularly useful for discovering local man-

fold structures in the original sample space and preserves such

tructures in the lower-dimensional space. Therefore, LPP can as-

ist in decomposing the global problem into small local linear

ub-problems. Define the data samples in the original space as

 = [ x 1 x 2 . . . x n ] , where n is the number of samples. We use w x 

s the projection vector that preserves the manifold in the data set.

he data after projection are denoted as z = [ z 1 z 2 . . . z n ] , where

 i = w 

T 
x x i , i = 1 , . . . , n . The objective of LPP is to minimize the crite-

ion 

 = 

n ∑ 

i =1 

n ∑ 

j=1 

(
z i − z j 

)2 
S x i j = 

n ∑ 

i =1 

n ∑ 

j=1 

w 

T 
x 

(
x i − x j 

)
S x i j 

(
x i − x j 

)T 
w x , 

(16) 

here S x 
i j 

is the element of weighting matrix S x in the i th row and

 th column. A widely employed weighting function is the heat ker-

el, defined by ( Yuan et al., 2016 ): 

 

x 
i j = 

{ 

exp 

(
−‖ x i −x j ‖ 2 

σ

)
, i f x i ∈ N κ

(
x j 

)
or x j ∈ N κ ( x i ) , 

0 , otherwise, 
(17) 

here N κ ( x j ) stands for the k -nearest neighbors of x j . Consider

he case that x i and x j are within the k -nearest neighbors of ei-

her of them such that S x 
i j 

� = 0 . In such scenario, if x i and x j are

lose to each other, then S x 
i j 

will be relatively large and the “dis-

ance” between z i and z j will be heavily penalized. As a result, the

btained projection vectors w x are those that keep z i and z j close.

n the other hand, if x i is not within the k -nearest neighbors of

 j (or vice versa), then S x 
i j 

= 0 and the criterion (16) does not pre-

erve any structure between x i and x j . With this idea, LPP is able

o extract and keep the local structures among points in the data. 

The objective function of LPP in (16) can be equivalently formu-

ated as 

 = w 

T 
x X S xx X 

T w x , (18)

here S xx = D xx − S x with D xx being a diagonal matrix, known as

he Laplacian matrix, with each term representing the sum of the

orresponding column (or row since S x is symmetric) ( Sun and

hen, 2007 ). LPP is used in this paper to discover the local struc-

ures and enhance the discriminative features for data from differ-

nt faults. 

. The proposed locality preserving discriminative canonical 

ariate analysis for fault diagnosis 

.1. Discriminative canonical variate analysis (DCVA) method 

CVA is an efficient way to construct state-space models to cap-

ure the dynamic relationships among process variables. However,
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Fig. 4. Classification results on the test data for Faults 3, 4, and 11. 
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CVA does not take into account the class information associated

with the data, and thus is not able to explore the discriminative

patterns in the data for fault classification. In fact, applying CVA

to the data from several classes may discard valuable informa-

tion that characterizes the distinctions between different classes

and consequently make the data from different faults less distin-

guishable after processing ( Yu and Yang, 2001 ). In this section, we

present a variant of the traditional CVA method, named discrimi-

native CVA (DCVA), which incorporates the ideas of FDA with CVA

and accounts for the label information associated with the data

samples. 

Consider collected input and output data from p classes. Simi-

lar to CVA, at time instant t , p 

(k ) 
t represents the past vector from

class k , k = 1 , . . . , c. Denote n k as the number of samples of past

information vector for class k , and n = 

∑ c 
k =1 n k . Note that 

p 

( k ) 
t = 

[ 
y ( 

k ) T 
t−1 

, . . . , y ( 
k ) T 

t−h 
, u 

( k ) T 
t−1 

, . . . , u 

( k ) T 

t−h 

] T 
, (19)

where h is the selected lags of past input and output. In an anal-

ogous way, at time t , the future information vector f (k ) for class k
t d  
s defined as 

f ( 
k ) 

t = 

[ 
y ( 

k ) T 
t , y ( 

k ) T 
t+1 

, . . . , y ( 
k ) T 

t+ l 

] T 
, (20)

here l is the selected lags of future output. The past information

atrix P and future information matrix F are respectively defined

s 

 = 

[
p 

( 1 ) 
1 

, p 

( 1 ) 
2 

, . . . , p 

( 1 ) 
n 1 

, p 

( 2 ) 
1 

, . . . , p 

( 2 ) 
n 2 

, . . . , p 

( c ) 
n c 

]
, 

 = 

[
f ( 

1 ) 
1 

, f ( 
1 ) 

2 
, . . . , f ( 

1 ) 
n 1 

, f ( 
2 ) 

1 
, . . . , f ( 

2 ) 
n 2 

, . . . , f ( 
c ) 

n c 

]
. 

Notice that traditional CVA maximizes the predictive relation-

hip between pairwise p 

(k ) 
t and f (k ) 

t , i.e., there exists a tempo-

al one-to-one correspondence between past and future vectors at

ach time instant. This correspondence is essential for developing

tate estimates and process models. However, for DCVA, instead of

eeking such relationships (since the objective of DCVA is not es-

imating the states), the interest is in discovering discriminative

raits among classes. More formally, the goal of DCVA is maxi-

izing the mutual correlations of past and future vectors within

he class while minimizing the mutual correlations of those in

ifferent classes. The mutual correlation refers to the correlation
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Fig. 4. Continued 
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d  
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v  

c  
etween any past and future vectors without considering the tem-

oral correspondence. It is apparent that using the mutual cor-

elations can thoroughly reveal the information in the data and

hus facilitate the discovery of discriminative patterns for fault

iagnosis. 
r

Without loss of generality, both future and past information

ata are assumed to have been mean-centered and auto-scaled.

he DCVA aims at finding projection vectors w p and w f for two

iews P and F so as to maximize the discriminative canonical

orrelations, i.e., maximizing within-class mutual canonical cor-

elations and simultaneously minimizing between-class mutual 
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Fig. 5. Classification results on the test data for Faults 2, 5, 8, 12, 13, and 14. 

 

 

C

C

C  

C  

 

 

 

 

 

 

 

 

t  

p  

i  

c

3

 

f  

i

L

w  

[  

i  

d

S  

w  

L  

g

m  

 

m  

o  
canonical correlations. The idea of DCVA is illustrated in Fig. 1 .

The expressions for within-class and between-class canonical

cross - covariance matrices C w 

and C b are respectively defined as 

 w 

= 

c ∑ 

k =1 

n k ∑ 

t=1 

n k ∑ 

s =1 

p 

( k ) 
t f ( 

k ) T 
s , 

 b = 

c ∑ 

k =1 

c ∑ 

p=1 ,p� = k 

n k ∑ 

t=1 

n p ∑ 

s =1 

p 

( k ) 
t f ( 

p ) T 
s . 

It follows that C w 

and C b can be simplified as 

 w 

= 

c ∑ 

k =1 

(
P E n k 

)(
F E n k 

)T = PA F T , (21)

 b = ( P 1 n ) ( F 1 n ) 
T − PA F T = −PA F T , (22)

where 1 n is a vector of ones with dimension n , A =
diag{ E n 1 , . . . , E n c } , and E n k 

= 1 n 1 
T 
n , k = 1 , . . . , c. The first term

in C b vanishes since both P and F have been centered. The

objective function of DCVA is expressed as maximizing 

w 

T 
p C w 

w f − ηw 

T 
p C b w f √ 

w 

T 
p P P 

T w p 

√ 

w 

T 
f 
F F T w f 

= 

( 1 + η) w 

T 
p PA F T w f √ 

w 

T 
p P P 

T w p 

√ 

w 

T 
f 
F F T w f 

, (23)

where η is a tuning parameter. From (23) , it can be seen that the

optimal projection vectors are independent of the tuning parame-

ter η. Moreover, the denominator of mutual canonical correlations

in (23) is the auto-covariance of latent variables, which is not able
o reveal the local structures in the data. To further enhance the

erformance of DCVA, in the next subsection, we incorporate the

dea of LPP in the formulation of within-class and between-class

anonical correlations. 

.2. Locality preserving DCVA (LP-DCVA) method for fault diagnosis 

Given that the past and future information data P and F are

rom p classes, for each class, the objective of LPP is stated as min-

mizing 

 

( k ) 
p = w 

T 
p P 

( k ) S ( 
k ) 

pp P 
( k ) T w p , L ( 

k ) 
f 

= w 

T 
f F 

( k ) S ( 
k ) 

f f 
F ( k ) T w f , k = 1 , . . . c, 

here S (k ) 
pp is the Laplacian matrix for the k th class P 

( k ) and P (k ) =
 p 

(k ) 
1 

, p 

(k ) 
2 

, . . . , p 

(k ) 
n k 

] . The term L (k ) 
f 

is defined analogously. Combin-

ng the objective functions of LPP for c classes of past and future

ata, the within-class locality preserving matrices are 

 pp = P diag 
{

S ( 
1 ) 

pp , . . . , S 
( c ) 
pp 

}
P T , S f f = F diag 

{
S ( 

1 ) 
f f 

, . . . , S ( 
c ) 

f f 

}
F T . (24)

here P = [ P (1) , P (2) , . . . , P (c) ] and F = [ F (1) , F (2) , . . . , F (c) ] . In the

P-DCVA method, the goal of locality preserving projection is inte-

rated with that of DCVA as 

ax w p , w f 

w 

T 
p PA F T w f √ 

w 

T 
p S pp w p · w 

T 
f 
S f f w f 

. (25)

This optimization simultaneously maximizes the within-class

utual canonical correlations, preserves the local manifold in the

riginal data after projection, and minimizes the between-class
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Algorithm 1 Locality preserving discriminant canonical variate analysis. 

Input:Process input and output data [ u 1 u 2 . . . u N ] , [ y 1 y 2 . . . . y N ] 

1: Given lags h, l , tuning parameters σ , a, κ , form past data P and future data F 

2: Compute the weighting matrices S (k ) 
p and S (k ) 

f 
, k = 1 , . . . , c

3: Compute the Laplacian matrices S (k ) 
pp and S (k ) 

f f 
, k = 1 , . . . , c

4: Construct A according to (21) , S pp and S ff according to (24) 

5: Solve the eigenvalue problem (26) 

Output: W p ← [ w 

1 
p , . . . , w 

a 
p ] , W f ← [ w 

1 
f 
, . . . , w 

a 
f 
] 

 

Fig. 6. Misclassification rates for different orders of dimension reduction with dif- 

ferent methods. 

m  

o

w

 

v[
 

(  

j  

i  

[  

t  

a  

[

z  

g

c  

a

i  

c  

A  

v

 

c  

t  

4

 

t  

n  

e  

t  

m  

t  

j  

p  

o  

s  

s  

t  

m  

p  

g

 

i  

s  

s  

t  

t  

c  

a  

t  

p  

D

4

 

a  

F  

L  

m  

r  

o  

b  

a  

m  

m  

a  

a  

L

 

s  

F  
utual canonical correlations. Following the standard procedures

f CVA, (24) can be equivalently written as 

max 
 p , w f 

w 

T 
p PA F T w f s.t. w 

T 
p S pp w p = 1 , w 

T 
f S f f w f = 1 . 

This problem can be readily solved by the generalized eigen-

alue problem, 

0 PA F T 

F A P T 0 

][
w p 

w f 

]
= λ

[
S pp 0 

0 S f f 

][
w p 

w f 

]
. (26) 

Similar to FDA, the eigenvectors corresponding to the first a

where 1 ≤ a ≤ c − 1 ) largest eigenvalues are reserved as the pro-

ection vectors onto which the separation of data between classes

s maximized. Define the set of a projection vectors as W p =
 w 

1 
p , . . . , w 

a 
p ] , W f = [ w 

1 
f 
, . . . , w 

a 
f 
] , respectively, for the past and fu-

ure information data P and F . The transformed data for an ex-

mple [ p 

T f T ] T in the a -dimensional space is represented as z =
 z T p z T 

f 
] T with 

 p = W 

T 
p p, z f = W 

T 
f f . (27)

The discriminant function ( Chiang et al., 20 0 0 ): 

 j ( x ) = −1 

2 

(
x − x̄ j 

)T 
W a 

(
1 

n j − 1 

W 

T 
a S j W a 

)T 

W 

T 
a 

(
x − x̄ j 

)
− 1 

2 

ln 

[
det 

(
1 

n j − 1 

W 

T 
a S j W a 

)]
, (28) 

an be used to determine the classification of an example in the

 -dimensional space, where W a = [ W p W f ] , x = [ p 

T f T ] T and x̄ j 
s the mean value of class j . An observation x is classified into

lass j if g j ( x ) > g i ( x ), ∀ i � = j . The algorithm of LP-DCVA is shown in
lgorithm 1 , where N represents the number of samples of process

ariables. 

The LP-DCVA algorithm involves a set of tuning parameters that

an impact the classification performance. A summary of these

uning parameters and their suggested values are listed in Table 1 .

. Application to the Tennessee Eastman process 

The Tennessee Eastman Process (TEP) is a well-known platform

o validate and compare various fault detection and diagnosis tech-

iques. For other validation synthetic examples than TEP, the read-

rs can refer to Joe Qin and Zheng (2013) and Li et al. (2011) and

he references therein. This section applies the proposed LP-DCVA

ethod for fault diagnosis to simulated data from the TEP simula-

or. The diagram of TEP is shown in Fig. 2 . The TEP has five ma-

or components, namely a two-phase reactor, a condenser, a com-

ressor, a vapor/liquid separator, and a stripper. Since the TEP is

pen-loop unstable, a controller must be in the loop to generate

imulation data. More information regarding the TEP and control

trategy is provided in Chiang et al. (2001) and in the references

herein. The TEP has 52 process variables, consisting of 41 process

easurements and 11 manipulated variables. There are 21 pre-

rogramed faults in the TEP simulator and a list of these faults is

iven in Table 2 . 

For each fault, there are three types of data: training data, val-

dation data, and test data. Each training dataset contains 480 ob-

ervations and is used to build statistical models for fault diagno-

is. Each validation dataset contains 480 observations and is used

o cross-verify the performance of the trained models and de-

ermine the values of the tuning parameters. The testing dataset

ontains 800 observations to test the performance of the fault di-

gnosis techniques. The sampling interval is 3 minutes. In this sec-

ion, two examples are provided to compare the fault classification

erformance of FDA, DFDA , CVA-FDA , L -DFDA ( Yu, 2011 ), and LP-

CVA. 

.1. Case study 1: Faults 3, 4 and 11 

Faults 3, 4, and 11 have significant overlap since both Faults 4

nd 11 are associated with reactor cooling water inlet temperature.

or the training data from the three faults, FDA, DFDA, CVA-FDA,

 -DFDA, and LP-DCVA are applied to establish the fault diagnosis

odels. The validation data are used to specify the best tuning pa-

ameters. For simplicity, we set the lags h and l to be equal. The

ptimal values of lags for DFDA in this case study are shown to

e h = l = 9 from cross-validation. The lags for CVA-FDA, L -DFDA

nd LP-DCVA are chosen to be the same as for DFDA. The opti-

al number κ = 6 of nearest neighbors for LP-DCVA was deter-

ined by cross-validation. The heat kernel parameter for LP-DCVA

nd the reserved number of projection vectors for these methods

re chosen according to Table 1 . The kernel parameter σ = 335 for

 -DFDA was chosen from cross-validation. 

With the selected tuning parameters, Fig. 3 a–e demonstrate the

cores on the first two projected vectors based on FDA, DFDA, CVA-

DA, L -DFDA, and LP-DCVA, respectively, for the validation data.
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Table 4 

Misclassification rates for Faults 2, 5, 8, 12, 13, and 14. 

Fault Misclassification rates for testing data 

FDA DFDA CVA-FDA L-DFDA LP-DCVA 

Fault 2 0.0238 0.0189 0.0240 0.0138 0.0377 

Fault 5 0.0225 0.0176 0.0227 0.0189 0.0201 

Fault 8 0.3350 0.3182 0.2951 0.1371 0.20 0 0 

Fault 12 0.2500 0.1698 0.2346 0.1484 0.1484 

Fault 13 0.6687 0.5711 0.5284 0.4730 0.2503 

Fault 14 0.0813 0.1082 0.0542 0.0214 0.0239 

Overall 0.2302 0.2006 0.1931 0.1354 0.1134 
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The ellipse encompassing each data set indicates the 95% confi-

dence threshold. For FDA, a large portion of overlapping between

Fault 4 (or Fault 3) with Fault 11 is observed in the score space.

This observation is mainly because FDA does not take account of

the serial correlations among samples, thus failing to extract this

information from the data. Fig. 3 b illustrates that the separation is

improved after accounting for the dynamic relationship in the data

with DFDA, but there still exists a large degree of overlap among

these data sets. Fig. 3 c demonstrates that CVA-FDA method can

well distinguish Fault 3 and Fault 4, but a significant amount of

overlap still exists between those faults and Fault 11. Fig. 3 d shows

that with L -DFDA the intersections decline furthermore but the im-

provement is not large. Fig. 3 e shows that, with LP-DCVA, the sep-

aration between these clusters becomes more distinct. 

The test data for three faults are further employed to validate

the performance of these methods. The comparison results are

shown in Fig. 4 and Table 3 . As seen in Fig. 4 , Fault 4 is easier to

identify than the other two faults. Specifically, for the FDA method,

Faults 3 and 11 are incorrectly classified most of the time. DFDA,

CVA-FDA, and L -DFDA can effectively increment the classification

performance for Faults 3 and 11 compared with FDA. The LP-DCVA

method gives the best classification performance, which is consis-

tent with its full exploration of local structures of the data and

simultaneously consideration of global discriminant information. 

Table 3 shows the misclassification rates for three faults with

above methods. FDA can recognize Fault 4 reasonably well with

only 11.25% misclassification rate. However, FDA has high misclas-

sification rates for Faults 3 and 11. DFDA reduces the misclassi-

fication rates for Faults 3 and 11 but slightly increases the rate

for Fault 4. CVA-FDA significantly decreases the misclassification

rate for Fault 4 but with a degraded performance in recognizing

Fault 3. A possible explanation is that, for this two-stage method,

some critical information in distinguishing Fault 3 is lost when

building the CVA model. L -DFDA further decreases the misclassi-

fication rate for Fault 11 compared with the former three meth-

ods but the performance for classifying Fault 4 has a small dete-

rioration. In contrast, LP-DCVA reduces the misclassification rates

for almost all faults at the same time compared with the other

methods. Note that DFDA, CVA-FDA, and L -DFDA are almost on the

same level (between 25% and 28%) in the performance of misclas-

sification rate, which is due to the inherent difficulty in separating

these three faults. However, LP-DCVA drastically improves the per-

formance by almost 20% relative to L -DFDA. This example clearly

shows the advantage of using LP-DCVA for fault diagnosis. 

4.2. Case study 2: Faults 2, 5, 8, 12, 13, and 14 

This case study evaluates the fault diagnosis performance for

Faults 2, 5, 8, 12, 13, and 14. Faults 2 and 8 are associated with

the faults occurred in the feed composition in Stream 4. Faults 5,

12, and 14 are relevant to the cooling water for the condenser and

reactor. The lags are determined from cross validation as h = l = 3

for DFDA, CVA-FDA, L -DFDA, and LP-DCVA. The number κ of near-

est neighbors is chosen as 10. The heat kernel parameter for LP-

DCVA is specified according to the rule-of-thumb in Table 1 and

the kernel parameter for L -DFDA is selected as σ = 100 . 

Fig. 5 displays the fault classification results for these six faults

with a = 5 . It is observed that Faults 2 and 5 are correctly recog-

nized most of the time by these methods. FDA yields a large num-

ber of false classifications for Faults 8, 12, and 13. DFDA slightly

improves the performance by reducing the amount of incorrect

categorizations for these three faults. The overall misclassification

rate is still at a high level, observed from Fig. 5 b. CVD-FDA fur-

ther enhances the classification performance for Fault 8 and Fault

13 but the overall performance for these six faults is only slightly

better than DFDA. L -DFDA improves the classification performance
y considering the local structures in the data, as shown in Fig. 5 d.

n the other hand, with LP-DCVA, the misclassification rate for

ault 13 is dramatically decreased. The obtained misclassification

ates for each fault from these methods are illustrated in Table 4 .

P-DCVA provides a comparable performance with FDA and DFDA

or Faults 2, 5, and 14 that are easy to group. Moreover, LP-DCVA

ignificantly improves the classification performance for Fault 13

y reducing nearly 20% misclassification rates compared with the

ther four methods. The overall misclassification rate from LP-

CVA is almost 10% lower than those from FDA, DFDA, and CVA-

DA. 

Fig. 6 displays the overall misclassification rates based on five

ethods under different numbers of projection vectors. These mis-

lassification rates decrease monotonically as the order of dimen-

ion reduction increases. For low reduction order, the performance

f these four methods does not show significant distinctions. It

s observed that CVA-FDA method gives almost the same perfor-

ance as DFDA and the reason may be, as explained in previ-

us example, due to the loss of discriminative information dur-

ng the dimensionality reduction in obtaining the CVA model. As

he reduction order increases, the superior performance of L -FDFA

nd LP-DCVA becomes evident. This observation verifies the advan-

ages of using local information in the data for separating differ-

nt faults. Moreover, the superior performance of LP-DCVA than

 -DFDA further motivates the use of LP-DCVA for fault classifica-

ion. 

. Conclusions 

This article presents a locality preserving discriminative CVA

pproach for fault diagnosis, which combines the merits of CVA

n handling the serial and spatial correlations in high-dimensional

ata and the merits of FDA in maximizing the separations among

ifferent classes of data. Similar to CVA, collected input and out-

ut data are split into past and future information vectors in

he LP-DCVA approach. This method simultaneously maximizes

he within-class mutual canonical correlations, minimizes the

etween-class mutual canonical correlations and keeps the local

anifolds in the data. It is shown that the LP-DCVA method can

e transformed into a generalized eigenvalue problem and thus

losed-form solutions are obtained. An algorithm is presented to

mplement the proposed LP-DCVA method. In two simulation ex-

mples on the TEP, the LP-DCVA method provides superior perfor-

ance over FDA, DFDA, CVA-FDA, and LL-DFDA for fault classifica-

ion. 
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