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a b s t r a c t 

The selection of control structure is a critical step in the design of a control system since it can largely 

affect the achievable control performance. This paper presents a general internal model control (IMC) 

structure with multiple degrees-of-freedom for the design of control systems with multiple objectives 

(i.e., reference tracking and load and output disturbance rejection), so that controllers are designed in- 

dependently of each other. The optimal performance of controllers is shown to remain intact when a 

controller is taken off-line, for example, due to actuator and/or sensor failures. This feature circumvents 

the need to redesign the remaining on-line controllers for optimal failure-tolerant control. The proposed 

control approach is used to derive IMC control structures for multi-loop cascade and coordinated control 

systems. The performance of the control approach is demonstrated on a simulated thin-film drying pro- 

cess in continuous pharmaceutical manufacturing for several multi-loop control structures and a variety 

of control-loop component failures. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The design of the control structure, which is the specification of

he interconnection of measurements, exogenous inputs, and ma-

ipulated variables, greatly influences the performance achievable

y a control system. In practice, control systems are commonly re-

uired to fulfill multiple objectives in terms of reference tracking

nd load and output disturbance rejection, which cannot be ad-

quately specified using a single performance measure. This re-

lization has led to the development of numerous control struc-

ures that have multiple degrees-of-freedom, where each degree-

f-freedom is tasked with addressing some subset of the control

bjectives ( Grimble, 1988; Brosilow and Markale, 1992; Limebeer

t al., 1993; Pottmann et al., 1996; Zhou and Ren, 2001; Dehghani

t al., 2006; Vilanova et al., 2006; Liu et al., 2007; Vidyasagar,

011 ). As failures in system components inevitably occur in prac-

ice, an important practical consideration in control structure se-

ection is to ensure that the selected control structure and its as-

ociated controllers have graceful performance degradation during
� This work is an extension of the paper presented at the 2013 European Control 

onference ( Mesbah and Braatz, 2013 ). 
∗ Corresponding author. 
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omponent failures ( Blanke et al., 2003; Isermann, 2006; Zhou and

rank, 1998; paulson 2019 ). 

Internal model control (IMC) ( Morari and Zafiriou, 1989 ) is a

ontrol design method developed in the 1970s–1980s with several

seful features, including that it provides a convenient theoretical

ramework for the design of two degrees-of-freedom control sys-

ems (i.e., feedback and feedforward controller) when model un-

ertainty is present ( Vilanova, 2007 ). The basic idea of IMC control

esign is to combine an optimal controller obtained from the nom-

nal process model with a low-pass filter to tradeoff closed-loop

erformance with robustness to model uncertainties. As the IMC

tructure is a particular case of the Youla-Jabr-Bongiorno-Kucera

or Youla for short) parametrization of controllers that preserve

losed-loop stability, the original control design problem can be re-

laced by simply the selection of an arbitrary parameter that ap-

ears affinely in the closed-loop transfer function. This allows the

MC control structure to ensure internal nominal stability of the

losed-loop system ( Morari and Zafiriou, 1989; Braatz, 1996 ). Fur-

hermore, the IMC control structure allows for separate controller

esign for performance and robustness to alleviate the tradeoff

etween performance and robustness in the traditional feedback

ramework ( Zhou and Ren, 2001 ). 

This paper addresses the IMC control design with optimal fail-

re tolerance. An extension of the IMC control structure is pre-

ented for failure-tolerant control with multiple objectives related

https://doi.org/10.1016/j.compchemeng.2020.106955
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106955&domain=pdf
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Fig. 1. A general classical feedback control structure, where C = [ C r C d m C l m C y ] such 

that u = C r r + C d m d m + C l m l m + C y y . 
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to reference tracking and rejection of load and output disturbances.

The proposed IMC control structure enables the design of control

systems with multiple degrees-of-freedom, where a controller for

each exogenous input is designed independently of the other con-

trollers. Thus, the control structure preserves the optimal perfor-

mance of the remaining controllers when any of the controllers

are taken off-line (e.g., due to actuator and/or sensor failures). That

is, without compromising the best achievable control performance,

the proposed IMC control structure alleviates the inherent subop-

timality of a classical feedback control structure in dealing with

failures of one or more controllers in a control system with mul-

tiple objectives. Additionally, the proposed IMC approach to fail-

ure tolerance is distinct from robust control methods that account

for potential actuator and/or sensor failures in that these meth-

ods can result in overly conservative performance when no actua-

tor and/or sensor failures occur. This is because the control system

is designed with respect to worst-case performance in robust con-

trol methods (e.g., see Zhou and Ren, 2001 ). 

The proposed multiple degrees-of-freedom IMC controller de-

sign approach is also extended for the design of multi-loop con-

trol systems by deriving a general control structure for multi-loop

cascade and coordinated control systems. The performance of the

control approach is demonstrated using a thin-film drying process

in continuous pharmaceutical manufacturing ( Mesbah et al., 2014 ).

Notation and Preliminaries. Throughout the paper, a finite-

dimensional process is denoted by P (s ) ∈ RH ∞ 

, where s is the

Laplace variable and RH ∞ 

denotes the real rational subspace of

H ∞ 

consisting of all proper and rational transfer matrices. The ex-

ogenous inputs are bounded signals, i.e., r, l m 

, l u , d m 

, d u ∈ L p [0 , ∞ ) ,

where L p [0 , ∞ ) encompasses all signal sequences on [0, ∞ ) that

have finite p -norm. The real-valued function ‖ · ‖ denotes any norm

defined over the linear vector space of the signals. The induced

system norm | · | is defined as the supremum of an output sig-

nal norm over a norm-bounded set of an input signal ( Zhou et al.,

1996 ). 

Definition 1. (Internal Stability ( Morari and Zafiriou, 1989 )): A lin-

ear time-invariant (LTI) closed-loop system is internally stable if

transfer functions between all bounded exogenous inputs to the

closed-loop system and all outputs are stable (i.e., have all poles

in the open left-half plane). 

Definition 2. (Robust Stability ( Morari and Zafiriou, 1989 )): A

closed-loop system is robustly stable if the controller C ensures the

internal stability of the closed-loop system for all P ∈ P, where P
is the set of uncertain processes. 

2. Controller design with multiple objectives 

A fundamental consideration in design of a control system is

the choice of the control structure, which should not limit the

achievable control performance. A general control structure for a

process P with manipulated variable u , reference r , measured load

disturbance l m 

, unmeasured load disturbance l u , measured output

disturbance d m 

, unmeasured output disturbance d u , and measure-

ment noise n is shown in Fig. 1 . 1 All measured variables are fed

directly into the controllers C = [ C r C d m C l m C y ] that are tasked to en-

sure ( i ) the internal stability of the closed-loop system, ( ii ) the out-

put y closely tracks the reference r (i.e., small error e = y − r), and

( iii ) the effects of measurement noise and measured and unmea-

sured disturbances on the closed-loop error e are suppressed. The

mapping between the exogenous inputs to the closed-loop system
1 To simplify the exposition, explicit transfer functions for the various distur- 

bances are not shown. Generalization of the results of this paper to include the 

disturbance transfer functions is straightforward. 

w  

o  

f

 

Q  
nd the process output and manipulated variable is described by 

y 
u 

]
= H (P, C) 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

r 
l m 

l u 
d m 

d u 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (1)

here the transfer function matrix H ( P , C ) is 

 (P, C) = 

[
H y,r H y,l m H y,l u H y,d m H y,d u H y,n 

H u,r H u,l m H u,l u H u,d m H u,d u H u,n 

]
, (2)

ith elements given explicitly in terms of P and C by 

 y,r = 

P C r 

1 + P C y 
, H u,r = 

C r 

1 + P C y 
, 

 y,l m = 

P C l m 
1 + P C y 

+ 

P 

1 + P C y 
, H u,l m = 

C l m 
1 + P C y 

− C y P 

1 + P C y 
, 

 y,l u = 

P 

1 + P C y 
, H u,l u = 

−C y P 

1 + P C y 
, 

 y,d m = 

P C d m 
1 + P C y 

+ 

1 

1 + P C y 
, H u,d m = 

C d m 
1 + P C y 

− C y 

1 + P C y 
, 

 y,d u = 

1 

1 + P C y 
, H u,d u = 

−C y 

1 + P C y 
, 

 y,n = 

−P C y 

1 + P C y 
, H u,n = 

−C y 

1 + P C y 
. 

ote that we have dropped the dependence of the plant and con-

rollers on the Laplace variable s . This convention will be used

hroughout the rest of the paper for notational simplicity, unless

therwise needed for clarity. 

Optimal control approaches commonly involve formulating a

ingle performance measure in terms of an overall norm (such

s a weighted H 2 - or H ∞ 

-norm) of the transfer matrix H ( P , C )

 Zhou et al., 1996 ). However, a drawback of these approaches is

hat defining a single closed-loop performance measure may not

irectly reflect multiple control objectives (e.g., reference tracking

nd disturbance rejection). A typical control problem has multi-

le objectives that are independently defined in terms of the rela-

ionships between specific exogenous inputs and specific outputs.

everal of the closed-loop transfer functions in (2) that relate the

xogenous inputs to the output y and manipulated variable u are

unctions of multiple controller transfer functions. Hence, the con-

roller transfer functions cannot be designed independently to sat-

sfy multiple independently defined control objectives. Here, we

resent an alternative control structure that is provably general

hile having each term in the relationship between an input ex-

genous and output as a function of only one controller transfer

unction. 

Consider the internal model control structure in Fig. 2 , where

 = [ Q r Q d Q l Q y ] are IMC controllers. For the class of linear time-

m m 
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Fig. 2. The proposed general internal model control structure for a LTI system, 

where Q = [ Q r Q d m Q l m Q y ] are IMC controllers. 
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nvariant systems, Theorem 1 states that the control structure de-

icted in Fig. 2 provides a non-restrictive framework for controller

esign with multiple objectives in terms of reference tracking and

ejection of load and output disturbances. 

heorem 1. Suppose P is a transfer function of a stable LTI plant with

easured output y , manipulated input u , measurement noise n , and

isturbances l m 

, l u , d m 

, and d u . Further, let � denote the set of sta-

le functions of s. Then, the IMC control structure in Fig. 2 , under the

ssumption of a perfect model P = 

˜ P , has a one-to-one relationship

ith the classical feedback control structure in Fig. 1 . As such, there

s an invertible transformation between controllers C = [ C r C d m C l m C y ]

nd Q = [ Q r Q d m Q l m Q y ] that preserves the closed-loop transfer func-

ion matrix 

 y = 

Q y 

1 − P Q y 
, C r = 

Q r 

1 − P Q y 
, C l m = 

Q l m 

1 − P Q y 
, C d m = 

Q d m

1 − P

(3) 

 y = 

C y 

1 + P C y 
, Q r = 

C r 

1 + P C y 
, Q l m = 

C l m 
1 + P C y 

, Q d m = 

C d m
1 + P

(4) 

n addition, the IMC control structure in Fig. 2 is internally stable if

nd only if each IMC controller Q i is stable. This implies that the set of

ontrollers { C given by (3) ∀ Q y , Q r , Q l m , Q d m ∈ �} contains all con-

rollers C that stabilize P. 

roof. The first part of the proof follows by comparing H ( P , C ) in

2) to the transfer function matrix for the IMC control structure as,

iven by 

 (P, Q ) = 
[

PQ r P(1 + Q l m ) (1 − PQ y ) P 1 + PQ d m 1 − PQ y −PQ y 

Q r Q l m −Q y P Q d m −Q y −Q y 

]
. (5) 

By substituting (3) into this expression and applying simple

lgebraic manipulations, we can see that H (P, Q ) = H (P, C) holds.

ince the function (3) has a well-defined inverse (4) , given a Q we

an always derive a unique C and vice versa. The first claim of the

heorem directly follows. Note that this result is closely related to

he well-known Youla parametrization, which is an important and

undamental result in control theory. 

The second part of the proof follows from inspection of (5) .

he IMC control structure is internally stable if and only if all ele-

ents of H ( P , Q ) are stable. When P is stable, these transfer func-

ions are stable if and only if Q y , Q r , Q l m , and Q d m are stable (see

emark 1 for when P is unstable). Due to the established relation-

hip between C and Q , two properties hold: (i) given any stable Q ,

he corresponding C given by (3) results in H ( P , C ) being internally

table, and (ii) given any internally stabilizing C , the corresponding

 given by (4) must be stable. In other words, the elements of Q

eing stable is a necessary and sufficient condition for C producing

 stable feedback structure, which leads to and the last claim of

he theorem. �

emark 1. In Theorem 1 , the plant P can be multi-input multi-

utput. Furthermore, when P is unstable, the internal stability of
he closed-loop system will be satisfied if PQ y and (1 − P Q y ) P are

table ( Morari and Zafiriou, 1989; Tan et al., 2003 ). 

The control structure in Fig. 2 is an extension of the IMC struc-

ure to systems with four degrees of freedom. Theorem 1 indi-

ates that the proposed IMC control structure does not restrict

he set of closed-loop transfer functions that ensure internal sta-

ility of the closed-loop system. Hence, this result implies that

he use of the proposed IMC control structure does not limit

he achievable closed-loop performance, regardless of the closed-

oop performance measure(s) used to encode the control objec-

ives. These characteristics are in contrast to most control struc-

ures that have been proposed for designing control systems with

ultiple degrees-of-freedom (e.g., see Skogestad and Postleth-

aite, 1996 and the references therein). 

Furthermore, the proposed IMC control structure provides a

onvenient framework for controller design with multiple objec-

ives. This is because the closed-loop transfer matrix (5) depends

n Q in an affine manner, and all columns depend on only one el-

ment of Q . Thus, the optimal controllers Q r , Q l m , Q d m , and Q y can

e designed independently to realize multiple control objectives

rrespective of the design of the other IMC controllers. The only

radeoff in designing the controllers Q r , Q l m , and Q d m is that a fast

peed of response (the effect on y ) will be associated with faster

nd larger changes in the manipulated variable u . In addition, the

esign of Q y requires prioritizing the multiple control objectives

n view of their importance, as Q y is the only controller that can

uppress the effects of unmeasured disturbances and measurement

oise. Next, we show how the control structure in Fig. 2 enables

ealizing the optimal achievable control performance in the pres-

nce of system failures. 

emark 2. Although the results presented above consider finite-

imensional, continuous-time LTI systems (that is, all transfer func-

ions belong to RH ∞ 

), the proposed IMC control structure can

lso be applied to infinite-dimensional systems and to discrete-

ime systems; the former by defining the appropriate infinite-

imensional algebra ( Curtain and Zwart, 1995; Mesbah et al., 2013 )

nd the latter by replacing the Laplace transform with z -transform

nd the location of the poles for specifying stability of a transfer

unction. 

. Failure-tolerant control with multiple control objectives 

A common approach to failure-tolerant control involves de-

igning a single control system using robust control methods to

eal with all potential actuator and/or sensor failures (e.g., see

hou and Ren, 2001 ). Since in this approach the control system

s designed with respect to worst-case performance, it may lead to

verly conservative performance when no actuator and/or sensor

ailures occur. A distinct feature of the proposed IMC control struc-

ure is that the controllers Q r , Q l m , Q d m , and Q y can be designed

ndependently from each other since only one controller appears

n each column of (5) . Therefore, the controllers do not have to be

edesigned when a system component (e.g., actuator or sensor) is

aken out of service due to a failure. In other words, each indi-

idual controller will remain optimal with respect to its objective

hen any of the other controllers is taken out of service (i.e., set

o 0). This is an important advantage of the proposed IMC control

tructure in Fig. 2 when compared to the classical control structure

n Fig. 1 that requires all the controllers to be designed simultane-

usly, as robustness or stability properties of controllers can be lost

hen a failure occurs unless all controllers are redesigned. 

The proposed control structure also enables robust fault-

olerant control when abnormal system operation results from

hanges in process dynamics and/or disturbance characteristics.

hen changes in process dynamics can be characterized by model
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Fig. 3. Cascade control system, where C = [ C r C d m 1 C d m 2 C l m 1 C l m 2 C y 1 C y 2 ] and Q = 

[ Q r C d m 1 Q d m 2 Q l m 1 Q l m 2 Q y 1 Q y 2 ] . 
uncertainty, the lower P in Fig. 2 is replaced with a process model
˜ P ∈ P . In this case, the internal stability of the closed-loop system

in Fig. 2 for any ˜ P ∈ P depends on Q y only. 

Theorem 2. For stable Q r , Q l m , and Q d m , robust stability of the

closed-loop system in Fig. 2 only depends on Q y , ˜ P , and P, where

P is the set of uncertain processes. 

Proof. Consider that the process dynamics are described by the

model ˜ P that belongs to the uncertainty set P . Replace the lower

P in Fig. 2 with 

˜ P . The closed-loop transfer matrix H ( P , Q ) for the

mapping between [ y , u ] T and the exogenous inputs (see (1) ) takes

the form [ 

P Q r S P Q l m S + (I − ˜ P Q y ) SP (I − ˜ P Q y ) SP P Q d m S + (I − ˜ P Q y

Q r S Q l m S − Q y SP −Q y SP Q d m S − Q y S 

where S is 

S = 

(
I + (P − ˜ P ) Q y 

)−1 . 

Robust stability of the proposed control structure in Fig. 2 requires

that all transfer functions in (6) be stable for any ˜ P ∈ P . For stable

controllers Q r , Q l m , and Q d m , (6) indicates that the robust stabil-

ity of the closed-loop system is determined by the stability of S .

Hence, the robust stability of the system in Fig. 2 only hinges on

Q y , ˜ P , and P . �

Theorem 2 implies that as long as controllers Q r , Q l m , and Q d m 

are stable, they will not influence the internal stability of the

closed-loop system in the presence of model uncertainties. This

observation motivates a robust fault-tolerant control approach sim-

ilar to that in ( Zhou and Ren, 2001 ), where Q y can be designed to

be robust to some modest fault conditions as well as to model un-

certainties while the rest of the controllers need not consider the

system faults. Therefore, the general IMC control structure allevi-

ates the need for redesigning Q r , Q l m , and Q d m when faults occur

in the closed-loop system. What distinguishes the proposed control

structure from that presented in ( Zhou and Ren, 2001 ) is its ability

to realize optimal failure-tolerant control in the case of multiple

objectives. 

Remark 3. Theorem 2 indicates that robust stability can be guar-

anteed through only the design of Q y . However, it does not discuss

robust performance, which can generally be a function of each ele-

ment of Q . It is important to note that, since the control objectives

can be defined with respect to any norm, we can straightforwardly

build robustness into the design of Q by choosing, e.g., a weighted

H 2 or H ∞ 

-norm. Although these choices will influence robust per-

formance, the optimality of Q will not directly translate to opti-

mal robust performance of the overall closed-loop system (e.g., see

Zhou and Ren, 2001; Vilanova, 2007 ). 

4. Multi-loop control systems with multiple control objectives 

In this section, the proposed IMC control structure with multi-

ple control objectives is extended for multi-loop control systems,

namely cascade and coordinated control systems. 

4.1. Cascade control 

Cascade control systems are commonly used in the chemical in-

dustry to improve the dynamic response of the closed-loop sys-

tem by effectively reducing the impact of process disturbances, in

particular load disturbances ( Luyben, 1973; Krishnaswamy et al.,

1990 ). In cascade control, a secondary control loop is used to

tightly control a secondary process variable that is closely related

to unmeasured process disturbances, while slower measurements
(I − ˜ P Q y ) S −P Q y S 

−Q y S −Q y S 

] 

, (6)

f the primary process variable serve as the setpoint of the sec-

ndary control loop. The majority of cascade control systems have

he series structure, where the manipulated variable influences the

rimary output through the secondary output (see Fig. 3 a). In gen-

ral, cascade control is most effective when the dynamics of the

rimary process exhibit nonminimum phase behavior (right-half

lane zeros or a time delay) and the secondary loop has a faster

ynamic response ( Morari and Zafiriou, 1989 ). 

The general MC control structure for cascade control of a LTI

ystem is obtained by replacing the plant P in the control structure

f Fig. 2 with 

P 1 P 2 
P 2 

]
. 

his leads to the control structure depicted in Fig. 3 b with 7 de-

rees of freedom. The closed-loop mapping between the exogenous

nputs and the two process outputs and the manipulated variable

s defined by 

 

 

 

y 1 

y 2 

u 

⎤ 

⎥ ⎦ 

= H (P, Q i ) 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

r 

l m 1 

l m 2 

l u 1 

l u 2 

d m 1 

d m 2 

d u 1 

d u 2 

n 1 

n 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here the transfer matrix H ( P , Q i ) is 



A. Mesbah, J.A. Paulson and R.D. Braatz / Computers and Chemical Engineering 140 (2020) 106955 5 

Fig. 4. Classical parallel cascade control structure, where C = 

[ C r C d m 1 C d m 2 C l m 1 C l m 2 C y 1 C y 2 ] . 

⎡
⎢⎢⎢⎢⎣
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Fig. 5. Coordinated control system, where C = [ C r C ur C l m 1 C l m 2 C d m C y ] and Q = 

[ Q r Q ur Q l m 1 Q l m 2 Q d m Q y ] . 

T  

i

[

w

⎡
⎢⎢⎢⎢⎣

 

 

Q  

t

Q

w ur 1 ur 2 
 

 

 

 

 

 

P 1 P 2 Q r P 1 + P 1 P 2 Q l m 1 P 1 P 2 (I + Q l m 2 ) (I − P 1 P 2 Q y 1 ) P 1 P 1 (I − P 2 Q y 2 ) P 2 I + P 1 P 2 Q d m

P 2 Q r I + P 2 Q l m 1 P 2 (I + Q l m 2 ) I − P 2 Q y 1 P 1 (I − P 2 Q y 2 ) P 2 P 2 Q d m 1 

Q r Q l m 1 
Q l m 2 

−Q y 1 P 1 −Q y 2 P 2 Q d m 1 

P 1 + P 1 P 2 Q d m 2 I − P 1 P 2 Q y 1 P 1 (I − P 2 Q y 2 ) −P 1 P 2 Q y 1 −P 1 P 2 Q y 2 

I + P 2 Q d m 2 −P 2 Q y 1 I − P 2 Q y 2 −P 2 Q y 1 −P 2 Q y 2 

Q d m 2 
−Q y 1 −Q y 2 −Q y 1 −Q y 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (7) 

n the transfer matrix (7) , each column depends on only one con-

roller transfer function, so that the optimal designs of Q i can be

erformed independently. The presented general cascade control

tructure in Fig. 3 b extends the IMC cascade structure by including

he effects of load disturbances and measured output disturbances

n both control loops. 

Another widely used variant of cascade control is the parallel

ascade structure in which the manipulated variable affects the

rimary and secondary outputs through parallel actions, as shown

n Fig. 4 ( Luyben, 1973; Yu, 1988 ). Using block diagram transfor-

ations, it has been demonstrated that the parallel cascade struc-

ure is equivalent to the series cascade structure when the pri-

ary process transfer function (i.e., P 1 in Fig. 3 a) is replaced with

 1 / P 2 ( Semino and Brambilla, 1996 ). Hence, the parallel cascade

ontrol structure can be derived by defining the plant as 

[
P 1 
P 2 

]
in

ig. 2 . This implies that in the cascade control structure depicted

n Fig. 3 b, as well as in the closed-loop mapping (7) , the plant P 1 
hould be replaced with P 1 / P 2 for the case of parallel cascade con-

rol. Note that the general IMC control structure for parallel cas-

ade control holds only when P 2 is minimum phase. 

.2. Coordinated control 

Coordinated control commonly refers to a class of control prob-

ems where two manipulated variables are used to control one

utput ( Popiel et al., 1986; Henson et al., 1995; Giovanini, 2007;

ayadeen and Heath, 2009 ). A widely-used representation of co-

rdinated control systems, also known as mid-ranging control, is

epicted in Fig. 5 a. A coordinated control system is designed such

hat the manipulated variable u 1 , which has a more direct effect

n y (faster dynamics and a smaller time delay), rapidly regulates

he process output for setpoint and disturbance changes. However,

ince the manipulation of u 1 is more expensive than u 2 , the con-

rol system gradually resets the fast input u 1 to its desired setpoint

 r as the slower input u 2 begins to affect the output. 

To obtain the general structure for coordinated control of LTI

ystems, the plant P in the proposed control structure in Fig. 2 is

eplaced with 

P 1 P 2 
]
. 
he resulting control structure with 6 degrees of freedom, shown

n Fig. 5 b, has the closed-loop mapping 

 

y 
u 1 

u 2 

] 

= H (P, Q i ) 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

r 
u r 

l m 1 

l m 2 

l u 1 
l u 2 
d m 

d u 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here H ( P , Q i ) is defined by 

 

 

 

 

 

 

(P 1 + P 2 ) Q r (P 1 + P 2 ) Q ur P 1 + (P 1 + P 2 ) Q l m 1 P 2 + (P 1 + P 2 ) Q l m 2 (I − (P 1 + P 2 ) Q y ) P 1

Q r Q ur1 Q l m 1 
Q l m 2 

−Q y P 1 

Q r Q ur2 Q l m 1 
Q l m 2 

−Q y P 1 

(I − (P 1 + P 2 ) Q y ) P 2 I + (P 1 + P 2 ) Q d m I − (P 1 + P 2 ) Q y −(P 1 + P 2 ) Q y 

−Q y P 2 Q d m −Q y −Q y 

−Q y P 2 Q d m −Q y −Q y 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (8) 

The closed-loop transfer matrix (8) suggests that the controllers

 = [ Q r Q ur Q l m 1 
Q l m 2 

Q d m Q y ] are independent from each other in

he general IMC coordinated control system. Note that 

 ur = 

[
Q ur1 

Q ur2 

]
, 

here Q and Q can be designed independently. 
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5. Design of an IMC control system with multiple objectives for

a thin-film dryer 

The proposed IMC control structure with multiple control ob-

jectives is demonstrated for control of a continuous dryer used for

manufacturing of pharmaceutical thin-film tablets ( Mesbah et al.,

2014 ). In this process, the drug formulation solution is cast as thin

films that are dried to remove solvents (volatile components) of

the solution through evaporation. Among the critical quality at-

tributes of thin films are the solvent concentration remaining in

the film and the film temperature, which heavily affect the me-

chanical characteristics and adhesion properties of the dried films.

Hence, controlling the solvent concentration and temperature of

the dried films is crucial to the overall process of thin-film tablet

formation. 

In the thin-film dryer investigated here, the manipulated vari-

ables are flow rate of the formulation solution pumped into the

dryer ( u 1 ) and temperature of hot air exposed to the film ( u 2 ). The

measured outputs consist of solvent concentration in the film ( y 1 )

and film temperature ( y 2 ). The “true” dynamics of the multi-input

multi-output (MIMO) thin-film drying process are described by the
Fig. 6. Closed-loop simulation of the MIMO control system for a step change in the re

applied at t = 0 . The solvent concentration is affected by measured load disturbance l m , m

200, and 250 s, respectively. 
rst-order-plus-dead-time (FOPDT) models 

y 1 
y 2 

]
= 

[
p 11 p 12 

p 21 p 22 

]
= 

[
0 . 001 e −5 s 

6 s +1 
−0 . 005 e −5 s 

3 s +1 
−0 . 0 0 03 e −5 s 

50 s +1 
0 . 8 

2 s +1 

][
u 1 

u 2 

]
. (9)

n this section, we apply the proposed IMC control structure to de-

ign MIMO, as well as multi-loop cascade and coordinate control

ystems, for regulating the solvent concentration of the dried thin

lms, which is considered as the primary controlled variable. 

.1. Multi-input multi-output control 

A MIMO control system with multiple objectives is designed to

egulate the solvent concentration in the film and the film temper-

ture by manipulating, respectively, the feed solution pumped into

he dryer and the temperature of hot air blown into the dryer. The

hoice of input-output pairing is informed by a singular value de-

omposition analysis. Measured and unmeasured disturbances are

cting on the solvent concentration control loop such that 

 1 (s ) = p 11 (s ) 
(
u 1 (s ) + p l m (s ) l m 

(s ) 
)

+ p 12 (s ) u 2 (s ) 

+ p d (s ) d m 

(s ) + d u (s ) , 

m 

ference r of the solvent concentration and film temperature feedback controllers 

easured output disturbance d m , and unmeasured output disturbance d u at t = 150 , 
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Fig. 7. Closed-loop simulation of the MIMO control system during various failures in the sensors of the measurable variables for a step change in the reference r , the 

measured load disturbance l m , the measured output disturbance d m , and the unmeasured output disturbance d u at t = 0 , 150, 200, and 250 s, respectively. 

w  

a  

c  

b  

σ

 

c  

t  

p  

I  

a  

p  

t  

o  

t  

l  

p  

p  

c  

I  
here p l m = 

5 s +10 
50 s 2 +10 s +1 

and p d m = 

s +0 . 01 
s +1 are the measured load

nd output disturbance transfer functions, respectively. Solvent

oncentration and film temperature measurements are corrupted

y sensor noise having a zero-mean Gaussian distribution with
2 
y 1 

= 10 −3 and σ 2 
y 2 

= 1 , respectively. 

The control objective is to track a desired setpoint for solvent

oncentration and film temperature, while the solvent concentra-

ion is perturbed by measured load disturbance l m 

, measured out-

ut disturbance d m 

, and unmeasured output disturbance d u . The

MC control structure was used to cast the MIMO control problem
s a control design problem with multiple objectives. Four inde-

endent control objectives were formulated for solvent concentra-

ion control to realize adequate reference tracking in the presence

f measured and unmeasured disturbances. H 2 -optimal IMC con-

rollers Q r , Q l m , Q d m , and Q y were designed for a step change in r ,

 m 

, d m 

, and d u , respectively, according to Theorems 3 to 6 in Ap-

endix. The design of the IMC controllers was based on uncertain

rocess models with 10% uncertainty in the process gains and time

onstants relative to the “true” process dynamics given in (9) . The

MC controllers were made proper so as to be physically realizable
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Fig. 8. Closed-loop simulation of the series and parallel cascade control systems for a step change in the reference r , the unmeasured output disturbance in the primary 

loop d u 1 , the measured output disturbance in the primary loop d m 1 , the unmeasured output disturbance in the secondary loop d u 2 , the measured load disturbance in the 

primary loop l m 1 , and the measured load disturbance in the secondary loop l m 2 at t = 0 , 100, 150, 200, 300, and 350 s, respectively. 
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by augmenting with a first-order low-pass filter (see (13) in Ap-

pendix, where λ f = 2 . 0 ). The time-delay terms were approximated

by a first-order Padé approximation ( Ogunnaike and Ray, 1994 ). 

Fig. 6 a shows the closed-loop profile of the solvent concentra-

tion in the thin film at the exit of the dryer when a step change

is applied to the inputs r , l m 

, d m 

, and d u . The response of the

film temperature to a step setpoint change at time t = 0 is shown

in Fig. 6 b. The solvent concentration should be maintained at 0.5

wt.% to achieve the desired extent of drying. Fig. 6 a indicates that

Q r enables very good reference tracking and the controllers Q l m ,

Q d m , and Q y adequately reject the measured and unmeasured dis-

turbances. The suppression of the measured load disturbance l m 

is

perfect. The closed-loop response for the measured and unmea-

sured output disturbances is limited by the same nonminimum

phase behavior of the process. The closed-loop speed of response

for the measured output disturbance and reference tracking is the

same, as the two inputs act through the same controller transfer

function Q y . Additionally, Q y handles the closed-loop interactions

induced by the film temperature controller. 

Next, the performance of the MIMO control system is investi-

gated in response to failures in the sensors of the measurable vari-

ables. It is assumed that the sensor failures can be detected using

fault detection and diagnosis methods (e.g., as described in Chiang

et al., 2001; Gertler, 1998 and references therein). When a sen-
or fails, its measurements can no longer be used for control and,

herefore, the respective controller is switched off. Fig. 7 shows the

ystem response in the event of sensor failures for the measurable

ariables r , l m 

, d m 

, and y . The solvent concentration profiles indi-

ate that the closed-loop system response to the measurable vari-

bles with working sensors remains unaffected by removal of the

ailed sensors, as suggested by the analysis in Section 3 . 

Fig. 7 a shows the solvent concentration response for a loss in

he reference signal, which could occur due to loss in a commu-

ication line between an upper-level supervisory control loop and

 lower-level regulatory control system. The comparison between

igs. 6 and 7 a reveals that the solvent concentration response to

he disturbances l m 

, d m 

, and d u is completely unaffected by the

oss of reference signal, as the response is just shifted to a different

aseline. Fig. 7 b suggests that the closed-loop response to the ex-

genous inputs r , l m 

, and d m 

is completely unaffected by a failure

n the output sensor y . This results from the fact that the feedfor-

ard controllers Q r , Q l m , and Q d m remain intact by the loss in the

eedback of y . Under these conditions, only the output response to

he unmeasured disturbance is influenced by the loss of y , as the

easurement of the output is the only way by which the control

ystem can detect the presence of d u . 

Fig. 7 c indicates that losing the controller Q l m affects the closed-

oop response at t = 150 s while having no effect on the closed-
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Fig. 9. Closed-loop simulation of the coordinated control system for a step change in the reference r , the measured load disturbance for the slow input l m 2 , the measured 

load disturbance for the fast input l m 1 , the measured output disturbance d m , the unmeasured output disturbance d u , and the input setpoint u r at t = 0 , 50, 100, 150, 200, 

and 300 s, respectively. 
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y
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y
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(  

o  

S

oop response to the reference signal r and unmeasured output

isturbance d u . The integrating action of Q y forces the output re-

ponse to follow the reference signal r after the measured load dis-

urbance perturbs the system. Fig. 7 c also suggests that the loss

f the measured output disturbance signal d m 

and, consequently,

he controller Q d m does not influence the output responses of the

orking sensors Q r and Q y . This numerical example clearly demon-

trates the optimal failure tolerance of the proposed IMC control

tructure and controller design method. It illustrates that the con-

rol structure alleviates the need to redesign controllers for optimal

ailure-tolerant control. 

.2. Cascade control 

We now use the hot air temperature (i.e., manipulated variable)

o control the solvent concentration in the thin-film (i.e., primary

rocess output), while the thin-film temperature is used as the

econdary process output. Leveraging the single manipulated vari-

ble and the two measured outputs, the goal is to design a cas-

ade control system with multiple objectives. The process dynam-
cs (9) implies that manipulation of the hot air temperature has

 much faster influence on the film temperature dynamics ( p 22 )

han on the solvent concentration dynamics ( p 21 ). This suggests

hat the film temperature, which is closely related to the solvent

oncentration in the film (the primary process output) and is read-

ly available from on-line measurements, can be used to improve

he dynamic response of the closed-loop system in terms of dis-

urbance rejection. The process is under the influence of various

isturbances such that the secondary process output (film temper-

ture, y 2 ) and the primary process output (solvent concentration,

 1 ) are described by 

 2 (s ) = p 22 (s ) 
(
u (s ) + l m 2 (s ) 

)
+ d u 2 (s ) 

nd 

 1 (s ) = p 21 (s ) 
(
y 2 (s ) + l m 1 (s ) 

)
+ p d m 1 (s ) d m 1 (s ) + d u 1 (s ) , 

espectively, where u is the hot air temperature and p d m 1 = 

s +0 . 01 
s +1 

see Fig. 3 b for the cascade IMC control structure). Both process

utputs are corrupted by stochastic sensor noise defined as in

ection 5.1 . 
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The control objective is to maintain the solvent concentration at

a predetermined setpoint r in the presence of the different mea-

sured and unmeasured disturbances ( l m 1 , l m 2 , d u 1 , d u 2 , and d m 1 )

acting on the process. The cascade IMC control structure presented

in Section 4.1 was applied to formulate the control design problem

with multiple objectives for the series and parallel cascade con-

trol systems. H 2 -optimal IMC controllers were designed using the

results of Theorems 3 to 6 in Appendix for a step change in the in-

put and, subsequently, augmented with a first-order low-pass filter

(see (13) in Appendix, where λ f = 2 . 0 ). 

Fig. 8 a shows the closed-loop response of the primary process

output for both cascade control systems. The optimal design of Q r 

results in perfect reference tracking, while the feedforward con-

trollers Q l m 1 
, Q l m 2 

, and Q d m 1 
along with the feedback controllers

Q y 1 and Q y 2 adequately reject all the disturbances affecting the

system. For the thin-film drying process investigated here, Fig. 8 a

indicates that the series and parallel cascade control systems ex-

hibit comparable performance under the nominal process opera-

tion. Note that the proposed control structure provides a consis-

tent framework to evaluate the performance of the cascade control

systems since the performance comparison is independent of the

choice of the controller tuning. 

Fig. 8 b depicts the closed-loop system response for the two cas-

cade control systems when the sensors used to measure the sec-

ondary load disturbance ( l m 2 ) and the secondary process output

( y 2 ) failed. Failure of the latter sensors rendered the secondary

control loop in the cascade structures dysfunctional, as Q l m 2 
and

Q y 2 were switched off. Fig. 8 b suggests that the series cascade con-

trol system outperforms the parallel cascade system in the event of

sensor failures. This is because of the longer response time of the

parallel control system to restore the performance (bring the sol-

vent concentration to its setpoint) once the load disturbance l m 2 

occurred at 350 s. Yet, the performance of the rest of the optimal

controllers in both control systems remains intact due to optimal

failure tolerance of the control structure. 

5.3. Coordinated control 

We now aim to control the solvent concentration in the thin

film by manipulating the hot air temperature and feed flow rate in

a coordinated manner. The process dynamics (9) suggest that ma-

nipulation of the feed flow rate for controlling the solvent concen-

tration ( p 11 ) exhibits much faster dynamics than using the hot air

temperature ( p 21 ). Hence, manipulating the feed flow rate enables

obtaining a better closed-loop response in terms of setpoint track-

ing and disturbance rejection. However, the feed flow rate should

be reset to a predetermined setpoint during process operation to

achieve a desired production rate. 

Consider the process to be affected by various disturbances

such that solvent concentration is described by 

y (s ) = p 1 (s ) 
(
u 1 (s ) + l m 1 

(s ) 
)

+ p 2 (s ) 
(
u 2 (s ) + l m 2 

(s ) 
)

+ p d m (s ) d m 

(s ) + d u (s ) , 

where u 1 ( s ) and u 2 ( s ) are the fast manipulated variable (feed flow

rate) and slow manipulated variable (hot air temperature), respec-

tively. The coordinated control system is depicted in Fig. 5 b. The

control objective is not only to regulate the solvent concentration

in the presence of disturbances ( l m 1 , l m 2 , d m 

, and d u ), but also

to reset the feed flow rate to its desired setpoint u r as the slow

manipulated variable begins to influence the output. The analyti-

cal expressions for H 2 -optimal IMC controllers were derived for a

step input. The tuning parameter of the first-order low-pass filter

(13) was set to λ f = 2 . 0 . 

Fig. 9 shows the closed-loop response of the system under the

nominal process operation and the case of system failures due to
oss of the measured load disturbance signal l m 1 and the input set-

oint signal u r . Fig. 9 a suggests that the loss of l m 1 at 100 s is

erely detrimental to the ability of the control system in reject-

ng the load disturbance affecting the fast control loop, as the rest

f the controllers fulfill their objectives adequately. It is shown in

ig. 9 b that losing the input setpoint at 300 s (e.g., due to a com-

unication failure between supervisory and regulatory control lev-

ls) only makes the control system unable to maintain the feed

ow rate at its desired level 1550 cm 

3 / s . The simulation results

ndicate that, in the event of sensor failures, the optimal perfor-

ance of the coordinated control system is preserved with respect

o the working controllers. 

. Conclusions 

We presented a general control structure for designing control

ystems with multiple objectives related to reference tracking and

ejection of load and output disturbances for LTI systems. The pro-

osed control structure is an extension of the internal model con-

rol structure to systems with four degrees-of-freedom. Through

oula parameterization of all stabilizing controllers, it is demon-

trated that the control structure is non-restrictive in terms of the

chievable performance. The distinct feature of the control struc-

ure is that the controllers can be designed independently from

ach other, as the control objectives are defined separately for each

xogenous input. This feature is particularly significant for failure-

olerant control since the optimal performance of the remaining

ontrollers will remain intact when any controller is taken off due

o actuator and/or sensor failures. We note that the proposed con-

rol structure can in principle complement model predictive con-

rol (MPC) when used as a failure-tolerant regulatory control sys-

em. Although MPC is especially well suited for optimal control of

onstrained multivariable systems, failure tolerance in MPC is par-

icularly challenging and largely remains an open area of research

e.g., see Zhang and Jiang, 2008 ). This challenge mainly arises from

he fact that MPC inherently accounts for multivariable system in-

eractions, which is in contrast to the proposed control structure

hat decouples the multiple control objectives in order to individu-

lly leverage the degrees of freedom in the process. Thus, the inte-

ration of the proposed control structure and MPC is an interesting

otential direction for future research. 
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ppendix A 

Consider a LTI single-input single-output process p ( s ) 

p(s ) = p a (s ) p m 

(s ) , (10)

here p a ( s ) and p m 

( s ) are the all-pass and minimum-phase parts of

 ( s ), respectively. p a ( s ) includes the right-half plane zeros, as well

s time delays of p ( s ), and generally takes the form 

p a (s ) = e −θs �i 

−s + ζi 

s + ζ ∗
i 

, 

here the superscript ∗ denotes complex conjugate ( Morari and

afiriou, 1989 ). Below, optimal control designs are obtained for

he controllers in the control structure in Fig. 2 for the single-

nput single-output process (10) . The control objectives are defined
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2 Somewhat more complicated filters are more appropriate in the presence of 

load disturbances when the closed-loop dynamics are much faster than the open- 

loop process dynamics ( Horn et al., 1996 ). 
n terms of minimization of the H 2 -norm of the columns of the

losed-loop transfer function H ( P , Q i ) (see (5) ). As derivation of an-

lytical expressions for controllers requires partial fraction expan-

ion, the main result of partial fraction expansion is summarized

n Definition 3 . 

efinition 3. (Partial fraction expansion ( Polderman and

illems, 1998 )): Suppose A (s ) = 

∏ N 
i =1 (s − λi ) 

n i , λi � = λj , i � = j ,

ith integers n i and deg B (s ) � deg A (s ) . The partial fraction

xpansion of A 

−1 (s ) B (s ) is defined by 

 

−1 (s ) B (s ) = a 0 + 

N ∑ 

i =1 

n i ∑ 

j=1 

a i j 

(s − λi ) j 
, (11)

here 

 (s ) = a 0 A (s ) + 

N ∑ 

i =1 

n i ∑ 

j=1 

a i j 

( N ∏ 

k � = i 
(s − λk ) 

n k 
)
(s − λi ) 

n i − j (12)

 0 = lim s →∞ 

B (s ) 
A (s ) 

 in i = lim s → λi 
(s − λi ) 

n i B (s ) 
A (s ) 

i = 1 , · · · , N, 

 i j = lim s → λi 
(s − λi ) 

j 

(
B (s ) 
A (s ) 

− ∑ n i 
k = j+1 

a ik 
(s −λi ) k 

)
i = 1 , · · · , N, 

j = 1 , · · · , n i − 1 . 

The following theorems give analytical expressions for H 2 -

ptimal controllers Q r , Q l m , Q d m , and Q y . The proof of the theorems

elow follows from Theorem 4.1-1 in ( Morari and Zafiriou, 1989 ). 

heorem 3. Consider the stable process p ( s ) defined as in (10) . Let

 proper weight function r ( s ) be factored into an all-pass part and a

inimum-phase part 

(s ) = r a (s ) r m 

(s ) = r a (s ) 
r n (s ) 

r d (s ) 
. 

hen the optimal solution to inf Q r ‖ (pQ r − 1) r ‖ 2 is 

 r = 

B (s ) 

p m 

(s ) r n (s ) 
, 

here B ( s ) is calculated from (12) for 

A (s ) 

B (s ) 
= 

r n (s ) 

p a (s ) r d (s ) 

ith λi being the zeros of r d ( s ) . 

heorem 4. Consider the stable process p ( s ) defined as in (10) . Then

he optimal solution to inf Q l m 

∥∥p(1 + Q l m ) l 
∥∥

2 
is 

 l m = −1 . 

heorem 5. Consider the stable process p ( s ) defined as in (10) . Let

he minimum-phase part of a proper weight function d ( s ) be written

s d n ( s )/ d d ( s ) . Then the optimal solution to inf Q d m 

∥∥(1 + pQ d m ) d 
∥∥

2 

s 

 d m = 

−B (s ) 

p m 

(s ) d n (s ) 
, 

here B ( s ) is calculated from (12) for 

A (s ) 

B (s ) 
= 

d n (s ) 

p a (s ) d d (s ) 

ith λi being the zeros of d d ( s ) . 

heorem 6. Consider the stable process p ( s ) defined as in (10) .

et the minimum-phase part of a proper weight function v (s ) =
p(s ) l u (s ) + d u (s ) be written as v n (s ) / v d (s ) . Then the optimal solution

o inf Q y ‖ (1 − pQ y ) v ‖ 2 is 

 y = 

B (s ) 

p m 

(s ) v n (s ) 
, 
here B ( s ) is calculated from (12) for 

A (s ) 

B (s ) 
= 

v n (s ) 

p a (s ) v d (s ) 

ith λi being the zeros of v d (s ) . 

The above analytical expressions obtained for the optimal con-

rollers are stable but may be improper and, as a result, the con-

rollers may be physically unrealizable. In the IMC control design

ethod ( Morari and Zafiriou, 1989 ), the optimal controllers are

ugmented with a low-pass filter such as 

 f (s ) = 

1 

(λ f s + 1) n f 
, (13)

ith n f just large enough that the controllers Q i are proper, at the

xpense of sub-optimality. 2 In (13) , λf is an adjustable parameter,

ith small values leading to very fast response and large values

esulting in manipulated variable moves that are slower and have

maller peak values during sharp changes in the inputs. 
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