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A B S T R A C T

Process monitoring is critical to ensuring product quality and efficient, safe process operation. Data-driven
modeling is used in the process industries to build fault detection systems. No single data-driven modeling
method provides the best fault detection performance for all process systems, and the selection of the best
data-driven modeling method for a specific process system requires substantial expertise. In this study, we
propose Smart Process Analytics for Process Monitoring (SPAfPM), a systematic framework for automatic
method selection and calibration of data-driven fault detection models. A set of candidate methods is pre-
selected from a library on the basis of the characteristics of the data. A rigorous cross-validation procedure is
then employed to compare the models obtained by these methods to select the best data-driven model for fault
detection. The performance of SPAfPM is demonstrated in four case studies, including the Tennessee Eastman
Process.
1. Introduction

Maintaining high product quality is a key requirement in most
manufacturing processes, which can be achieved by process monitoring
schemes. Fault detection is the first step in a chain of operations in
process monitoring that are performed in order to recover a process to
normal operating conditions in case any fault occurs (Fig. 1). After a
fault is detected, the process/product quality variables most related to
the malfunction are identified. The nature and, possibly, the root cause
of the fault are then diagnosed leveraging expert process knowledge;
alternatively, a classification approach can be used to diagnose which
fault has actually occurred searching through a library of known faults.
Finally, measures to recover the process operation are taken (Chiang
et al., 2001). If those measures are not taken and the process is not
recovered, the process can go out of control and lead to catastrophic
events.

The terminology is not uniform in this area of research, and this
article adopts the terminology and definitions of Raich and Çinar
(1996). A fault is defined as ‘‘an unpermitted deviation of at least
one characteristic property of a variable from an acceptable behavior’’
(Isermann, 2005). Such a deviation is considered a fault regardless
of whether the deviation is caused by faulty equipment or a major
disturbance. An example for faulty equipment is strong fouling in a heat
exchanger that reduces the heat transfer rate required for process oper-
ation. Other examples of faulty equipment are biased sensors or clogged
valves. An example of a significant disturbance is a raw material that
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is supplied from a different provider and has a high enough amount of
impurities that the process is no longer able to produce material that
meets quality specifications (Chiang et al., 2001).

Model-based process monitoring methods (Isermann, 1984, 1997)
generally belong to one or more of three different categories: data-
driven, analytical, and knowledge-based (Isermann, 1994). This work
considers data-driven methods, which are most widely used in the ma-
terials, chemical, and biological industries. For fault detection, the first
step is to construct a model that describes data from Normal Operating
Conditions (NOC). Afterwards, statistical measures are used to decide
whether new collected data deviate significantly from the data used
to construct the NOC model (Qin, 2003). We refer interested readers
to the literature for a comprehensive overview of process monitoring
methods (Chiang et al., 2001; Qin, 2003; Venkatasubramanian et al.,
2003c,a,b; Md Nor et al., 2020; Abid et al., 2021).

The data-driven approach requires the selection and calibration of
a modeling method. However, numerous methods are available and no
method performs best on all problems. Very few individuals possess
significant expertise on all of the fault detection methods that can pro-
vide the best performance, and practitioners usually select the model to
be used based on familiarity, even when the method is suboptimal for
the particular application (Camacho and Ferrer, 2012; Camacho et al.,
2009).
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Fig. 1. The four steps involved in process monitoring (Chiang et al., 2001).
An alternative, more structured approach is to consider a set of
candidate models and to select the best on the basis of the perfor-
mance on data not used in calibration (i.e., in validation). Model
selection and discrimination can be done on an independent valida-
tion dataset using the so-called hold-out validation (Bishop, 1995), or
on the calibration dataset by means of resampling techniques, cross-
validation (Stone, 1974; Allen, 1974) being the most popular choice.
Comparing a large number of models on the basis of their performance
in cross-validation is, in fact, the general principle underlying nu-
merous frameworks for Automatic Machine Learning (AutoML; Hutter
et al. (2019)). Some notable and recent packages include Auto-sklearn
(Feurer et al., 2015), AutoWEKA (Kotthoff et al., 2017), Auto-Keras
(Jin et al., 2019), TPOT (Le et al., 2020), H2OAutoML (H2O AI, 2024),
TransmogrifAI (Salesforce, 2020), and MLJAR (MLJAR, 2024).

However, all the available AutoML packages are designed to handle
supervised learning problems, mostly for making output predictions or
classifications, while no automated system is available for building fault
detection models. Furthermore, comparing a large number of candidate
models by cross-validation has been proven to increase the chances of
selecting a suboptimal model, especially when a limited amount of data
is available (Arlot and Celisse, 2010). A further issue is that the cross-
validation procedure is generally the same for all the models being
compared, and their characteristics are disregarded, which is partic-
ularly relevant if models able to cope with different characteristics in
the data, e.g., static vs. dynamic models, are compared. In fact, while
cross-validation assumes that observations are independent (Arlot and
Celisse, 2010), special procedures are required for dynamic data, where
observations are autocorrelated (Bergmeir and Benítez, 2012). A final
drawback of comparing multiple, possibly very different models on the
basis of cross-validation alone lies in the fact that such a ‘‘winner takes
all’’ approach disregards the appropriateness of the chosen model to
the characteristics of the data at hand. As such, an inappropriate and
non-robust model could show the best performance by chance and still
be selected.

The aforementioned limitations have been discussed and illustrated
by Sun and Braatz (2021). They proposed a bottom-up approach for au-
tomated method selection and calibration meant to tackle data-driven
regression problems: Smart Process Analytics (SPA). The procedure
starts with a preliminary assessment of the relevant properties of the
data at hand (i.e., correlation, nonlinearity, and dynamics). Based on
the outcome of the preliminary property assessment, methods that
can cope by design with the detected characteristics are pre-select
among the ones provided with the SPA method library. A rigorous
cross-validation approach tailored to the characteristics of the selected
methods is then used to identify the best model. The most relevant
difference between AutoML packages and SPA lies in the additional
pre-selection step, based on the characteristics of the data at hand: it
ensures that only models able to cope with the data detected charac-
teristics are compared by cross-validation, therefore effectively limiting
the chances of overfitting.

In this article, we propose a SPA-like approach for automatizing the
selection and application of the most suitable fault detection method
for a given dataset. We demonstrate the approach, referred to as
2 
Smart Process Analytics for Process Monitoring (SPAfPM), in a number
of case studies. Section 2 provides an overview of commonly used
fault detection methods, their mathematical assumptions, and required
characteristics. Section 3 describes the smart data analytics approach
for fault detection, and Section 4 demonstrates the effectiveness of
the approach on a variety of benchmark case studies, including the
Tennessee Eastman Process (TEP).

2. Fault detection methods

SPAfPM provides a library of data-driven fault detection models.
Dimensionality reduction methods based on variance modeling found
several successful application in fault detection (Chiang et al., 2001),
thus constitute the bulk of the models provided. The linear versions
of such models are described in Section 2.1; dynamic and nonlinear
extensions are introduced in Section 2.2. The data-driven fault detec-
tion problem can also be interpreted as an One-Class Classification
(OCC; Brereton (2011)) task. We include an OCC model in SPAfPM and
describe it in Section 2.3.

Note that we give brief descriptions of the rationale of the relevant
methods here, while their mathematical details are reported in the
Supplementary Material. A comprehensive overview of the methods
discussed herein is given by Mohr (2024) and by Arnese Feffin (2023).
We refer the reader to the literature cited throughout this Section and
in the Supplementary Material for detailed descriptions of each method.

2.1. Linear dimensionality reduction methods

When a data matrix 𝐗 ∈ R𝑁 × R𝑚 gathering 𝑁 observations of 𝑚
process (or input) variables is available, Principal Component Analysis
(PCA) can be used for fault detection. PCA is a dimensionality reduc-
tion technique that captures the maximum variance of predictors in
principal component vectors (e.g., Wold (1987), Chiang et al. (2001)).
Specifically, the PCA model projects the data matrix onto a space of
dimensionality 𝑎 ≪ 𝑚 defined by the principal components of matrix
𝐗. As such, PCA ‘‘splits’’ the space of the process variables into the space
of principal components (i.e., the model space) and into the so-called
residual space (Ku et al., 1995).

If also a matrix 𝐘 ∈ R𝑁 × R𝑙 gathering 𝑁 observations and 𝑙
output variables (e.g., characterizing the product quality) is given,
the Partial Least-Squares (PLS) regression model can be used for fault
detection. PLS is a dimensionality reduction technique that maximizes
the covariance between the input variables and the output variables
for each component of the reduced space (e.g., Geladi and Kowalski
(1986), Wold et al. (2001), Jiao et al. (2015), Chiang et al. (2001)).
Similarly to PCA, the data matrices are projected onto spaces with the
same dimensionality 𝑎 defined by two sequences of latent variables.
Couples of input and out latent variables are computed in such a way
to maximize the linear correlation among them (while at the same time
retaining as much variances of the input and output spaces as possible).
In other words, only the process variability affecting the product quality
is modeled. This approach justifies the use of PLS for quality-relevant
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monitoring, i.e., to detect only process faults affecting the product
uality.

Canonical Variate Analysis (CVA) operates similarly to PLS, but
lso includes information on the dynamic evolution of the variables
n matrices 𝐗 and 𝐘 (e.g., Larimore (1990), Russell et al. (2000),

Chiang et al. (2001), Jiang et al. (2015)). The observations in the
ata matrices are interpreted as realizations of random processes and
sed to construct a past and future matrices. The past matrix  ∈
𝑁−ℎ−𝑗 ×R(𝑚+𝑙)ℎ gathers lagged observations ℎ (prior to the one at the
urrent time) of both the input and output variables. The future matrix
∈ R𝑁−ℎ−𝑗×R𝑙(1+𝑗) collects output observations at the current time and

t 𝑗 time future instants. CVA projects both matrices onto a common
pace of reduced dimensionality maximizing the correlation between
wo sets of variables, which are the past and future vectors (i.e., rows
f matrices  and  , respectively). Therefore, CVA can be interpreted
s a state-space modeling method, and the space identified by CVA as
he state-space of the process.

PCA, PLS, and CVA share a common feature: variables are projected
onto a model space, while the unmodeled part is left in the resid-
ual space. Variations of data within these spaces can be monitored
with the 𝑇 2 and 𝑄 statistics (Wold, 1987; Nomikos and MacGregor,
1995; Chiang et al., 2001; Qin, 2003), respectively. Specifically, the
𝑇 2 statistic describes the squared distance of an observation from the
center of the model space, while the 𝑄 statistic quantifies the squared
orthogonal distance of an observation from the model space itself. The
CVA model provides and additional statistic, i.e., 𝑇 2

𝑟 , which measures
the variability of an observation outside of the model space (Russell
et al., 2000).

Faults can be detected by comparing the values of the aforemen-
tioned statistics to some control limits, the values of which can be
defined in a number of ways (e.g., Reis et al. (2021)). In SPAfPM,
the control limit of the 𝑇 2 statistic (and of the 𝑇 2

𝑟 statistic) can be
estimated using the 𝐹 distribution approach (Jackson, 1959) or the
𝜒2 distribution approach (Nomikos and MacGregor, 1995). The control
limit of the 𝑄 statistic can be estimated using the Jackson-Mudholkar
method (Jackson and Mudholkar, 1979) or the 𝜒2 distribution approach
(Nomikos and MacGregor, 1995). The formulations of the control limits
are reported in the Supplementary Material.

2.2. Dynamic and nonlinear transformations

The aforementioned methods can model only static correlation
among variables, with the exception of CVA. Furthermore, only linear
relationships can be modeled using PCA, PLS, and CVA. In this Section,
extensions of the basic algorithms to the dynamic and nonlinear cases
(and their combination) are briefly discussed.

A number of dynamic extensions of the basic PCA and PLS al-
orithms exist, which are usually referred to as Dynamic Principal

Component Analysis (DPCA; Ku et al. (1995)) and Dynamic Partial
Least-Squares (DPLS; Ricker (1988)). These methods are based on the
idea of lagged observations already discussed for CVA. The data matrix
𝐗 is typically augmented with additional variables given by ℎ past
observations. This results in the so-called trajectory matrix 𝐗ℎ ∈ R𝑁−ℎ×
R𝑚(1+ℎ), which serves as the basis of DPCA and DPLS.

DPCA aims to model autocorrelation and cross-correlation in the
dataset, implicitly extracting a dynamic autoregressive model of the
process (Ku et al., 1995). DPCA is performed by applying the regular
CA algorithm to matrix 𝐗ℎ. Regarding DPLS, the most commonly used

approaches applies the regular PLS algorithm using 𝐗ℎ as input matrix
and leaving unaltered the output matrix 𝐘 (removing the first ℎ rows
to even out the number of observations). This approach incorporates
dynamics in PLS by the same rationale of a finite impulse response
model (Ricker, 1988; Jiao et al., 2015; Jia and Zhang, 2016).

DPCA and DPLS still use the 𝑇 2 and 𝑄, which can be estimated
in the same way as for the standard PCA and PLS. However, dealing
with dynamic data requires additional considerations when estimating
 o

3 
the control limits. The 𝜒2 distribution approach is recommended when
applying dynamic extensions such as DPCA and DPLS (Lu et al., 2005;
Yao and Gao, 2007).

Dynamic extension of PCA and PLS are obtained manipulating
he input data matrix. A similar principle yields nonlinear extensions
f the regular algorithms. Specifically, applying kernel transforma-
ions to the input matrix yields Kernel Principal Component Analy-

sis (KPCA; Schölkopf et al. (1998)) and Kernel Partial Least-Squares
KPLS; Rosipal and Trejo (2001)).

Assuming that the variables feature nonlinear correlation, the fun-
amental idea of kernel methods is to project the observations onto a

high-dimensional space, called the feature space, by means of nonlinear
ransformations (Müller et al., 2001). The mapping function is defined
n such a way that the relationship among transformed variables is
inear in the feature space, thus it can be modeled using the regular
CA and PLS models (Schölkopf et al., 1998; Rosipal and Trejo, 2001).
o avoid an explicit mapping, which could result in a computationally

nfeasible problem, KPCA and KPLS exploit the kernel trick: a pairwise
ernel function 𝐾 ∶R𝑚×R𝑚 → R is applied to each pair of observations

in the input matrix to compute the so-called kernel matrix 𝐊 ∈ R𝑁×R𝑁 ;
(𝐱𝑖, 𝐱𝑗 ) yields the entry on the 𝑖th row and 𝑗th column of 𝐊. Popular

ernel function are the Radial Basis Function (RBF), also known as the
aussian kernel, and the polynomial kernels.

KPCA (Schölkopf et al., 1998) is obtained by applying regular
PCA in the feature space. Under the kernel trick, the regular PCA
lgorithm is applied to the kernel matrix; the method includes some
ailored pre- and post-processing operations to account for the implicit
ransformation operated by the pairwise kernel function. KPLS (Rosipal

and Trejo, 2001) works in a similar manner: regular PLS is applied
using matrix 𝐊 as input and an unchanged matrix 𝐘 as output (and
considering some tailored pre- and post-processing operations).

Nonlinear transformation of the data matrices can also be combined
ith the augmentation by lagged observations: this is the principle

of Dynamic Kernel Principal Component Analysis (DKPCA; Choi and
Lee (2004)) and Dynamic Kernel Partial Least-Squares (DKPLS; Jia and
Zhang (2016)). In this case, instead of applying the kernel transforma-
ions to the inputs directly, they are applied to the trajectory matrix
ncluding lags of the basic variables 𝐗ℎ. In this way, both dynamic and
onlinear effects in the data can be considered (Choi and Lee, 2004;

Jia and Zhang, 2016).
For both KPCA and KPLS (and their dynamic versions DKPCA and

DKPLS), the 𝑇 2 and the 𝑄 statistic can be computed in the same way as
for the regular PCA and PLS. The 𝑇 2 statistic is still related to the model
space, while the 𝑄 statistic is related to the residual space transformed
by the kernel function (Choi et al., 2005; Cho et al., 2005; Zhang and
Qin, 2008). The control limit estimators remain unchanged.

Finally, nonlinear extensions of CVA have also been developed.
One such extension (Odiowei and Cao, 2010) is based on the regular

VA algorithm to model the dynamics in the data; nonlinearity is
ccounted for at the fault detection statistics level, whose control limits
re estimated by Kernel Density Estimation (KDE; Rosenblatt (1956),

Parzen (1962)). This method is referred to as KDE-CVA (Odiowei and
Cao, 2010). See the Supplementary Material for details.

2.3. Support vector data description

Other modeling paradigms can be fruitfully exploited for process
onitoring tasks. OCC (Brereton, 2011) is a noteworthy example. OCC

tackles the fault detection problem by constructing a description of
data coming from a single class (i.e., the NOC data); this allows to
determine whether new observations conform to the characteristic of
the modeled class or not (Rodionova et al., 2016; Tax and Duin, 1999,
2004). OCC models can be used to detect observations that significantly
differ from the modeled class (Tax and Duin, 1999) and new data
conditions (Rodionova et al., 2016), e.g., faults. Estimating the support
f the distribution of the modeled class is a popular approach to OCC
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(Müller et al., 2001), which involves modeling the boundaries of the
class. This procedure is appropriate when no a priori assumption can
be done about the distribution of the out-of-class (i.e., faulty) data (Tax
and Duin, 1999).

Support Vector Data Description (SVDD; Tax and Duin (1999,
2004)) is an OCC method based on the concept of distribution support
modeling. In its linear version, SVDD identifies a hypersphere of mini-

al radius that encloses all observations in a given data matrix 𝐗; the
lgorithm is designed to allows some observations to lie outside of the
ypersphere to deal with possible outliers in the dataset. Once model
alibration is complete, SVDD yields the center of the hypersphere, ex-
ressed as a linear combination of some observations known as support
ectors, and the radius of the hypersphere. These entities can be used to
est whether a new observation falls within the hypersphere (i.e., it is
OC) or outside of it (i.e., it is a not NOC). Therefore, the distance 𝐷 of
 new observation from the center of the hypersphere serves as the fault
etection statistic, and the radius 𝑅 of the hypersphere is the control
imit. In SPAfPM, the nonlinear version of SVDD is considered, which
ombines the kernel transformation discussed in the previous Section
ith the SVDD algorithm to model the boundary of complex (i.e., non-

normal/nonlinear) distributions. See the Supplementary Material for
etails.

3. A smart data analytics approach to fault detection

The performance of each algorithm reviewed in Section 2 can
widely vary when applied to different datasets due to the underlying
assumptions of methods and of their match to the characteristics of
the data. Ultimately, such the data characteristics determine which
method is most appropriate for a given dataset. Therefore, they must
e considered in the development of data-driven process monitoring
ystems.

Some fundamental data characteristics can be identified: nonlinear-
ty of the relationships among variables (or non-normality of the data

distribution), dynamics in process variables, and presence of variables
o characterize the product quality. We use these characteristics as

foundation for SPAfPM to select the best model for the data at hand.
We choose these characteristics as they are very common in data from
industrial processes. We discuss the data characteristics and how they
can the pre-selection of appropriate models in Section 3.1, while we
develop and evaluate automated test to detect the characteristics in
ection 3.2. Finally, we discuss the model selection mechanisms of

SPAfPM in Section 3.3.

3.1. Data analytics triangle for fault detection

Similarly to other smart data analytics approaches (Sun and Braatz,
2021; Mohr et al., 2022), a base method for the given task (i.e.,
ault detection) can be identified. The base method chosen for the
roposed framework is PCA by virtue of its wide usage in the process
onitoring literature and proven performance in fault detection. PCA

an cope with large datasets containing correlated variables, a trait that
s reasonable to expect in data commonly used for process monitoring,
ften including measurements of all available process variables (Wise
nd Gallagher, 1996). PCA relies on three assumptions:

• correlation among variables is linear (Wold, 1987);
• data follow a multivariate normal distribution (for the reliability

of control limits of monitoring statistics) (Qin, 2003);
• no dynamics are found in the data and/or residuals (Ku et al.,

1995).

As such, PCA is appropriate when the data at hand do not posses any
of the characteristics mentioned in the introduction to Section 3. This
urther justifies its choice as the base method in SPAfPM.

The assumptions of linear correlation and absence of dynamics are
required due to the PCA working principle that defines latent variables
4 
Fig. 2. The smart data analytics triangle for fault detection. PCA: Principal Component
Analysis, DPCA: Dynamic PCA, KPCA: Kernel PCA, DKPCA: Dynamic Kernel PCA, PLS:
Partial Least-Squares, DPLS: Dynamic PLS, KPLS: Kernel PLS, DKPLS: Dynamic Kernel
PLS, CVA: Canonical Variate Analysis, KDE-CVA: Kernel Density Estimation-CVA, SVDD:
Support Vector Data Description.

as static, linear combinations of observable variables. On the other
hand, the normality assumption is required to ensure the reliability
of the monitoring statistics. In fact, the matrix decomposition of PCA
is based on the covariance matrix of data, second-order information
that is enough to describe only multivariate normal distributions. Fur-
thermore, control limits of the monitoring statistics as reviewed in
Section S.1.1 (Hotelling’s 𝑇 2 and 𝑄) are fully descriptive only under the
ssumption that scores and residuals are normally distributed (Thissen

et al., 2001). The scores are normally distributed only if the input data
are normally distributed as a linear combination of normal variables
is still normal (Nomikos and MacGregor, 1994). On the other hand,
residuals are normally distributed only if all the systematic variability
(including the potential dynamics) has been captured by the model and
transferred to the latent space (Wold, 1987).

We argue that non-normality and nonlinearity are tightly inter-
wined characteristics of a dataset (we provide a brief discussion on
his matter in Section 3.2.2 and further investigate this hypothesis in

Section 3.2.2). Methods able to cope with nonlinear correlation based
on kernel transformations, such as KPCA, can deal by design with
eneral (i.e., non-normal) distributions. Therefore, non-normality and
onlinearity are checked independently in SPAfPM, but are considered
s a single characteristic of data. The presence of dynamics in the data
s another characteristic that is assessed.

Data from process industrial processes frequently include discrete
ariables, (e.g., to indicate the phase of a recipe-driven batch process).
f such variables, are present, particular attention is due when assessing
ata characteristics such as nonlinearity and dynamics. We provide
 brief discussion of this topic in the Supplementary Material, and

consider a case study involving discrete variables in Section 4.4.
A decision to be made is whether the objective is monitoring of the

overall process or just the variability affecting the quality of the final
product, therefore whether to adopt a ‘‘general’’ monitoring scheme
or a quality-relevant monitoring approach (Li et al., 2011). While
the first aim can be achieved with PCA, the second aim (provided
that online quality measurements are available) can be achieved with
PLS, which relies on similar assumptions as for PCA concerning the
extraction of latent variables. Therefore, a third characteristic of the
data is the presence of quality variables so as to develop quality-
relevant monitoring systems. The identification of quality variables
requires expert knowledge from the users of the smart data analytics
software. Consequently, the designation of dependent variables is a
choice left to the user.

The data characteristics and relevant associated data analytics meth-
ods in the proposed framework can be visualized in the form of a smart
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Table 1
Overview of the different hyperparameters considered for cross-validation.

Algorithm Hyperparameter Meaning Notes

PCA 𝑎 Number of principal components
PLS 𝑎 Number of latent variables

CVA
ℎ Extent of past horizon
𝑗 Extent of future horizon 𝑗 = ℎ
𝑎 State order

SVDD
𝐶 Coverage parameter
𝐾(⋅, ⋅) Pairwise kernel function
𝜎 or (𝑐0 , 𝑑 , 𝛾) Kernel parameter (RBF or poly) 𝑐0 = 1

DPCA ℎ Number of lags
𝑎 Number of principal components

KPCA
𝐾(⋅, ⋅) Pairwise kernel function
𝜎 or (𝑐0 , 𝑑 , 𝛾) Kernel parameter (RBF or poly) 𝑐0 = 1
𝑎 Number of principal components

DKPCA

ℎ Number of lags
𝐾(⋅, ⋅) Pairwise kernel function
𝜎 or (𝑐0 , 𝑑 , 𝛾) Kernel parameter (RBF or poly) 𝑐0 = 1
𝑎 Number of principal components

DPLS ℎ Number of lags
𝑎 Number of latent variables

KPLS
𝐾(⋅, ⋅) Pairwise kernel function
𝜎 or (𝑐0 , 𝑑 , 𝛾) Kernel parameter (RBF or poly) 𝑐0 = 1
𝑎 Number of latent variables

DKPLS

ℎ Number of lags
𝐾(⋅, ⋅) Pairwise kernel function
𝜎 or (𝑐0 , 𝑑 , 𝛾) Kernel parameter (RBF or poly) 𝑐0 = 1
𝑎 Number of latent variables

KDE-CVA ℎ Number of past lags
𝑗 Extent of future horizon 𝑗 = ℎ
𝑎 Memory order
𝜉𝑇 2 Scale factor for kernel bandwidth of 𝑇 2

𝜉𝑄 Scale factor for kernel bandwidth of 𝑄
𝜉𝑇 2

𝑟
Scale factor for kernel bandwidth of 𝑇 2

𝑟 𝜉𝑇 2
𝑟
= 𝜉𝑇 2
t
t

a
f

c
f

data analytics triangle for fault detection (Fig. 2). The triangle is built
around the three aforementioned core characteristics of the available
ataset: the presence of dependent variables in the data, nonlinearity or
on-normality, and dynamics. If none of the characteristics is detected,
he base method, PCA, is applied. The corners represent algorithms
o apply for one of the characteristics present. The edges show the
ault detection algorithms suitable for the characteristics at the linked
orners. The center of the triangle shows algorithms best suited if all
hree characteristics are present in the dataset.

For example, if the data feature nonlinearity and dependent vari-
ables, the data triangle suggests to use the KPLS algorithm. Only
ne algorithm is suggested in this case. However, if the data feature
ynamics and dependent variables, two different algorithms are rec-
mmended: DPLS and CVA. In this case, a cross-validation procedure is
pplied to determine which of the two algorithms is best for the given
ase and to determine the optimal hyperparameters. An overview of
he different hyperparameters for each one of the algorithms in the

data analytics triangle is shown in Table 1. The structure of the cross-
alidation procedure is explained in detail in Section 3.3. A schematic

highlighting the overall workflow in conjunction with the smart data
nalytics triangle is visualized in Fig. 3.

In the following Sections, a data interrogation framework for the
haracteristics non-normality/nonlinearity and dynamics is presented
nd demonstrated in rigorous Monte Carlo simulations. Based on the
etected characteristics, the best fault detection algorithm can be se-

lected from the presented triangle. Additionally, the cross-validation
rocedure is described in detail.

3.2. Preliminary data interrogation

The quantitative criteria used to assess the relevant data characteris-
tic introduced in the previous section, i.e., non-normality, nonlinearity,
and dynamics, are introduced in this section. The effectiveness of the
criteria is demonstrated using rigorous Monte Carlo simulations. All the
simulations are carried out using Python, version 3.9.12 and R, version
.2.0.
5 
3.2.1. Non-normality detection
Mecklin and Mundfrom (2005) carried out a Monte Carlo study on

he effectiveness of various multivariate normality tests that indicated
hat the Henze-Zirkler test (Henze and Zirkler, 1990) is preferred due to

its better empirical performance and theoretical properties. Royston’s
test (Royston, 1983) performed very well nonetheless, to the level
of the Henze-Zirkler test (Mecklin and Mundfrom, 2005). Mardia’s
skewness and kurtosis tests (Mardia, 1970) showed good performance
as well, and are among the most widely used tests for multivariate
normality. For a concise overview of the mathematical formulation of
the aforementioned tests, see Korkmaz et al. (2014).

Preliminary analyses on the four mentioned tests highlighted pros
nd cons of each. Considerations regarding the theory of the tests
urther backed up the empirical results. The most important points are:

• All the aforementioned tests (i.e., the Henze-Zirkler test, Roys-
ton’s test, and Mardia’s test) require the inversion of the co-
variance matrix of the sample, therefore cannot be applied for
a singular sample correlation matrix (e.g., if there are more
variables than observations).

• Royston’s test can be applied to samples with up to 2000 observa-
tions due to its formulation.

• The statistic used in the Henze-Zirkler test is based on the lognor-
mal distribution and its variance shrinks to zero as the number
of variables increases (unless balanced by a remarkably large
number of observations). The propagation of numerical errors be-
come increasingly important with increasing number of variables,
which compromises the reliability of the test. We briefly discuss
this effect in this Section and provide additional details in the
Supplementary Material.

Given these preliminary considerations, a Monte Carlo study is
arried out to properly evaluate performances of the four tests. The
actors considered in the Monte Carlo studies are:
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Fig. 3. Visualization of overall approach. PCA: Principal Component Analysis, DPCA:
Dynamic PCA, KPCA: Kernel PCA, DKPCA: Dynamic Kernel PCA, PLS: Partial Least-
Squares, DPLS: Dynamic PLS, KPLS: Kernel PLS, DKPLS: Dynamic Kernel PLS, CVA:
Canonical Variate Analysis, KDE-CVA: Kernel Density Estimation-CVA, SVDD: Support
Vector Data Description.

• The distribution used to generate the sample, 𝐷, which can be
multivariate normal, multivariate 𝑡, multivariate lognormal, or
multivariate uniform.

• The number of variables in the sample: 𝑚 ∈ {10, 30, 50, 100, 200}.
• The number of observations in the sample: 𝑁 ∈ {50, 200, 500,
1000, 3000}.

All possible combinations of the factors are explored; however, combi-
nations where the number of observations is greater than the number
of variables are not explored. For each combination, 100 repetitions
are performed. For each repetition, a sample is generated from the
6 
selected distribution using randomly selected parameters (different at
each repetition).

The four normality tests (Henze-Zirkler, Royston’s, Mardia’s skew-
ness, and Mardia’s kurtosis tests) are performed on the generated
sample. The outcomes of the four tests are saved for each repetition for
a given combination of factors and used to compute the non-normality
detection rates (i.e., the number of repetitions over which the sample is
deemed non-normal over the total number of repetitions) of each one of
the four tests. The four non-normality detection rates are the responses
of the Monte Carlo study. These detection rates should be as close as
possible to the chosen significance level (𝛼 = 0.01) for the multivariate
normal distribution, and to its complementary to one (𝛽 = 0.99) for all
the other distributions.

The results of the four selected tests are further combined in order
to yield two more responses for the Monte Carlo study, which are also
reported in the below discussion. The two additional responses are:

• Results from Mardia’s skewness and kurtosis tests are used to
obtain the detection rate of Mardia’s combined test (a dataset
is deemed non-normal if either one of the two tests detects
non-normality).

• Results from the four tests are combined in the ‘‘overall’’ test
described at the end of this Section.

A second Monte Carlo study is set up, modifying the sample gener-
ation mechanism. The ‘‘sampling distribution’’ factor is replaced with
the ‘‘fraction of nonlinear variables’’ factor. The domain of such a
factor is: 𝑓 nl ∈ {0, 0.05, 0.10, 0.20, 0.40, 0.80}. To better understand how
the sample is generated, assume, for example, that 𝑚 = 25, and that
30 % of the variables are nonlinearly correlated (𝑓 nl = 0.3) with the
remaining 70 % of variables, which can feature a varying degree of
linear correlation among one another. The first step is to sample 𝑚lin =
⌊0.7𝑚⌋ = 17 variables from a multivariate normal distribution with
randomly generated parameters. Then, 𝑚nl = 𝑚 − 𝑚lin = 8 additional
variables are generated by randomly picking 𝑚nl out of the 𝑚lin linear
variables (with replacement, if 𝑚nl > 𝑚lin) and applying nonlinear
transformations randomly selected from a library of sixty nonlinear
transformations. White noise is added to each one of the 𝑚nl nonlinear
variables sampling normal distributions with zero mean and variance
such that the signal-to-noise ratio of the transformed variables is 1:0.1.
Finally, the 𝑚lin linear variables and the 𝑚nl nonlinear variables are
jointed to produce the sample. Responses of the second Monte Carlo
study are the non-normality detection rates of the six aforementioned
tests.

Results of the Monte Carlo simulations on detection of normality
are shown in Fig. 4. Royston’s test performed the best overall, always
yielding non-normality detection rates very close to the nominal signif-
icance level. The Henze-Zirkler test was nearly equivalent in terms of
performance for most cases. Performance visibly deteriorated, however,
when the sample includes more than 50 variables (non-normality is
detected by default as the test statistics is stuck to its maximum value,
which causes the 𝑝-value to be always 0). Such behavior is due to
the aforementioned variance shrinkage of the lognormal distribution
used to compute the test statistic. See the Supplementary Material
for additional details. Mardia’s skewness test also performed well, but
Mardia’s kurtosis test did not perform as well due to the inherent
difficulty in properly characterizing the kurtosis of high-dimensional
multivariate distributions.

Considering results on other distributions (see the Supplementary
Material for detailed results), we can draw some conclusions:

• All tests yielded nearly the same performance when applied to the
multivariate lognormal distribution, which is highly non-normal.

• All tests yielded nearly the same performance when applied to
the multivariate 𝑡 distribution, which is slightly non-normal and
converges to a multivariate normal distribution for increasing
degrees of freedom. The Henze-Zirkler test performed marginally
better than others for small sample sizes, although also exhibiting
more erratic results.
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Fig. 4. Non-normality detection rates of multivariate normality tests on samples generated from multivariate normal distributions: (a) Royston’s test, (b) Henze-Zirkler test, (c)
Mardia’s combined test, (d) Mardia’s skewness test, (e) Mardia’s kurtosis test, and (f) combination of all of the tests. Missing values mean that the relevant tests are not applicable
for a given combination of factors.
• Royston’s test outperformed other tests on the multivariate uni-
form distribution. In particular, the Henze-Zirkler test yielded
very erratic results in this case, even for less than 50 variables.

All these observations are also seen in the second Monte Carlo study,
in which the number of nonlinear variables is manipulated rather than
the whole distribution. Royston’s test performed slightly better than
Henze-Zirkler test for mild deviations from normality (𝑓 nl = 0.05 and
𝑓 nl = 0.1), especially for small sample sizes. In this case, both Mardia’s
tests yielded erratic results, as in the case of 𝑓 nl = 0.2 shown in
Fig. 5, which is also the case where Royston’s test outperformed Henze-
Zirkler test most apparently, the latter exhibiting very erratic results.
The performance of all tests converge for high fractions of nonlinear
variables, where deviations from normality become apparent. Mild
deviations from normality are hard to detect, as expected, especially
on small samples (see the Supplementary Material for detailed results).

In light of these observations and bearing in mind remarks made
by Mecklin and Mundfrom (2005), the default criterion to test non-
normality of the dataset is selected as Royston’s test, being the test that
offers the best balance between performance and range of applicability.
If the sample includes more than 2000 observations, the Henze-Zirkler
test is used when there are at most 50 variables, and the combined Mar-
dia’s test is used otherwise. We provide additional insight on the reason
to choose 𝑚 = 50 as threshold for test switching in the Supplementary
Material.

3.2.2. Nonlinearity detection
An assumption underlying PCA (and PLS) is that only linear correla-

tions are in the data (Wold, 1987; Camacho et al., 2008). Also assumed
is that the data are normally distributed, which implies that the noise is
completely described by second-order statistics. As such, unsatisfactory
monitoring performance has been reported when PCA is applied to non-
normal data (Zhu et al., 2016). On the other hand, the presence of
nonlinear correlation among variables implies that data do not follow
a normal distribution (see Section 3.2.2).

The proposed nonlinearity detection method is based on three tests
performed simultaneously: linear correlation analysis (Montgomery
and Runger, 2018), maximal correlation analysis (Rényi, 1959) by
7 
the alternating conditional expectation algorithm (Breiman and Fried-
man, 1985), and quadratic (correlation) test (Montgomery and Runger,
2018) with adjustment of the significance level by the Bonferroni
correction (Hochberg, 1988).

Given two samples 𝐱 ∈ R𝑁 and 𝐲 ∈ R𝑁 of the random variables
𝑋 and 𝑌 , the sample linear correlation coefficient (Montgomery and
Runger, 2018) can be computed as

𝑟𝐱,𝐲 =
𝑠𝐱,𝐲
𝑠𝐱𝑠𝐲

=
1

𝑁−1
∑𝑁

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
√

1
𝑁−1

∑𝑁
𝑛=1 (𝑥𝑖 − �̄�)2

√

1
𝑁−1

∑𝑁
𝑖=1 (𝑦𝑖 − �̄�)2

(1)

where �̄� and �̄� are the sample means of 𝑋 and 𝑌 , respectively, 𝑠𝐱 and 𝑠𝐲
are their sample standard deviations, and 𝑠𝐱,𝐲 is the sample covariance
between 𝑋 and 𝑌 . The linear correlation coefficient quantifies the
degree of linear correlation between the two variables and varies
between −1 and 1. Variables are uncorrelated if 𝑟𝐱,𝐲 ≃ 0, while they
are perfectly (anti-) correlated if 𝑟𝐱,𝐲 ≃ 1 (𝑟𝐱,𝐲 ≃ −1).

The sample maximal correlation coefficient is defined as (Rényi,
1959)

𝑟∗𝐱,𝐲 = sup
𝜃 ,𝜙 [𝑟𝜃(𝐱),𝜙(𝐱)] (2)

where 𝜃 and 𝜙 are functions from the set of all the measurable Borel
functions with zero mean, and are applied element-wise to 𝐱 and 𝐲.
The sample maximal correlation coefficient can be computed by means
of the alternating conditional expectation algorithm, which is suitable
to deal with discrete variables (for instance, categorical or binary)
by default (Breiman and Friedman, 1985). The maximal correlation
coefficient domain is 𝑟∗𝐱,𝐲 ∈ [0, 1], where the transformed variables
𝜃(𝑋) and 𝜙(𝑌 ) are uncorrelated if 𝑟∗𝐱,𝐲 ≃ 0, and perfectly correlated
if 𝑟∗𝐱,𝐲 ≃ 1. Comparing the absolute value of the linear correlation
coefficient and the value of the maximal correlation coefficient provides
an understanding of the nature of the relationship between 𝑋 and 𝑌 :

• If 𝑟𝐱,𝐲 ≃ 0 and 𝑟∗𝐱,𝐲 ≃ 0, the variables are uncorrelated.
• If 𝑟𝐱,𝐲 ≃ 1 and 𝑟∗𝐱,𝐲 ≃ 1, the variables are linearly correlated (the

functions 𝜃 and 𝜙 are the identity functions).
• If 𝑟𝐱,𝐲 ≃ 0 and 𝑟∗𝐱,𝐲 ≃ 1, the variables are nonlinearly correlated.
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Fig. 5. Non-normality detection rates of multivariate normality tests on samples in which 20 % of the variables are nonlinear. The tests are in the same order as in Fig. 4. Missing
values mean that the relevant tests are not applicable for a given combination of factors.
The quadratic test (Montgomery and Runger, 2018) is based on the
idea of assessing the presence of a quadratic relationship between the
random variables 𝑋 and 𝑌 by first fitting a linear regression model
and a quadratic regression model to given samples, then comparing
the performances of the two by means of the analysis of variance. The
null hypothesis is that the relationship is linear, while the alternative
hypothesis is that the relationship is quadratic. The hypotheses are
formulated as

𝐻0 ∶ 𝐲 = 𝑏10𝐱 + 𝑏00 + 𝜺0, (3)

𝐻a ∶ 𝐲 = 𝑏2a𝐱
2 + 𝑏1a𝐱 + 𝑏0a + 𝜺a, (4)

where 𝜺0 ∈ R𝑁 and 𝜺a ∈ R𝑁 are samples of normal random variables.
The 𝐹 -test can be applied for hypothesis testing, with the 𝐹 -value
computed from

𝐹 val =

MSE0−MSEa
DF0−DFa

MSEa
DFa

, (5)

where MSE0 and MSEa are the mean squared errors of the linear and
quadratic models, respectively, and DF0 and DFa are their numbers of
degrees of freedom. The test statistic is distributed as an 𝐹 variable with
DF0 −DFa numerator degrees of freedom and DFa denominator degrees
of freedom, so the 𝑝-value associated to the 𝐹 -value can be computed
from

𝑝val = 1 − 𝐹 (DF0 − DFa,DFa)|𝐹 val
, (6)

where 𝐹 (DF0 − DFa,DFa)|𝐹 val
is the value of the inverse cumulative

distribution function of the 𝐹 variable evaluated at 𝐹 val. The 𝑝-value
can then be compared to the significance level of the test adjusted
by the Bonferroni correction (Hochberg, 1988), 𝛼QTadj. The quadratic
correlation is deemed significant if 𝑝val < 𝛼QTadj. The correction of
the significance level is employed to control the false-positive rate
when a large number of tests is performed simultaneously (Nadon and
Shoemaker, 2002; Goeman and Solari, 2014).

The nonlinearity assessment method used in our framework is based
on the method originally proposed for SPA (Sun and Braatz, 2021). The
nonlinear correlation between a pair of variables is deemed significant
if at least one of the following two conditions is verified:
8 
• Linear correlation coefficient is close to 0, while maximal corre-
lation coefficient is close to 1.

• The 𝑝-value of the quadratic test is below the adjusted threshold.

As such, two tests are conducted.
The first test regards the significance of the difference between

the maximal correlation coefficient and the absolute linear correlation
coefficient. The test is based on two conditions:

• If 𝑟∗𝐱,𝐲 ≤ 𝜀MC, the nonlinear correlation is deemed significant if
(𝑟∗𝐱,𝐲 −𝐷) −

|

|

|

|

|

𝑟𝐱,𝐲
|

|

|

|

|

> 𝜀1, and as insignificant otherwise.

• If 𝑟∗𝐱,𝐲 > 𝜀MC, the nonlinear correlation is deemed significant if
𝑟∗𝐱,𝐲 −

|

|

|

|

|

𝑟𝐱,𝐲
|

|

|

|

|

> 𝜀2, and as insignificant otherwise.

Default values of thresholds are set as in SPA (Sun, 2020a): 𝜀MC = 0.92,
𝜀1 = 0.40, and 𝜀2 = 0.10. The first condition involves also a correction
factor 𝐷, which is subtracted to the value of the maximal correlation
coefficient. The correction factor 𝐷 is introduced as the Alternating
Conditional Expectation (ACE) algorithm used to estimate the maximal
correlation coefficient is known to work poorly when variables are
nearly uncorrelated (Tibshirani, 1988). Note that no correction is used
in the second condition of the test, as the estimate is assumed to be
reliable when 𝑟∗𝐱,𝐲 is high. We provide an overview of this phenomenon
and describe strategies to compute 𝐷 in the Supplementary Material.

The second test regards the quadratic test. The nonlinear correlation
is deemed significant if 𝑝val < 𝛼QTadj, and as insignificant otherwise. The
threshold for the test is 𝛼QTadj = 𝛼QT∕𝑐BQT, where 𝛼QT is the nominal
significance level of the test and 𝑐BQT is the Bonferroni correction
factor. Such a correction is achieved by dividing the original signifi-
cance level by the number of tests being conducted simultaneously. If
𝑚 variables are available, then 𝑐BQT = 𝑚(𝑚− 1). The default significance
level is set as in SPA (Sun, 2020a): 𝛼QT = 0.01.

The aforementioned nonlinearity significance tests are applied to
all couples of variables in the dataset. However, an aggregation rule
is to be chosen, as the nonlinearity property must be assigned to
the whole dataset rather than to specific couples of variables. These
considerations lead to propose three criteria for nonlinearity detection:
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1. The ‘‘any’’ criterion: The dataset is deemed nonlinear if any
couple of variables feature a significant nonlinear correlation
(which is consistent with Sun and Braatz(2021)).

2. The ‘‘variables’’ criterion: The dataset is deemed nonlinear if a
fraction of variables involved in a significant nonlinear relation-
ship with at least another variable is greater than 𝜀nl.

3. The ‘‘couples’’ criterion: The dataset is deemed nonlinear if the
fraction of couples of variables featuring significant nonlinear
relationships is greater than 𝜀nl.

The latter two criteria have a significant advantage over the first
criterion. Since 𝑚(𝑚 − 1) couples of variables are tested, and there is a
ontrivial possibility of incorrectly detecting nonlinearity in the dataset

due to a single false positive (‘‘any’’ criterion). The probability of this
occurrence increases quadratically with 𝑚. Furthermore, linear models
can manage mildly nonlinear datasets by adding some more principal
components/latent variables, e.g., see discussions by Dong and Mcavoy
(1996), Xu et al. (1992), and Paluš and Dvořák (1992). The default
alue of the fraction of nonlinear variables/couples to be used in both
he mentioned criteria is set as 𝜀nl = 0.1 as this fraction starts to exceed
ildly nonlinear behavior that can still be handled by linear models.

The three criteria are compared by means of two Monte Carlo
simulations, identical in settings to the simulations discussed in Sec-
tion 3.2.1, with the same factors but responses being nonlinearity
detection rates of the three criteria. The first study still considers
the sampling distribution as one of the factors. Although it is not
known a priori whether such distributions feature nonlinear correla-
tion of variables or not, this study is done to test the hypothesis
made in Section 3.1, namely that non-normality and nonlinearity are
a tightly interconnected properties of a dataset. For the same reason,
the non-normality detection rate is also included among responses. The
ombination of the three tests according to the rationale outlined at the
nd of Section 3.2.1 is used to test non-normality. Settings of all criteria

are kept to default values.
A general observation emerging from both Monte Carlo studies

is that the sample size is extremely important for the reliability of
nonlinearity assessments. In fact, all criteria correctly deem samples
from normal distribution as normal in nearly all repetitions only for
𝑁 ≥ 500. Fig. 6 shows that, as expected, the ‘‘any’’ criterion is the least
robust, while the ‘‘couples’’ criterion is the most robust, being perfect in
recognizing linear datasets even for 𝑁 ≥ 200. The ‘‘variables’’ criterion
yields acceptable results for 𝑁

𝑚 ≥ 4.
Considering samples drawn from other distributions (see the Supple-

entary Material for detailed results), all criteria are nearly perfect in
etecting nonlinearity of the lognormal distribution, with the ‘‘couples’’
riterion sporadically exhibiting erratic behavior. Detection of the 𝑡
istribution is harder, due to the mild deviation from normality. In this
ase, the ‘‘couples’’ criterion is the worst performing, while the ‘‘any’’
riterion is the best performing. An interesting trend can be noticed,
here the ‘‘any’’ criterion appears to work better for low ratios of the
umber of observations the number of variables, making up for the lack
f performance of the non-normality detection criterion in this case.
owever, this performance is misleading and due to lack of sufficient
bservations to properly characterize the data.

Results on the uniform distribution, shown in Fig. 7, are the most
interesting. As expected, samples are correctly deemed non-normal,
yet linear. This occurs due to the multivariate uniform distribution
eaturing no correlation at all. Such results show that the default thresh-
lds for nonlinearity assessment regarding the maximal correlation
oefficient, together with the default deflation approach, are adequate
o not misclassify independent variables as nonlinearly correlated. The
esults also confirm that at least 𝑁 = 500 is needed for the reliability
f the ‘‘any’’ criterion, whereas the ‘‘variables’’ and ‘‘couples’’ criteria

allow to lower that threshold to 𝑁 ≥ 200, though a larger number of ob-
servations is still recommended to obtain high reliability of nonlinearity

detection.

9 
Moving to the Monte Carlo study generating samples given the
raction of nonlinear variables, consider the case 𝑓 nl = 0.05. In this
ase, no nonlinear variables are included if 𝑚 = 10, while only one
ariable is included if 𝑚 = 30. This last occurrence yields the minimum

value of the fraction of nonlinear variables, 2
𝑚 = 0.06667, achieved if

one single couple features nonlinear correlation. Fig. 8 highlights the
mportance of the ratio of the number of observations to the number

of variables, as especially apparent from the results of the ‘‘variables’’
criterion. Finally, the ‘‘couples’’ criterion is the only one consistently
recognizing the dataset as linear according to the set threshold.

Cases with higher 𝑓 nl allow to draw conclusions similar to the
those already known concerning the robustness of methods. Besides
the case 𝑓 nl = 0.1, where the ‘‘any’’ criterion appears to be a little too
strict with respect to the ‘‘variable’’ criterion (the former has detection
rates always very close to 1 even for low 𝑓 nl), these two criteria show
imilar results in all cases (see the Supplementary Material for detailed
esults). On the other hand, the ‘‘couples’’ criterion consistently misses
he nonlinearity of the dataset, achieving acceptable performance only

if 𝑁
𝑚 ≥ 200, which is unreasonable. This lack of performance could be

ue to the fact that the number of couples required to overtake the
hreshold for this criterion varies as 𝑚2, therefore increasing sharply
ith the number of variables. This makes the criterion robust to the

ejection of the nonlinearity hypothesis, but overly conservative to its
cceptance, therefore being prone to high false-negative rates. The case
ith 𝑓 nl = 0.4 is shown in Fig. 9 as an example of this behavior.

Considering all of the outcomes of the Monte Carlo studies, the
‘variables’’ criterion is chosen as the default criterion to assess nonlin-
earity of a dataset. The motivation is that this method shows the best
radeoff between detection rate on nonlinear datasets and the rejection
ate on linear datasets, being sufficiently robust and sensitive for 𝑁 ≥
00 and 𝑁

𝑚 ≥ 4. Furthermore, this method offers a nice insight on the
‘‘intensity’’ of the nonlinearity of the dataset, which can be quantified
y the fraction of variables involved in nonlinear relationships and by
he map of variables/couples deemed nonlinear. The most prominent
rawback of the selected methods is that its resolution (minimum value
hat the fraction of nonlinear variables can assume) degrades as the
umber of variables decreases.

3.2.3. Dynamics detection
One of the assumptions underlying PCA and PLS is that data do not

eature any autocorrelation. Although sometimes the dynamics in data
re mild enough to be represented reasonably well by a static model,
he dynamics effects would remain unmodeled and would show up in
he residuals.

Several functions are useful for the characterization of dynamics of
 variable given a set of its observations (Box et al., 2016). The Auto-

Correlation Function (ACF) characterizes the general dynamic behavior
of a time series. The partial autocorrelation function characterizes the
dynamics of a time series in term of optimal autoregressive models,
thereby ‘‘removing’’ the effect of the ACF. If evaluating the interdepen-
dence of two time series is of interest, the cross-correlation function
can be used. We consider the ACF to set up the dynamics detection test
implemented in SPAfPM. We motivate our choice in the Supplementary
Material.

In its sample versions, the ACF exploits the concept of lagged mea-
urements and yields a coefficient for each lag order. The significance of

coefficients can be evaluated using the Ljung–Box statistics (Ljung and
Box, 1978), which also allows to adjust the nominal significance level
by means of the Bonferroni correction (Hochberg, 1988) if more than
one coefficient is tested simultaneously. In general, a variable features
no significant dynamics if no coefficient is deemed significant in the
ACF.

Given a time series 𝐱 ∈ R𝑁 of a random process 𝑋, the (sample)
ACF coefficient at lag 𝑙 is defined as (Box et al., 2016)

𝑟 (𝑙) = 𝑐𝐱(𝑙) (7)
𝐱 𝑐𝐱(0)
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Fig. 6. Nonlinearity detection rates of the proposed criteria on samples generated from multivariate normal distributions: (a) Combination of non-normality tests, (b) ‘‘any’’
criterion, (c) ‘‘variables’’ criterion, and (d) ‘‘couples’’ criterion.
Fig. 7. Nonlinearity detection rates of the proposed criteria on samples generated from multivariate uniform distributions. The tests are in the same order as in Fig. 6.
where 𝑐𝐱(𝑙) is the sample autocovariance function of the time series at
lag 𝑙, defined as

𝑐𝐱(𝑙) = 1
𝑁

𝑁−𝑙
∑

𝑛=1

[

(𝑥𝑛 − �̄�)(𝑥𝑛+𝑙 − �̄�)
]

, (8)

where �̄� is the sample mean of the process.2 The significance of auto-
correlation coefficients can be determined using the Ljung–Box statistic,

2 Aside: 𝑐 (0) is a biased version of the sample variance (𝑠2) of the process.
𝐱 𝐱

10 
(Ljung and Box, 1978)

�̃�(𝑙) = 𝑁(𝑁 + 2)
𝑙

∑

𝑘=1

[

1
𝑁 − 𝑘

(

𝑟𝐱(𝑘)
)2
]

. (9)

The �̃�(𝑙) statistic is approximately distributed as a 𝜒2 variable with 𝑙
degrees of freedom. The 𝑝-value of the statistic can be compared to the
Bonferroni-adjusted significance level of the test, 𝛼ACFadj = 𝛼ACF∕𝑐BACF,
where 𝑐BACF = 𝑙 is the number of coefficients being tested simulta-
neously. By default, 𝛼ACF = 0.01. The sample 𝐱 is deemed to feature
significant dynamics if at least one coefficient 𝑟𝐱(𝑙), 𝑙 ∈ {1,… , ℎ}, with
ℎ = min{20, ⌊𝑁

⌋ − 1}, is deemed significant.
2
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Fig. 8. Nonlinearity detection rates of the proposed criteria on samples in which 5% of the variables are nonlinear. The tests are in the same order as in Fig. 6.
Fig. 9. Nonlinearity detection rates of the proposed criteria on samples in which 40% of the variables are nonlinear. The tests are in the same order as in Fig. 6.
As for nonlinearity detection, dynamics are tested on all variables,
but is to be attributed to the whole dataset. Two criteria are proposed
to detect dynamics in a dataset of 𝑁 observations and 𝑚 variables:

1. The ‘‘any’’ criterion: The dataset is deemed dynamic if any of the
variables feature a significant dynamic behavior.

2. The ‘‘variable’’ criterion: The dataset is deemed dynamic if a
fraction of variables featuring significant dynamic behavior is
greater than 𝜀dy n.

The default value of the fraction of dynamic variables is set as 𝜀dy n =
0.1.
11 
In contrast to constructing regression models, where dynamics is
tested on residuals of a static regression model (Sun and Braatz, 2021),
dynamics in the proposed framework are assessed directly on the
variables in the dataset. As argued by Ku et al. (1995), applying a static
model to dynamic data can extract only static components, with the
dynamics being left in the residual space. In such a case, the 𝑄 statistic
is expected to carry the dynamics of the residuals, hence featuring
significant autocorrelation. This point can be leveraged to propose two
additional criteria for dynamics detection. First, a static model of choice
is selected according to the outcomes of the nonlinearity detection
criterion and the presence of dependent variables. Two versions of
the model are built: Model A using the parameters corresponding to
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the minimum error in cross-validation; one Model B using the one-
standard-error-rule (see Section 3.3 for details). Based on this, two
additional criteria for dynamics detection can be defined as:

3. The ‘‘model_min’’ criterion: The dataset is deemed dynamic if the
𝑄 statistic from model A features a significant dynamics.

4. The ‘‘model_oster’’ criterion: The same rationale of the previous
criterion is adopted, but 𝑄 coming from model B.

The four proposed criteria are evaluated in a Monte Carlo study.
he factors of the study are:

• The fraction of dynamic variables in the sample: 𝑓 dy n ∈ {0, 0.05,
0.10, 0.20, 0.40, 0.80}.

• The number of variables in the sample: 𝑚 ∈ {10, 30, 50, 100, 200}.
• The number of observations in the sample: 𝑁 ∈ {50, 200, 500,
1000, 3000}.

All combinations are tested, and 100 repetitions are performed for
ach combination, generating a random sample at each repetition. The
ample is generated in a similar way as described in Section 3.2.1.

Assume, for example, that 𝑚 = 25 and that 30% of the variables are
dynamic (𝑓 dy n = 0.3), while the remaining 70% are static variables. The
first step is to sample 𝑚st a = ⌊0.7𝑚⌋ = 17 variables from a multivariate
normal distribution with randomly generated parameters. Then 𝑚dy n =

− 𝑚st a = 8 dynamic variables are to be generated. Matrices of a
andom state-space model are generated using an algorithm inspired
y the drss algorithm provided by the Systems Identification Toolbox,
ersion 9.16, of MATLAB R2022a. The state-space model has 𝑚st a
nputs and 𝑚dy n outputs, with the number of states randomly selected
s an integer between 1 and 10 (inclusive). The state-space model
eneration is tuned in a way that guarantees stability of the system
nd that the feed-through matrix is null (no direct effect of current
nputs on current outputs). The observations of the 𝑚st a variables are

used as inputs to run the state-space model, while the corresponding
utputs are collected as the 𝑚dy n dynamic variables. In order to simulate

stationary processes (assumption of all the aforementioned significance
assessment approaches), the state is randomly initialized and 200 more
observations are sampled from the same distribution used to generate
the 𝑚st a variables. Such observations are used to ‘‘burn-in’’ the state-
pace model with the randomly initialized state to obtain a stationary

initial state, which is then used to generate the actual 𝑁 observations of
dynamic variables. The 200 burn-in observations are discarded. White
noise is added to each of the 𝑚dy n dynamic variables sampling normal
distributions with zero mean and variance such that the signal-to-noise
ratio of the generated variables is 1:0.1. Finally, the 𝑚st a static variables
and the 𝑚dy n dynamic variables are jointed to produce the sample.

Concerning the ‘‘any’’ and ‘‘variables’’ criteria, the false-positive
ate of the former is higher in the cases 𝑓 dy n = 0 (see Fig. 10) and
dy n = 0.05, while the latter consistently deems the samples as static
ith false-positive rate very close to the nominal significance level set

or the ACF. Both the model-based criteria show good performance too.
The case 𝑓 dy n = 0.10 shows a divergence in performance of the

‘‘any’’ and ‘‘variables’’ criteria, as can be seen in Fig. 11: While the
‘any’’ criterion mostly deems samples as dynamic, the ‘‘variables’’ cri-
erion prefers static models, showing erratic dynamics detection rates,
hich increase with increasing numbers of observations and variables.
his behavior is expected as 𝑓 dy n = 0.10 is the threshold set for 𝜀dy n.
he two model-based criteria show again similar performance to the

‘variables’’ criterion, yet yielding slightly more erratic results (no clear
ffect of the number of variables or of the sample size).

The ‘‘any’’ and ‘‘variables’’ criteria show similar performance in the
emaining cases, with the latter being slightly more prone to deem
he dataset as static than the former criterion for mild dynamics. On
he other hand, both the model-based criteria show very high false-
egative rates and quite erratic results. For example, Fig. 12 reports the

case 𝑓 = 0.4 (see the Supplementary Material for detailed results).
dy n

12 
These cases also show that long time series are required to properly
characterize the dynamics in the data. A general indication could be

≥ 500.
Based on these outcomes, the ‘‘variable’’ criterion is selected as

the default dynamics assessment method of SPAfPM. As for the analo-
gous criterion for nonlinearity, this criterion achieves the best tradeoff
etween robustness and sensitivity, while also offering a nice inter-

pretation. The criterion is subject to the same drawback nonetheless,
namely, poorer resolution as the number of variables decreases.

3.3. Cross-validation procedure

The data analytics triangle in Fig. 2 allows the user to determine the
ost suitable model, or subset of models, based on the characteristics of

he data at hand. In case a subset of models is suggested, there needs to
e a procedure to determine which is the best according to performance
n NOC data. Additionally, the optimal hyperparameters for each of the
odels need to be chosen to provide a fair comparison between them.

A commonly used method for other smart data analytics approaches for
this situation is to use cross-validation (Stone, 1974; Allen, 1974).

The use of cross-validation is well established in some cases. Con-
sidering, for instance, the case of regression, prediction performances
of various models on a validation dataset (not used for model fitting)
an be evaluated using the mean squared error as performance index
Sun and Braatz, 2021). Similarly, the accuracy can be evaluated on
alidation datasets for the case of supervised classification (Mohr et al.,

2022). However, in the case of fault detection, it is not trivial to define
a good figure of merit to quantify performance of a model (Camacho
and Ferrer, 2014).

This problem can be tackled bearing in mind that the aim of cross-
validation is to optimize the generalization performance of the model,
herefore the performance index that is used should be consistent with
he modeling objective (Camacho and Ferrer, 2014). Typically, the

fault detection algorithms are evaluated on how often they incorrectly
qualify NOC observations as faults (Type I error), and how often they

iss faulty observations (Type II error). For the Type II error, it is
ecessary to have data from faulty operating conditions. While it is
ot difficult to produce such data using simulators, it is uncommon
hat comprehensive datasets including all possible faults are available
n real, industrial applications (even though this might be the case
or some specific process). Therefore, SPAfPM relies on the restrictive
ssumption that only NOC data are available for model calibration and
election.

However, the Type I error can be used as an evaluation metric for
he validation datasets, which is a ‘‘good practice’’ frequently men-

tioned in the fault detection literature: the validation Type I error
rate (i.e., that fraction of normal observations detected as faulty on a
validation/testing NOC dataset) should be as close as possible to the
nominal significance level of control limits, 𝛼. This point is explicitly
suggested by a number of studies (Camacho et al., 2016; Camacho and
Picó, 2006b; Ramaker et al., 2006; Yoon and MacGregor, 2004). For
xample, Ramaker et al. (2006) state that ‘‘it is useful to check whether

the fraction of out-of-control signals for a given data set is close to
𝛼 in case the control charts are set at this significance level. . . . The
performance of a chart in terms of Type I error is good if 𝛼 observed is
lose to 𝛼’’. As another example, Yoon and MacGregor (2004) suggest

that ‘‘By calculating the false alarm rate during normal operating
conditions for the testing set and comparing it against the level of
significance upon which the threshold is based, one can measure the
obustness of a fault detection method’’. This condition is also regarded
s essential if fault detection performances of multiple models are to
e compared (Reis et al., 2021; Rato and Reis, 2013; Camacho et al.,

2009). While all of the aforementioned studies suggest that matching
the Type I error to the nominal 𝛼 by manually adjusting control limits,
owever, the studies do not offer any guideline on how to select the

model’s hyperparameters, such as the number of principal components,
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Fig. 10. Dynamics detection rates of the proposed criteria on samples in which 0% of the variables are dynamic: (a) ‘‘any’’ criterion, (b) ‘‘variables’’ criterion, (c) ‘‘model_min’’
criterion, and (d) ‘‘model_oster’’ criterion.
Fig. 11. Dynamics detection rates of the proposed criteria on samples in which 10% of the variables are dynamic. The tests are in the same order as in Fig. 10.
consistently to the modeling objective, in the sense of Camacho and
Ferrer (2014).

The Type I error can be used as an evaluation metric for the
validation dataset nonetheless. Ideally, the Type I error should be as
close to 𝛼 as possible, which is referred to as rigorous approach in
the model-aided adulteration detection literature (Rodionova et al.,
2016) in which the objective is basically the same as of fault detection
in industrial systems. A similar approach is also used by KDE-CVA
or by SVDD, with (S.36) showing that the control limit is chosen
based on the significance level 𝛼 (Odiowei and Cao, 2010). Ultimately,
our objective is to choose the algorithm that yields a Type I error
approximately as often as 𝛼. Performing model selection on the basis
of this index is consistent with the monitoring objective, as suggested
13 
by Camacho and Ferrer (2014), and automates the fulfillment of the
‘‘criterion for monitoring performance’’ suggested by Camacho et al.
(2016), Ramaker et al. (2006), and Yoon and MacGregor (2004). In
this way, an empirical, possibly inconsistent model selection, followed
by an empirical adjustment of control limits, is automated in a single,
consistent operation.

However, it is worth mentioning that the use of faulty data for
model selection in process monitoring, the so-called compliant ap-
proach (Rodionova et al., 2016), may be preferred in some cases.
Model featuring a high degree of complexity may particularly benefit
from such an approach. We carry out a brief discussion of rigorous
vs. compliant cross-validation in the Supplementary Material, which is
relevant for the case studies reported in Section 4.3 and Section 4.4.



F. Mohr et al. Computers and Chemical Engineering 194 (2025) 108918 
Fig. 12. Dynamics detection rates of the proposed criteria on samples in which 40% of the variables are dynamic. The tests are in the same order as in Fig. 10.
Considering, for instance, PCA, a Type I error occurs if either the 𝑇 2

or the 𝑄 statistic crosses the threshold for normal operating conditions,
which is equivalent to minimizing the objective function

𝐽𝛼
PCA =

|

|

|

|

|

1
𝑁val

𝑁val
∑

𝑛=1

[

𝑔𝛼
PCA(𝐱𝑛)

]

− 𝛼
|

|

|

|

|

(10)

in cross-validation, where 𝑁val is the number of observations in the
validation dataset, and 𝑔𝛼PCA is the fault indicator function for PCA,
defined as

𝑔𝛼
PCA(𝐱) =

{

0, if 𝑇 2(𝐱) ≤ 𝑇 2
lim|𝛼 𝐚𝐧𝐝 𝑄(𝐱) ≤ 𝑄lim|𝛼

1, if 𝑇 2(𝐱) > 𝑇 2
lim|𝛼 𝐨𝐫 𝑄(𝐱) > 𝑄lim|𝛼

(11)

Most of the models included in SPAfPM share this indicator function,
being based on the same fault detection statistics. Only differences
are with SVDD and CVA-based approaches, where the statistics are
different. The rationale of the fault indicator function is the same
nonetheless.

In order to achieve a more robust model, the one-standard-error
rule (Hastie et al., 2009; Filzmoser et al., 2009) is applied. Instead
of just choosing the set of hyperparameters that yields the minimum
value for the expression (10), the set of hyperparameters yielding the
most parsimonious model whose cross-validation metric is still within
one standard error from the minimum is chosen. Usually, this approach
yields a conservative estimate and leads to the selection of models that
are more robust and less prone to overfitting (e.g., as discussed by Sun
and Braatz (2021)).

For most models, a repeated 𝑘-fold cross-validation (Burman, 1989)
procedure can be used. In this case, the data are randomly split into
𝑘 folds containing the roughly 𝑁∕𝑘 observations each. Subsequently,
𝑘− 1 folds are used to train the model, while the remaining fold is used
as validation data. This is repeated for each one of the folds. Repeated
𝑘-fold cross validation means that this procedure is repeated several
times for different 𝑘-fold splits of the dataset (Sun and Braatz, 2021).

This approach cannot be applied to dynamic models because the
random splitting results in the loss of dynamic effects (Bergmeir and
Benítez, 2012). Instead, the so-called growing-window cross-validation
(Makridakis, 1990) is employed for dynamic models. Data are first split
into 𝑘 blocks of contiguous observations, with no alteration in their
order. At the first iterations, the first block is used to build a model,
and the second block is used as the validation dataset. For the second
14 
iteration, the first two blocks are used to train a model, and the third
block is used for validation and so forth. Overall this results in different
training sizes, entailing more variability in the cross-validation results.

4. Case studies

This section illustrates the effectiveness of the proposed approach
for a number of case studies. The first is simple linear, static dataset
designed for illustration purposes. The second is the TEP, which a
widely used benchmark in the process monitoring literature. A realistic
simulation of a complex process, the continuous filtration and drying
of paracetamol, is the third case study. Industrial data from a metal
etching process are used for the fourth case study. All case studies
consider both with and without quality variables. Repeated 𝑘-fold cross
validation with random splitting of observation is used to identify
hyperparameters of the static models.

4.1. Simulated linear static data

This simple numerical example illustrates the proposed framework
in a controlled environment. NOC data are generated by sampling from
a multivariate normal distribution with 𝑚 = 15 variables (featuring a
defined correlation structure). 𝑁 = 600 observations are sampled and
used as NOC data. An additional variable is included in the dataset, as
quality variable for testing the performance of quality-relevant moni-
toring. The quality variable is computed as a linear combination of the
𝑚 variables in the ‘‘process’’ dataset. Gaussian noise with zero mean and
variance selected in such a way that the signal-to-noise ratio is 1 ∶ 0.05
is added to the quality variable.

Three faulty datasets used for testing are

Fault 1 A step change in the mean vector of the distribution.

Fault 2 A change in the correlation structure of the input variables.

Fault 3 The onset of dynamic behavior (i.e., autocorrelation among
observations).

For each faulty dataset, 200 observations are samples from the NOC dis-
tribution and 𝑁 = 1000 faulty observations are generated afterwards.
F
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Table 2
Linear case study: Type I and II error rates for Faults 1, 2, and 3 for all fault detection methods that do not consider dependent
variables separately.

Fault # PCA DPCA KPCA DKPCA SVDD

1 Type I error rate 0.040 0.020 0.000 0.000 0.005
Type II error rate 0.000 0.913 1.000 1.000 0.983

2 Type I error rate 0.020 0.000 0.000 0.015 0.010
Type II error rate 0.042 0.999 1.000 1.000 0.999

3 Type I error rate 0.020 0.025 0.000 0.010 0.005
Type II error rate 0.130 0.950 1.000 1.000 0.996
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Therefore, each fault kicks in after 200 NOC observations. See the
upplementary Material for additional details on the data generation.

The calibration dataset for the proposed smart data analytics frame-
work consists only of the NOC data and does not include any faulty
data. The NOC data is first analyzed to determine the relevant data
characteristics, which are used to pre-select suitable fault detection

ethods. Then, the candidate models are evaluated by cross-validation
o tune their hyperparameters and to select the best performing model.
he dataset containing the faults are treated as testing data as to evalu-
te the rates of both Type I error (NOC observation incorrectly deemed
aulty) and Type II error (faulty observations incorrectly deemed NOC).
 fault is detected whenever either of the model statistics crosses the
elevant control limit, coherently with the cross-validation procedure
lucidated in Section 3.3. Both the cases with and without quality
ariables are considered.

The criteria introduced in Section 3.2 are used to characterize the
NOC dataset used for model building (note that the NOC dataset is
the same regardless of the presence of dependent variables in this case
tudy). The results are:

• Royston’s test is selected to assess non-normality. The dataset is
deemed normal with a 𝑝-value of 0.7537. The dataset is deemed
normal also by all the non-selected tests.

• According to the ‘‘variables’’ criterion, the dataset is deemed lin-
ear with a fraction of variables involved in nonlinear relationships
equal to 0. All approaches to deflate the maximal correlation
coefficient yield the same result. The dataset is deemed linear
even if no deflation is used.

• According to the ‘‘variables’’ criterion, the dataset is deemed static
with a fraction of dynamic variables equal to 0.

A linear and static method is appropriate to model the NOC data.
e consider cases with and without dependent variables. When no

ependent variable is considered separately, the proposed framework
elects the PCA algorithm according to Fig. 2. Cross-validation with

folds and 10 repeats is used to determine the hyperparameters,
ielding 𝑎 = 3. In the case where dependent variables are considered
eparately, PLS is recommended as the most suitable algorithm. The
ross-validation procedure concludes that 𝑎 = 3 should be used.

PCA achieves a Type I error of 0.040 and a Type II error of 0.000
or the Fault 1. An overview of the different algorithms not considering
ependent variables separeately is shown in Table 2. The 𝑇 2 and the

𝑄 statistic for PCA on Fault 1 are shown in Fig. 13. The performance
of the recommended algorithm is overall very good. PCA has strong
erformance in terms of Type I error in validation and has by far the

lowest Type II error.
For the case where dependent variables are considered separately

n the fault detection procedure, PLS results in a Type I error of 0.035
nd a Type II error of 0.000 for Fault 1 (Table 3). The 𝑇 2 and 𝑄
tatistics for PLS on Fault 1 are shown in Fig. 14. The performance of
he recommended algorithm is overall very good, with low Type I and
I errors. CVA and KDE-CVA show similar performance to PLS, whereas

DPLS, KPLS, and DKPLS have large Type II error rates.
 i

15 
4.2. Tennessee eastman process

The TEP is a well-known benchmark for process monitoring appli-
ations. Many different algorithms have been applied to the TEP to

evaluate their performance in fault detection scenarios (Tien et al.,
2004; Yin et al., 2011; Russell et al., 2000; Cui et al., 2008; Wang and
Shi, 2014; Jia and Zhang, 2016; Tien et al., 2012). The simulator was
developed by the Eastman Chemical Company to represent a real indus-
rial chemical process consisting of a reactor, condenser, compressor,

separator, and stripper (Downs and Vogel, 1993). The dataset generated
by Chiang et al. (2001) is used in this study. NOC data, including
𝑁 = 500 observations of the 52 process variables, were obtained
by Chiang et al. (2001) running the simulator in normal operating
conditions (without any faults). 21 additional simulations were run
with a particular type of fault (pre-implemented in the simulator) to
obtain 21 faulty datasets for testing.3 All the faulty datasets consist of
160 observations of NOC data and 𝑁𝐹 = 800 additional observations
of faulty operating conditions, which can be the result of different
changes, such as different temperatures or varying feed ratios. The
detection difficulty of the different faults varies significantly and it
is known that certain algorithms work well on some faults, but not
n others (Russell et al., 2000). Additionally, Faults 3, 9, and 15 are
nown to be undetectable (Chiang et al., 2001) and are therefore not

considered in the analysis carried out here. As for the previous case
tudy, the faulty operating data are used in testing to compute both
he Type I and II error rates.

We consider both possible cases in terms of dependent variables.
he TEP features 52 variables consisting of 11 manipulated variables
nd 41 process measurements (Downs and Vogel, 1993). When algo-
ithms not considering dependent variables separately (such as PCA)

are applied to the TEP, then all the variables are typically included
n the dataset (Chiang et al., 2001). When dependent variables are

accounted for, different publications consider different variables to
be either input or dependent variables. However, most publications
agree to consider the 11 manipulated variables and the first 21 process
measurements as inputs (Oliveri et al., 2014; Jiao et al., 2015; Jia and
Zhang, 2016). There are different options for the dependent variables:
his case study considers the mole percent of component G in Stream 9

as the dependent variable, as in Oliveri et al. (2014), Jiao et al. (2015).
The criteria introduced in Section 3.2 are used to characterize the

OC dataset used for model building.4 The results are:

• Royston’s test is selected to assess non-normality. The dataset
is deemed non-normal with a 𝑝-value basically equal to 0. This
result is due to the marginal distributions of some variables. For

3 This study uses the same faults as defined by Downs and Vogel (1993).
It can be argued that not all of the deviations from NOC are necessarily faults
in equipment. While that argument has merit, the TEP is still used here as it
has been the most widely used dataset for comparing fault detection methods,
and does provide a wide range of extent of operational deviation from NOC.
As most commonly used in the literature, the term ‘‘fault’’ is used in this article
to indicate any deviation from NOC, irrespective of whether it would be an
active concern in a real chemical plant.

4 The NOC dataset differs in the cases with and without dependent variables
n this case study.
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Fig. 13. Linear case study: (a) 𝑇 2 statistic and (b) 𝑄 statistic for PCA applied to Fault 1. The dashed red line is the 𝜒2 control limit. The fault occurs at observation 200 (vertical
ine) which is detected by the 𝑄 statistic.
Table 3
Linear case study: Type I and II error rates for Faults 1, 2, and 3 for all methods that consider dependent variables separately.

Fault # PLS DPLS KPLS DKPLS CVA KDE-CVA

1 Type I error rate 0.035 0.025 0.010 0.005 0.035 0.030
Type II error rate 0.000 0.930 0.999 1.000 0.000 0.000

2 Type I error rate 0.030 0.015 0.005 0.000 0.010 0.010
Type II error rate 0.047 0.995 1.000 1.000 0.000 0.000

3 Type I error rate 0.030 0.020 0.000 0.005 0.010 0.010
Type II error rate 0.121 0.956 1.000 1.000 0.003 0.003
Fig. 14. Linear case study: (a) 𝑇 2 statistic and (b) 𝑄 statistic for PLS applied to Fault 1. The dashed red line is the 𝜒2 control limit. The fault occurs at observation 200 (vertical
ine) which is detected by the 𝑄 statistic.
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instance, variables 37 to 41 show ‘‘stair’’ profiles as a result of
their lower sampling frequency.

• According to the ‘‘variables’’ criterion, the dataset is deemed lin-
ear with a fraction of variables involved in nonlinear relationships
equal to 0 for both cases with and without dependent variables.
Such a result is in accordance with the literature (Sun, 2020b).
This result, combined with the non-normality detection criterion,
also allows to conjecture that variables are either uncorrelated or
only linearly correlated; an inspection of the maximal correlation
and linear correlation matrices reveals that variables are mostly
uncorrelated, with few cases of linear correlation (due to linear
constraints among variables imposed by material balances of
the process). All approaches to deflate the maximal correlation
coefficient yield the same results in this case.

• According to the ‘‘variables’’ criterion, the dataset is deemed
dynamic with a fraction of dynamic variables equal to 0.788 (41
dynamic variables out of 52) in the case without dependent vari-
ables, and equal to 0.667 (22 dynamic variables out of 33) when
output variables are considered. This result is also in accordance
with literature (Sun, 2020b).
16 
The preliminary data interrogation indicates that there are always
dynamics and no nonlinearity present in the NOC data. Considering the
ase without separate dependent variables, the data analytics triangle
f SPAfPM (Fig. 2) suggests DPCA as the best algorithm. A 5-fold
imeseries cross-validation is used to determine the hyperparameters
f DPCA, yielding one principal component and one lag: 𝑎 = 1 and
= 1. In the case with separate dependent variables, CVA and DPLS are

ecommended. SPAfPM performs a 5-fold timeseries cross-validation
rocedure to designate the best model, as described in Section 3.3.

Fig. 15 shows the distribution of the Type I error rate in validation
for CVA and DPLS. The validation errors are lower for CVA on average
and lower errors are more frequent. SPAfPM selects CVA as final model,

ith 𝑎 = 1 and ℎ = 𝑗 = 1 as hyperparameters.

4.2.1. Fault 1
Fault 1 is one of the most frequently analyzed faults. In this case, the

atio of Components A and C in Stream 4 is varied in the form of a step
change, with Component C increasing and Component A decreasing
(Chiang et al., 2001).
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Fig. 15. TEP case study: Violin plot of the validation errors for DPLS and CVA. Each
lack dot marks the validation error for one of the cross-validation folds.

Table 4
TEP case study: Type I and II error rates for Fault 1 for all methods not considering
dependent variables separately.

PCA DPCA KPCA DKPCA SVDD

Type I error rate 0.019 0.006 0.006 0.000 0.025
Type II error rate 0.004 0.001 1.000 0.098 0.003

The Type I and II errors for all methods without separate dependent
ariables is shown in Table 4. The suggested method, DPCA, is the

second best performing algorithm with a Type I error rate of 0.006
and is the best performing algorithm in terms of Type II error with
a rate of 0.001. With regard to the 𝑇 2 and 𝑄 statistics (Fig. 16), the
𝑇 2 statistic partly crosses the threshold after the fault occurs, but is
not consistent. The 𝑄 statistic continuously detects the fault and shows
ood performance for the normal operating conditions in the beginning
s well.

The Type I and II errors for methods that include the dependent
variables separately in the data are shown in Table 5. CVA has a
elatively high Type I error rate, but detects all of the faulty operating
ata resulting in a Type II error rate of 0. DPLS (i.e., the alternative
ethod suggested by SPAfPMs) performs well in terms of both Type

 and II error rates. The 𝑇 2 and the 𝑇 2
𝑟 both detect Fault 1 perfectly

Fig. 17). However, the 𝑇 2
𝑟 statistic is fairly sensitive leading to a higher

ype I error rate.

4.2.2. Fault 5
Fault 5 is also a commonly used to assess fault detection methods.

In this case, the condenser cooling water inlet temperature experiences
a step change causing a change of the reactor cooling water flow
rate (Chiang et al., 2001). The fault rates for methods not considering
dependent variables separately are shown in Table 6. DPCA has a
igher Type I error, but is the second best option for the Type II error.
owever, the Type II error is still high. The reason for this result is that

methods that do not consider dependent variables are not suitable for
detecting Fault 5 (Chiang et al., 2001).

If dependent variables are considered separately, our algorithm rec-
mmends CVA. CVA yields a Type I error rate of 0.044, comparing well
o other methods (Table 7). In terms of Type II error, CVA and KDE-CVA
learly outperform the other methods and achieve a flawless Type II

error rate of 0. The 𝑇 2, 𝑇 2
𝑟 , and 𝑄 statistic for CVA are shown in Fig. 18.

In this case, only the 𝑇 2
𝑟 statistic is capable of consistently detecting

the fault after its occurrence, which is why only CVA and KDE-CVA
show such a good performance on this fault. This case shows that the
recommendation of CVA based on the characteristics is appropriate.
17 
4.2.3. Overall performance
For data characterized as being dynamic and linear, the proposed al-

gorithm consistently suggests DPCA for models not considering depen-
dent variables separately, and CVA for models considering dependent
variables separately. Obviously, the faults vary and there is not one
algorithm that handles all of the faults perfectly (Russell et al., 2000).

owever, we are interested in evaluating how the proposed algorithms
compare to the other algorithms for the detectable faults in terms of
the Type I and II errors. In terms of the Type I error, all algorithms
showed similar performance, with kernel-based methods tending to
perform slightly better on average. The reason for this result is that
kernel-based methods are very good at fitting a model; unfortunately,
kernel-based methods are also prone to overfitting. This behavior helps
achieve very low Type I error rates, but results in high Type II error
rates. Table 8 shows the Type II error rates for all algorithms not
considering dependent variables, in which DPCA is observed to be the
best performing algorithm in 12 out of 18 cases, with performance
nearly identical to the best methods in the remaining 6 cases. Similarly,
Table 9 shows the Type II error rates for all algorithms considering
dependent variables. In this case, CVA is the best performing algorithm
in 16 out of 18 cases. These results demonstrate the effectiveness and
strong performance of the proposed smart data analytics approach for
selecting the best method for process monitoring for this case study.

4.3. Continuous filtration and drying of paracetamol

Destro et al. (2021) developed a detailed, highly nonlinear, mecha-
nistic model of a continuous filtration and drying process for an Active
harmaceutical Ingredient (API). ContCarSim (Destro et al., 2022),
 simulator implementing such model, is freely available on GitHub
Destro, 2022). The modeled process is carried out in a revolving

carousel unit with five ports. A slurry containing API crystals, the
mother liquor, and the solvent is loaded in port 1; vacuum-driven de-
liquoring takes place in ports 2 and 3; port 4 is used for drying the
crystals under a flow of hot air; the dry crystal cake is discharged in
port 5. Fouling of the filter meshes is simulated as well and an auto-
matic cleaning routine is implemented by the simulator. Measurements
from 𝑚 = 8 sensors installed on the actual machine used for model
development are returned by the simulator. The reader is referred to
the original publications for details on the model (Destro et al., 2021)
and on the simulator (Destro et al., 2022).

ContCarSim has been used to generate the 𝑁 = 1260 observations
in the NOC datast, which gather all the 𝑚 = 8 process variables.

o test also the performance of quality-relevant monitoring, one of
the simulation states – the solvent concentration in the cake being
rocessed – is selected as a quality variable to characterize the product.
aussian noise is added to such a state to simulate noise of a real
easurement.

ContCarSim comes with two pre-implemented faults, called ‘‘distur-
bance scenarios’’ in the simulator. Scenario number 1, a ramp change in
the feed slurry concentration, is selected to generate the faulty dataset.

he simulator is implemented in such a way that the fault onsets after
a given simulation time. Therefore, the first 210 observations of the
faulty dataset are NOC, after which 𝑁F = 1410 faulty observations
follow. See the Supplementary Material for additional details on the
data generation.

The criteria in Section 3.2 are used to characterize the NOC dataset
sed for model building.5 The results are:

• Royston’s test is selected to assess non-normality. The dataset is
deemed non-normal with a 𝑝-value essentially equal to 0. The
dataset is deemed non-normal also by all the non-selected tests.

5 The NOC dataset is the same regardless of the presence of dependent
variables in this case study.
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Fig. 16. TEP case study: (a) 𝑇 2 statistic and (b) 𝑄 statistic for DPCA applied to Fault 1. The dashed red line represents the 𝜒2 control limit. The fault occurs at observation 160
(vertical line). The Fault is quickly detected by the 𝑄 statistic.
Table 5
TEP case study: Type I and II error rates for Fault 1 for all methods considering dependent variables separately.

PLS DPLS KPLS DKPLS CVA KDE-CVA

Type I error rate 0.013 0.031 0.000 0.019 0.050 0.000
Type II error rate 0.001 0.000 0.008 0.006 0.000 0.003
Fig. 17. TEP case study: (a) 𝑇 2 statistic, (b) 𝑄 statistic, and (c) 𝑇 2
𝑟 statistic for CVA applied to Fault 1. The dashed red line is the 𝜒2 control limit. The fault occurs at observation

60 (vertical line).
Fig. 18. TEP case study: (a) 𝑇 2 statistic, (b) 𝑄 statistic, and (c) 𝑇 2
𝑟 statistic for CVA applied to Fault 5. The dashed red line is the 𝜒2 control limit. The fault occurs at observation

60 (vertical line). The 𝑇 2
𝑟 statistic consistently detects the fault.
18 
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Table 6
TEP case study: Type I and II error rates for Fault 5 for all methods not considering
dependent variables separately.

PCA DPCA KPCA DKPCA SVDD

Type I error rate 0.038 0.056 0.019 0.032 0.038
Type II error rate 0.606 0.578 0.927 0.630 0.551

Fig. 19. ContCarSim case study: Violin plot of the validation errors for KDE-CVA and
DKPLS. Each black dot marks the validation error for one of the folds.

• According to the ‘‘variables’’ criterion, the dataset is deemed
nonlinear with a fraction of variables involved in nonlinear re-
lationships equal to 0.625 (5 variables out of 8). This result is
expected due to the high nonlinearity of the process model, and
to the absence of a control system (the simulator ran in ‘‘open-
loop mode’’). All approaches to deflate the maximal correlation
coefficient yield the same result.

• According to the ‘‘variables’’ criterion, the dataset is deemed
dynamic with a fraction of dynamic variables equal to 0.625 (5
dynamic variables out of 8).

The above results indicate that nonlinearity and dynamics need to
be accounted for when building the model of the NOC data. Similar
to the previous case study, both cases without and with separate
dependent variables are considered. In the former scenario, SPAfPM
selects DKPCA according to Fig. 2. Cross-validation for dynamic data
with 5 folds is used to determine the hyperparameters, which were
𝑎 = 1, ℎ = 1, and the radial basis function kernel with 𝜎 = 50. In
the case that dependent variables are considered separately, DKPLS
and KDE-CVA are selected by SPAfPM as the most suitable algorithms.
Cross-validation for dynamic data with 5 folds is used for model se-
lection and hyperparameter tuning. Based on the error distributions
in Fig. 19, KDE-CVA performs better both in terms of mean validation
rror and in terms of variance of the validation errors for the different

folds. Consequently, KDE-CVA is selected as the most suitable algo-
rithm. The hyperparameter tuning for KDE-CVA yields 𝑎 = 3, ℎ = 𝑗 = 3,
and kernel bandwidth scaling factors 𝜉𝑇 2 = 𝜉𝑇 2

𝑟
= 3, and 𝜉𝑄 = 5.

owever, DKPLS is considered as a possible alternative model (see the
iscussion in the Supplementary Material); hyperparameters for DKPLS
esult in 𝑎 = 1, ℎ = 1, and the radial basis function kernel with 𝜎 = 50.

DKPCA for the case without dependent variables results in a Type I
rror of 0.100 and a Type II error of 0.124. An overview of the different
lgorithms not considering dependent variables separately is shown in

Table 10. The 𝑇 2 and the 𝑄 statistics for DKPCA are shown in Fig. 20.
The performance of the selected algorithm is overall very good. DKPCA
is the second best performing algorithm for the Type II error (being
fundamentally equivalent to the best model, DPCA) and performs well
for the Type I error. Only SVDD performs significantly better for the
Type I error.

In the case that dependent variables are considered separately, the
overall performance of the algorithm selected by SPAfPM, KDE-CVA,
 i

19 
is compared to the other algorithms considering dependent variables
in Table 11. The different statistics for KDE-CVA are shown in Fig. 21.
The performance of the recommended algorithm is overall very good:
KDE-CVA yields reasonable Type II error and shows good performance
for the Type I error. The alternative model, DKPLS, performs marginally
better. This example further illustrates that, as discussed in the Supple-
mentary Material, both models can be recommended in the case that
ll characteristics are present.

4.4. Metal etching process

This last case study is based on data collected in an industrial plasma
etch process for semiconductor manufacturing (Wise et al., 1999). The
dataset can be freely downloaded (Eigenvector Research, Inc., 2024).

afers are etched in a recipe-driven batch process carried out in a
commercial Lam 9600 plasma etch machine. Integrated sensors perform
online measurements collected to build the dataset, which includes
19 variables (plus the timestamp of measurements and a numerical
identifier of the processing phase). Among the variables, two are bi-
nary variables (discrete with two levels): ‘‘RFB reflected power’’ and
‘‘TCP reflected power’’, as named by Wise et al. (1999). Also, many
variables appear to have discrete values due to limited precision of
the sensors. The complete dataset collects 108 batches under normal
operating conditions. Furthermore, 21 wafers are manufactured under
faulty operating conditions. For a detailed description of the process
and data, refer to Wise et al. (1999).

Given the richness of features, this dataset quickly became a bench-
mark for evaluating novel batch process monitoring methods (Goodlin
et al., 2003; Camacho and Picó, 2006a; Chen and Zhang, 2010; He
nd Wang, 2011; Wang and Yao, 2015; Lv et al., 2018; Du, 2019;

Azamfar et al., 2020). This dataset features a high degree of correlation
among variables (Cherry and Qin, 2007) and well-defined multiphase
dynamics (Camacho and Picó, 2006a), and the distribution of the data
is highly non-normal (Chen and Zhang, 2010). Given the presence
of correlated variables and the non-normality of the data, a signifi-
cant percentage of variables is expected to be involved in nonlinear
elationships.

For the application of SPAfPM, one single calibration batch has been
elected: the first one, named l2901.txm in the MACHINE_Data.mat

dataset, which contains 𝑁 = 112 observations. Faults 1, 10, and 16
– named TCP+50, TCP+30, and TCP-15, respectively (Wise et al.,
1999) – are selected for testing. Three faulty datasets are obtained
tacking a different NOC batch (file l2902.txm in the dataset),
ounting 107 observations, and the three aforementioned faults (files
2915.txm, l3120.txm, and l3318.txm, respectively). The faulty
atasets contain 210, 207, and 207 observations, respectively, and all of
he faults onset at observation 107.

As with the other case studies, both scenarios with and without
ependent variables are assessed. In the former case, all 𝑚 = 19
ariables are considered. In the latter, variable 10 – the ‘‘phase error’’
n Wise et al. (1999) – is selected as the quality variable, while the
emaining 18 are kept as process variables. The two aforementioned
iscrete variables are actually considered as such in the dataset assess-

ment phase. On the other hand, variables that can take more than two
iscrete levels are considered numerical, as this occurrence is due to
imited sensor precision.

Criteria introduced in Section 3.2 are used to characterize the NOC
dataset used for model building.6 The results are:

• Royston’s test is selected to assess non-normality. The dataset is
deemed non-normal with a 𝑝-value basically equal to 0. This result
was expected due the presence of binary variables, and to the
fact that many variables vary on discrete levels due to limited
measurement accuracy.

6 The NOC dataset differs in the cases with and without dependent variables
n this case study.
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Table 7
TEP case study: Type I and II error rates for Fault 5 for all methods considering dependent variables separately.

PLS DPLS KPLS DKPLS CVA KDE-CVA

Type I error rate 0.038 0.069 0.000 0.025 0.044 0.000
Type II error rate 0.616 0.565 0.702 0.639 0.000 0.000
Fig. 20. ContCarSim case study: (a) 𝑇 2 statistic and (b) 𝑄 statistic for DKPCA applied to Fault 1. The dashed red line is the 𝜒2 control limit. The fault occurs at observation 200
(vertical line).
Fig. 21. ContCarSim case study: (a) 𝑇 2 statistic, (b) 𝑄 statistic, and (c) 𝑇 2 statistic, for KDE-CVA applied to Fault 1. The dashed red line is the 𝜒2 control limit. The fault occurs
t observation 200 (vertical line).
Table 8
TEP case study: Type II error rates for all detectable faults for all methods not
onsidering dependent variables separately. Cases where DPCA performs best are in
old.
Fault # PCA DPCA KPCA DKPCA SVDD

1 0.004 0.001 1.000 0.098 0.003
2 0.014 0.013 0.986 0.936 0.014
4 0.063 0.009 0.935 0.838 0.029
5 0.606 0.578 0.927 0.630 0.551
6 0.000 0.000 1.000 0.966 0.000
7 0.000 0.000 0.399 0.338 0.000
8 0.013 0.011 0.899 0.117 0.006
10 0.345 0.320 0.770 0.404 0.316
11 0.273 0.207 0.849 0.721 0.228
12 0.006 0.003 0.896 0.142 0.004
13 0.040 0.036 0.990 0.467 0.041
14 0.000 0.000 0.957 0.058 0.000
16 0.419 0.350 0.862 0.484 0.352
17 0.068 0.058 0.966 0.576 0.064
18 0.086 0.084 0.995 0.934 0.075
19 0.799 0.737 0.972 0.906 0.738
20 0.333 0.292 0.931 0.475 0.273
21 0.539 0.503 0.947 0.619 0.500
20 
Table 9
TEP case study: Type II error rates for all detectable faults for all methods considering
dependent variables separately. Cases where CVA performs best are in bold.

Fault # PLS DPLS KPLS DKPLS CVA KDE-CVA

1 0.001 0.000 0.008 0.006 0.000 0.003
2 0.015 0.013 0.021 0.018 0.008 0.014
4 0.019 0.000 0.835 0.809 0.000 0.000
5 0.616 0.565 0.702 0.639 0.000 0.000
6 0.000 0.000 0.004 0.004 0.000 0.000
7 0.000 0.000 0.029 0.000 0.000 0.000
8 0.010 0.010 0.035 0.025 0.010 0.021
10 0.380 0.294 0.514 0.424 0.073 0.111
11 0.261 0.140 0.615 0.576 0.127 0.235
12 0.006 0.000 0.024 0.006 0.000 0.000
13 0.045 0.036 0.056 0.054 0.043 0.048
14 0.000 0.000 0.005 0.000 0.000 0.000
16 0.439 0.296 0.674 0.487 0.041 0.082
17 0.061 0.040 0.211 0.157 0.025 0.039
18 0.080 0.073 0.098 0.088 0.082 0.098
19 0.806 0.622 0.986 0.950 0.044 0.097
20 0.365 0.276 0.583 0.474 0.083 0.092
21 0.514 0.427 0.620 0.496 0.302 0.391
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Table 10
ContCarSim case study: Type I and II error rates for Fault 1 for all methods not
considering dependent variables separately.

PCA DPCA KPCA DKPCA SVDD

Type I error rate 0.095 0.114 0.090 0.100 0.033
Type II error rate 0.133 0.123 0.143 0.124 0.129

Fig. 22. Metal Etch Process case study: Violin plot of the validation errors for KDE-CVA
nd DKPLS. Each black dot marks the validation error for one of the folds.

• According to the ‘‘variables’’ criterion, the dataset is deemed
nonlinear with a fraction of variables involved in nonlinear rela-
tionships equal to 0.4737 (9 nonlinear variables out of 19) in the
case without dependent variables, and equal to 0.4444 (8 non-
linear variables out of 18) in the case with dependent variables.
All approaches to deflate the maximal correlation coefficient yield
essentially the same results, yet with some minor variations in the
percentage of nonlinear variables.

• According to the ‘‘variables’’ criterion, the dataset is deemed
dynamic with a fraction of dynamic variables equal to 0.647
(11 dynamic variables out of 17 non-categorical variables) in the
case without dependent variables, and equal to 0.625 (10 dy-
namic variables out of 16 non-categorical variables) when output
variables are considered.

The data interrogation criteria of SPAfPM indicate that dynamics
and nonlinearity are present in the NOC data. Similar to the previous
case studies, both cases with and without dependent variables sepa-
rately are considered. In the former scenario, DKPCA would usually
be selected according to the Fig. 2. However, due to the presence
of discrete variables, SPAfPM recommends SVDD as the most suit-
able algorithm (see discussion in the Supplementary Material). 𝑘-fold
cross-validation with 5 folds and 10 repeats is used to determine the
hyperparameters, which are 𝐶 = 0.2 and the radial basis function
kernel with 𝜎 = 50. In the case that dependent variables are considered
separately, DKPLS and KDE-CVA are recommended as the most suitable
algorithms based on the found characteristics according to the data
analytics triangle for fault detection shown in Fig. 2. Cross-validation
for dynamics with 5 folds is used for model selection and hyperparam-
eter tuning. Based on the error distribution reported in Fig. 22, DKPLS
performs better overall by having a consistent Type I error of 0.010,
whereas KDE-CVA has a larger error for some of the folds. The best
model appears to be DKPLS, whereas SPAfPM recommends both DKPLS
and KDE-CVA as the suitable algorithms (see the discussion in the
Supplementary Material). The hyperparameter tuning for DKPLS results
in a lag ℎ = 1, a number of latent variables 𝑎 = 1, plus a polynomial
kernel with 𝑐0 = 1, 𝑑 = 3, and 𝛾 = 0.0004. The hyperparameters for KDE-
CVA yield a lag ℎ = 1, a memory order 𝑎 = 1, and a kernel bandwidth
scaling factors of 𝜉𝑇 2 = 𝜉𝑇 2

𝑟
= 1 and 𝜉𝑄 = 1 for 𝑇 2 (and 𝑇 2

𝑟 ) and 𝑄,

respectively. C

21 
Fig. 23. Metal Etch Process case study: The distance statistic for SVDD applied to Fault
10. The dashed red line is the 𝜒2 control limit. The fault occurs at observation 107
(vertical line).

Fault 10 is discussed as an example in this case study. If no depen-
ent variables are used, SVDD achieves a Type I error of 0.028 and

a Type II error of 0.071 for Fault 10. An overview of the different
algorithms not considering dependent variables separately is shown
in Table 12. The distance statistic for SVDD is shown in Fig. 23.
The performance of the recommended algorithm is overall very good.
SVDD shows good performance for the Type I error and performs
significantly better than all other algorithms for the Type II error. Very
similar results are observed for Faults 1 and 16. SVDD significantly
outperforms the other algorithms for the Type II error. The Type I error
is consistent over all faults as the initial data before the fault occurs are
the same.

In the case where dependent variables are considered separately,
KDE-CVA outperforms DKPLS. KDE-CVA results in a Type I error of
0.028 and a Type II error of 0.000 for Fault 10. This result is the best,
and equivalent to CVA. An overview of the different algorithms consid-
ering dependent variables separately is shown in Table 13. The 𝑇 2, 𝑇 2

𝑟 ,
and 𝑄 statistics for KDE-CVA are shown in Fig. 24. The performance of
KDE-CVA is overall very good for both Type I and II errors. KDE-CVA
performs second best on Fault 1 and best on Faults 10 and 16.

5. Conclusions

An automated approach is proposed for the selection of data-driven
modeling methods for fault detection. The approach interrogates the
given dataset for different characteristics, which are the presence of
dependent variables, non-normality of the data distribution, presence
f nonlinear correlation among variables, and dynamics in the data.
he presence of dependent variables is a choice that requires process
nowledge and is left as a decision to the user of the software. To
etermine the other characteristics, a rigorous data interrogation pro-
edure was designed and validated in a multitude of different Monte
arlo simulations. This characteristic analysis, in combination with a
ross-validation procedure, constitute the backbone of the automation
echanism of the proposed framework to select the most suitable fault
etection algorithm with a set of optimized hyperparameters for the
iven dataset.

The proposed smart data analytics approach for fault detection is
pplied to four case studies, including the Tennessee Eastman Process,
n established benchmark for process monitoring systems. Based on an
nalysis of the normal operating condition data available for such a
ase study, the framework selected DPCA in the case that dependent
ariables are not considered separately, and CVA in the case that
ependent variables are considered separately. In terms of the Type II
rror rate, DPCA was the best performing algorithm not considering
ependent variables for 12 out of the 18 faults used for testing, and
VA was the best performing algorithm for 16 out of 18 faults when
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Table 11
ContCarSim case study: Type I and II error rates for Fault 1 for all methods considering dependent variables separately.

PLS DPLS KPLS DKPLS CVA KDE-CVA

Type I error rate 0.033 0.029 0.029 0.038 0.043 0.033
Type II error rate 0.134 0.122 0.162 0.125 0.147 0.158
Table 12
Metal Etch case study: Type I and II error rates for Faults 1, 10, and 16 for all methods not considering dependent variables
separately.

Fault # PCA DPCA KPCA DKPCA SVDD

1 Type I error rate 0.019 0.000 0.000 0.000 0.028
Type II error rate 0.981 0.980 1.000 1.000 0.139

10 Type I error rate 0.019 0.009 0.000 0.000 0.028
Type II error rate 0.600 0.354 1.000 1.000 0.071

16 Type I error rate 0.019 0.009 0.000 0.000 0.028
Type II error rate 0.860 0.616 1.000 1.000 0.041
Table 13
Metal Etch Process case study: Type I and Type II error rates for Faults 1, 10, and 16 for all methods considering dependent variables separately.

Fault # PLS DPLS KPLS DKPLS CVA KDE-CVA

1 Type I error rate 0.019 0.009 0.000 0.009 0.037 0.028
Type II error rate 0.990 0.971 1.000 0.990 0.530 0.828

10 Type I error rate 0.019 0.019 0.000 0.009 0.037 0.028
Type II error rate 0.670 0.374 1.000 0.673 0.000 0.000

16 Type I error rate 0.019 0.019 0.000 0.019 0.037 0.028
Type II error rate 0.830 0.616 1.000 0.867 0.000 0.000
Fig. 24. Metal Etch Process case study: (a) 𝑇 2 statistic, (b) 𝑄 statistic, and (c) 𝑇 2 statistic, for KDE-CVA applied to Fault 10. The dashed red line is the 𝜒2 control limit. The fault
ccurs at observation 107 (vertical line).
dependent variables are considered. This performance is strong, as
it is known that there is not one algorithm that does best on any
possible scenario; the software successfully determined the algorithm
that performs best for most faults. Three other relevant case studies are
assessed, with similar performance to the Tennessee Eastman Process.
Overall, the proposed approach successfully suggests the most suitable
algorithm and determines the optimal set of hyper parameters based
on a rigorous cross-validation procedure in a fully automated way
requiring no fault detection expert knowledge by the user.

Acronyms

ACF AutoCorrelation Function

API Active Pharmaceutical Ingredient

AutoML Automatic Machine Learning

CVA Canonical Variate Analysis

DKPCA Dynamic Kernel Principal Component Analysis
22 
DKPLS Dynamic Kernel Partial Least-Squares

DPCA Dynamic Principal Component Analysis

DPLS Dynamic Partial Least-Squares

KDE Kernel Density Estimation

KPCA Kernel Principal Component Analysis

KPLS Kernel Partial Least-Squares

NOC Normal Operating Conditions

OCC One-Class Classification

PCA Principal Component Analysis

PLS Partial Least-Squares

RBF Radial Basis Function

SPA Smart Process Analytics
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SPAfPM Smart Process Analytics for Process Monitoring

SVDD Support Vector Data Description

TEP Tennessee Eastman Process
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