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MINIMIZING THE EUCLIDEAN CONDITION NUMBER*

RICHARD D. BRAATZt AND MANFRED MORARIt

Abstract. This paper considers the problem of determining the row and/or column scaling
of a matrix A that minimizes the condition number of the scaled matrix. This problem has been
studied by many authors. For the cases of the oo-norm and the 1-norm, the scaling problem was
completely solved in the 1960s. It is the Euclidean norm case that has widespread application in
robust control analyses. For example, it is used for integral controllability tests based on steady-
state information, for the selection of sensors and actuators based on dynamic information, and for
studying the sensitivity of stability to uncertainty in control systems.

Minimizing the scaled Euclidean condition number has been an open question--researchers pro-
posed approaches to solving the problem numerically, but none of the proposed numerical approaches
guaranteed convergence to the true minimum. This paper provides a convex optimization procedure
to determine the scalings that minimize the Euclidean condition number. This optimization can be
solved in polynomiM-time with off-the-shelf software.
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1. Introduction. Let V1 Cn be the normed complex vector space with HSlder
p-norm I1" lip, IlXllp (}- IxjlP) I/p. For an n n matrix A V ---, V, the following
induced matrix norm is defined"

(1) IIAIl p max IIAxlIP.
Ilxll,

If the inverse A- exists, then the condition number subordinate to the norm I1" lip is
defined by

(2)

Define Cnx’ to be the set of complex n x n matrices. Let Dnxn be the set
of all diagonal invertible matrices in Cnx. If A E Cxn is the matrix defining
a system of linear equations Ax b, scaling the rows of this system is equivalent
to premultiplying A by a diagonal matrix D E Dnxn. Scaling the unknowns is
equivalent to postmultiplying A by a diagonal matrix D2 Dxn. The quality of
numerical computations is generally better when the condition number of A is small.
Since diagonal scalings of A are trivial modifications, researchers in the 1960s-1970s
were led to investigate the following minimizations in order to obtain optimal scalings
of a matrix:

(3)
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TABLE
Minimized condition numbers. The matrix whose elements are the moduli of the corresponding

elements of A is denoted by IAI. The spectral radius of A is denoted by p(A). The maximum singular
value- (A) refers to IIAIli..

p --1, cx

infap(D1A) Y (IA-Xl IAI)D
inf p(nD2) 5 (l’nl I/-ll)
92

inf" tcp(DAD2) p(lA[. [A-[)
D1 ,D2

p=2

Problem (3(i)) was present for example in the error analysis of direct methods for the
solution of linear equations [34], [2]. Problem (3(ii)) is important for obtaining the
best possible bounds for eigenvalue inclusion theorems [3], and is a natural measure
of the linear independence of the column vectors that form A [2]. Problem (3(iii))
was used for decreasing the error in calculation of the matrix inverse A-1 [14].

Later, it was realized that the appropriate scalings depend on the error in the
matrix, not the elements of the matrix itself [10], [31]. This implied, for example,
that the scalings solving problem (3(iii)) are not necessarily the best scalings of A to
decrease the error in the calculation of A-1. However, problems (3(i))-(3(iii)) still
have widespread application in robust control analyses. For example, the minimized
condition number (3(iii)) is used for integral controllability tests based on steady-state
information [13], [18], and for the selection of sensors and actuators using dynamic in-
formation [24], [19], [20]. The sensitivity of stability to uncertainty in control systems
is given in terms of the minimized condition number in [29], [30].

Without loss of generality, for each of these problems we need only consider
the infimum over the set of real positive diagonal invertible matrices Dn. This
is because any matrix in Dnn can be decomposed into a matrix in D+ and a

unitary diagonal matrix. The unitary diagonal matrix does not affect the value of the
condition number in (2) (see [2] for a simple proof). Conditions for the existence of
scaling matrices that achieve the infimum are given by Businger [6].

The minimizations were solved for p 1 and p cx by Bauer [2] (the results are
in Table 1). Many researchers consider the 2-norm as most important for applications
[2], [14], [17]. Solving (3(i))-(3(iii)) for the 2-norm has been an open question [28],
[35]. In this paper we solve the minimizations for the 2-norm by transforming the
minimizations (3(i))-(3(iii)) so that they can be solved via convex programming.

Nonsquare A [33], block diagonal scalings [12], [271, [9], [11], [35], and cross-
condition numbers (with B replacing A-1 in (2), see [8], [16], [15]) have also received
attention. For ease of notation, the results are derived for square matrices with
fully diagonal scalings. The results (and proofs) hold for these other cases with the
modifications given after the lemmas.

2. Results. The induced matrix norm for the vector 2-norm is commonly re-
ferred to as the maximum singular value, y (A) IIAIli2. To simplify notation, drop
the subscript on ., i.e., . a. Let R+ be the set of real positive scalars. Let I be
the n x n identity matrix.

LEMMA 2.1. The followin9 equality holds:

inf 2([ die 0 ] [ 0 A-1 ] [ (dl)-lI 0 1)(4) n(A)
d,dert+ 0 d2I A 0 0 (d2)-1I
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Pro@

inf
dl ,d2 0 d2I A 0 0 (d2)-1I

(6)

(7)

(8)

(9)

(10)

Note that this proof is similar to a proof in [21]. [3

The following lemma gives similar expressions as in (4) for tt(A), nr(A), and
tr(A).

LEMMA 2.2. The following equalities hold:

0 D1 A 0 0 D-1

DieD+

(12)
DD 0 I A 0 0 I

DDe, e, A 0
D-1

+

Pro@ Substituting DAD2 for A in Lemma 2.1 and rearranging gives

(14) n(D1AD2)
d,aEt+ 0 d2D A

A- I 0

where d and d2 are real positive scalars.
Take the infimum over D and D2 on both sides to give

(15)

cr(A)= inf inf-62(ldiDl 0

Da ,D2D dx ,d2R+ \L J0d2D1 A 0 0
o

(d2D1) -1

D ,D2eD 0 D
0
A

A-1 0
0
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Letting D diag {DI,D1} gives (13). Expressions (11)and (12) are proved siini-
larly. [

Let / be the r x r identity matrix. Let 7P2’2n diag {[dl/l,...,d/,,]
dj E R, r +... + r, 2n}, and M E Cx’. Consider the following lemma.

LEMMA 2.3. The following optimization is convez:

(17) inf - (eDMe-D).
DD2nX2n

Proof. See [25].
Because {eD" D T} {D" D 79+}, the optimizations in Lemmas 2.1 and 2.2

are equivalent to the optimization in Lemma 2.3. This means that the condition
number and minimized condition numbers gz, , n can all be calculated through
convex programming. Since the optimization (17) is convex, it can have only one
minimum.

The optimization (17) has been studied extensively [22], [32], [23], {25], and off-
the-shelf software is available for solving these polynomial-time problems (for example,
see the program mu in [1]). The calculation of the minimized condition numbers is
slow, however, since the minimization (17) requires repeated maximum singular value
calculations.

The parallelism between expressions (4), (11), (12), and (13) for c, z, c, and
z is interesting. The same optimization can be used for the condition number
calculations--the optimizations are just over different "scaling matrices." This is nice
theoretically, since , , and are just the scaled condition numbers.

Remark 2.4. Conditions for the existence of scaling matrices that achieve the
infimum are given by Businger [6]. When the infinum is achieved, any algorithm that
solves (17) provides the minimizing scaling matrices for the condition number. When
the infinum is not achieved, the algorithm provides scaling matrices such that the
infinum is approached with arbitrary closeness.

Remark 2.5. To generalize to nonsquare A, replace every occurrence of A- with
the respective right or left inverse. More specifically, if A C"x and has full row
rank with m < n, then replace A-1 with AT(AAT) -1 in all proofs and lemmas. For
m > n with A having full column rank, replace A-1 with (ATA)-Ar.

Remark 2.6. The Euclidean cross-condition number is defined by

(18) ic(A,B) -# (A)-# (B)

Minimized cross-condition numbers can be defined similarly as in (3), for example,

(19) ic(A,B) inf ic(DxAD2, DBD-).
D,D2 D

Lemmas 2.1 and 2.2 follow with B, replacing A-1. This problem is important for
testing stability of systems with element-by-element uncertainty [7], [8], [16], [15].

Remark 2.7. For block-diagonal scaling matrices, without loss of generality we
can take each block to be positive definite Hermitian. This is because any nonsingular
complex matrix can be decomposed into a positive definite Hermitian matrix and a
unitary matrix [4], and the unitary matrix does not affect the value of the Euclidean
condition number. The proofs of Lemmas 2.1 and 2.2 follow exactly as for the fully
diagonal case. Lemma 2.3 does not hold for block-diagonal scalings. For block-
diagonal scalings it is better to convert the singular value minimizations in Lemma 2.2
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into generalized eigenvalue minimizations, as follows:

(20) inf (DMD-1)= inf {3]M*D2M-/3D2 <0}.
DD+ D-D+

The condition M*D2M D2 < 0 is convex in D2, so any local minimum is global,
and off-the-shelf software is available [1]. Many researchers are working to develop
improved computational approaches for these polynomial-time problems (for example,
see [5] and the literature cited therein).

3. Conclusions. We have completed Table 1 in the sense that all values in the
table can now be calculated with arbitrary precision.

All entries in the table, including the now-filled entries, require the inverse of A
to calculate the minimizing scalings and the minimized condition numbers. There
are algorithms for numerically determining the minimized condition numbers without
predetermining the matrix inverse [26], [35], but these methods are not guaranteed to
converge to the true minima.
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