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SUMMARY

The prevailing framework for robust stability and performance analysis requires that the uncertain system be
written as a linear fractional transformation of the uncertain parameters. This problem is algebraically equiv-
alent to the problem of deriving the state space realization for a multidimensional transfer function matrix,
for which a systematic algorithm was recently provided by Cheng and DeMoor.1 In this work an algorithm
is developed that reduces the dimension of the realizations while improving numerical accuracy, reducing
computational expense, and reducing run-time memory requirements. Such improvements are required for
the realization of large scale uncertain systems, which have large numbers of inputs, outputs, states, and=or
uncertain parameters.
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1. INTRODUCTION

The prevailing framework for robust stability and performance analysis requires that the uncertain
system be written as a linear fractional transformation of the uncertain parameters p, as de�ned
by the leftmost block diagram in Figure 1.2; 3 The uncertain parameters are located on the main
diagonal of the diagonal matrix �(p), with M (s) being a transfer function matrix which is not a
function of p. Other spatial or temporal operators, such as the Laplace transform variable s−1, the
temporal delay operator z, and spatial delay operators z1 and z2, can be treated algebraically like
uncertain parameters. The middle and rightmost block diagrams show how this is done for the
Laplace transform variable, where A,B,C and D are the state space matrices for the transfer func-
tion M (s). Numerically e�cient synthesis of robust controllers requires that this linear fractional
transformation be a function of the state space matrices of the nominal open-loop system. This is
true whether the controllers to be designed are �xed4–6 or gain scheduled.7; 8

Lu, Zhou and Doyle9, and Cheng and DeMoor1 have noted that deriving such a linear fractional
transformation is algebraically equivalent to deriving the state space realization for a multidimen-
sional transfer function matrix, a problem which has been studied for many years.10; 11 Though
the solution for one-dimensional realization is described in undergraduate control textbooks12

and the solutions for other special cases of the multidimensional realization problem have been
derived,13–15; 6 the �rst systematic algorithm to solve this problem when the entries of the transfer
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Fig. 1. Linear fractional transformations and multidimensional realizattions

function matrix are rational functions appears to be that developed by Cheng and DeMoor1. Though
the resulting linear fractional transformations are usually not of minimal state dimension, this is not
particularly a concern for the frequency-by-frequency robust stability and performance analysis2;15

of linear time invariant uncertain systems with small numbers of inputs, outputs and parameters.
Our particular interest in multidimensional realizations stems from our interest in the application

of robustness analysis to large scale processes, that is, processes which have large numbers of
inputs, outputs, states and uncertain parameters. Numerical examples show that improvements to
Cheng and DeMoor’s algorithm1 are required for the realization of large scale uncertain systems. In
this work an algorithm is developed that reduces the dimension of the realizations while improving
numerical accuracy, reducing computational expense, and reducing run-time memory requirements.
Numerical examples illustrate the extent and nature of the improvements.
We would like to note that the interesting recent work by Beck and Doyle16; 17 on the calculation

of minimal state space realizations does not preclude the algorithm presented in this paper, as their
algorithm reduces the dimension of a given realization. Our algorithm can be used to provide
input data for use by their algorithm,16; 17 with the end result being a minimal realization (in this
case, ‘minimal’ refers to a realization which has the lowest dimension for each of the uncertain
parameters; this is in contrast to the de�nition of ‘minimal’ typically used in the multidimensional
realization literature10; 11).

2. BACKGROUND

This section provides necessary de�nitions and poses the multidimensional realization problem in
mathematical terms.
Multidimensional realization is the problem of determining the state space model for a system

transfer function with multiple parameters.10 The problem can be cast in the linear fractional
transformation (LFT) framework. The LFT of �(p) with the coe�cient matrix L is de�ned by
the following expression13

Fu(L;�(p)) = L22 + L21�(p)[I − L11�(p)]−1L12 (1)

where Fu(L;�(p)) has dimension n × m; L11; L12; L21 and L22 are complex or transfer function
matrices with dimensions r × r; r × m; n× r and n× m respectively; and �(p) has the diagonal
structure

�(p) = blockdiag(p1Ir1 ; : : : ; pqIrq) (2)
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with p = [p1; : : : ; pq] being a vector of uncertain parameters. The block structure vector (bs) is
de�ned by

bs = [r1; : : : ; rq] (3)

where ri is the number of times pi appears in �(p). Note that the dimensions of the Lij are such
that

L =

[
L11 L12
L21 L22

]
(4)

is well-de�ned.
The leftmost diagram in Figure 1 is the block diagram representation for the LFT of �(p)

with the coe�cient matrix being a transfer function matrix M (s), with s being the Laplace trans-
form variable. Numerically e�cient robust control synthesis requires knowledge of the state space
matrices for M (s), whether the controllers to be designed are �xed4–6 or gain scheduled.7; 8

Since the transfer function for a state space realization (A, B, C, D) of M (s) is given by
D + C(sI − A)−1B = D + C(s−1I)[I − A(s−1I)]−1B12, comparison with (1) shows that M (s)
is an LFT of s−1I with respect to the coe�cient matrix[

A B

C D

]
(5)

This implies that s−1 can be treated algebraically like an uncertain parameter, as shown in the
middle and rightmost block diagrams in Figure 1. Thus, the goal of multidimensional realization
can be de�ned as determining a constant coe�cient matrix L, and a diagonal matrix �(p) which
contains all temporal and=or spatial operators and all the uncertain parameters, such that

M (p) = Fu(L;�(p)) (6)

is the given multidimensional rational transfer function matrix.
We will assume that M (p) is well-posed, that is, that every element of M (p) is bounded for

p = 0. Then the rational matrix M (p) can be written in the form

M (p) =
d∑
i=1

fi(p)Mi (7)

where Mi is a constant matrix and fi(p) is a rational function of the form

fi(p) =

m∏
j=1

yij(p)

n∏
k=1

zik(p)
;

n∏
k=1
zik(0) 6= 0 (8)

where yij(p) and zik(p) are polynomials.

3. MULTIDIMENSIONAL REALIZATION ALGORITHM

The multidimensional realization algorithm is summarized in Appendix A. For brevity, we will
discuss only the major features of the algorithm here.
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The �rst step of the algorithm is to use matrices from LR decompositions of the Mi to construct
the LFT of the rational matrix M (p) in terms of the scalar transfer functions fi (p)

M (p) = Fu(La;�(f)) (9)

where La is a constant matrix and

�(f) = blockdiag(f1(p)Ia1 ; : : : ; fd(p)Iad) (10)

This step is similar to Cheng and DeMoor’s step,1 but it is much more e�cient for most multi-
dimensional realization problems. The role of Steps 3–7 is to calculate the LFTs for all fi (p) in
terms of p. Step 8 collects these LFTs together to determine the LFT of �(f) in terms of the
parameters pj

�(f) = Fu(Lb;�(p)) (11)

Step 9 combines (9) and (11) to obtain an overall LFT in the form (6). Step 10 successively
employs minimal one-dimensional realization theory to each parameter pj to arrive at the �nal
realization.
The steps devised by Cheng and DeMoor1 are indicated in Appendix A by the absence of an

asterisk (∗) by the step number. The modi�cations given by Steps 2–5 exploit structure between
and within the transfer functions to provide realizations of lower order than provided by the
original algorithm of Cheng and DeMoor1. Step 2 reduces the order of the realization when there
is a term common to all the transfer function elements in a row. Letting n be the number of
times a common term appears in a row, the block structure produced using the new algorithm
does not grow with n while the block structure produced using Cheng and DeMoor’s algorithm1

grows as n. This step is motivated by problems in mechanical engineering, where the common
term is a spring constant, mass, or similar term.18 Step 3 applies to transfer function elements
which contain a �rst order Pad�e time delay approximation, and reduces the order by replacing the
realization obtained using Cheng and DeMoor’s algorithm1 with a minimal order realization similar
to that given by Lundstr�om.19 Letting n correspond to the order of Pade’s approximation, the block
structure produced using the new algorithm grows as n while the block structure produced using
Cheng and DeMoor’s algorithm1 grows as (n3=3) + n2 + n. This step is motivated by problems
in chemical and mechanical engineering, where time delays are common.20–23 Step 4 applies
one-dimensional realization theory to factors that appear in the numerator and denominator which
contain only one parameter. A comparison of the dimensional growth as the order of the problem
size increases is illustrated in Example 1 from Table 2. Step 5 exploits the structure in which
temporal or spatial operators typically appear in transfer functions. Letting the function to be
realized be f(p) = �npn+ �n−1pn−1 + · · ·+ �1p+ �0, the block structure produced using the new
algorithm grows as n while the block structure produced using Cheng and DeMoor’s algorithm1

grows as n2 + n.
The new algorithm has been written in MATLAB code (available via world wide web24), which

is just a step-by-step implementation of the algorithm given in Appendix A.

4. NUMERICAL EXAMPLES

The performance of Cheng and DeMoor’s algorithm1 is compared with our new algorithm, both
with and without performing the one-dimensional reduction procedure (Step 10 of the algorithm,
Appendix A), for several realization problems obtained from the open literature in Table 1. The
corresponding block structure vectors are given in Table 2 with the coe�cient matrices listed
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Table 1. List of the examples

Example Source Transfer function M (p) Parameter vector (p)
reference

1 27
�npn + �n−1pn−1 + · · · + �1p + �0
�mpm + �m−1pm−1 + · · · + �1p + 1

p

2 15

 0 1 0
−(k0 + wk�k)
m0 + wm�m

−(c0 + wc�c)
m0 + wm�m

1
m0 + wm�m

1 0 0

 [�k ; �c; �m]

3 1 (p1 + 1)(p2 + 1)=6

s2[s4 +
(
5
6
p1 +

3
2
p2 +

7
3

)
s2 + (p1 + 1)(p2 + 1)]

[p1; p2]

4 1

[
1 + p2

1 + 2p1
5p1p2

1 + 6p1p2
5p1p2

1 + 6p1p2
1 + 3p1

1 + 4p2

]
[p1; p2]

5 28

[ 1
2 (�

2 + 2��� + �2�2) � + 2 + ��

1 0

]
�

6 29

 z−1 − s−1z−1
1 + s−1

z−1 + s−1
1− s−1 + z−1 − s−1z−1

z−1 − s−1
1 + s−1 − z−1 − s−1z−1

s−1 + s−1z−1
1 + 2s−1 − z−1 − 2s−1z−1

 [s−1; z−1]

7 30 2w−1 − z−1 + 1
(1− w−1)(1 + 3z−1)(1 + 2w−1z−1) [w−1; z−1]

8 31 s−1z−1 + s−2z−2
1 + s−2z−2

[s−1; z−1]

9 32
2z−21 z−12 + 6z−21 + 3z−11 + 6z−11 z−12 + z−12

2z−21 z−12 + 6z−21 + 6z−11 + 7z−11 z−12 + 4z−12 + 1
[z−11 ; z−12 ]

10 32
−2z−21 z−12 + 6z−21 + 3z−11 + 6z−11 z−12 + z−12

−2z−21 z−12 + 6z−11 + 6z−11 + 5z−11 z−12 + 4z−12 + 1
[z−11 ; z−12 ]

in Appendix B. For all of these examples except Example 4, the dimension of the realization
(dimension of the �(p) matrix) with the new algorithm before the one-dimensional reduction
step (Column 3) is less than Cheng and DeMoor’s algorithm1 (Column 2). By comparing the
total number of 
ops for the two algorithms (Columns 4 and 5), it is clear that reducing the
order of the realization before the one-dimensional reduction step plays a key role in reducing the
computational expense. In each case the number of 
ops is less than or comparable to Cheng and
DeMoor’s algorithm.1 For Example 7, the number of 
ops with Cheng and DeMoor’s algorithm1

is over an order of magntiude larger than the number of 
ops used by the new algorithm.
Since reducing the order of the realization before the one-dimensional reduction step plays

a key role in reducing the computational expense, it is reasonable to examine performing the
one-dimensional reduction procedure at intermediate points in the algorithm (i.e., after Step 6 and
Step 7) to reduce the computational expense. Correspondingly, we have developed a generalization25

of Fan and Tits’ model reduction scheme33 to be used in these intermediate steps. These new
schemes applied to Cheng and DeMoor’s algorithm1 are compared with Cheng and DeMoor’s and
the new algorithm using the problems described in the following.
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Table 2. Block structure vectors and computational expense for the various algorithms

Example C=D without New without C=D with New with
1-D reduction 1-D reduction 1-D reduction 1-D reduction

Number of 
ops Number of 
ops

1 1
2 (n

2 + n + m2 + m) max(m; n) ? max(m; n)
2 [1; 1; 6] [1; 1; 1] [1; 1; 1] [1; 1; 1]

19 980 6 036
3 [4; 4] [2; 3] [2; 1] [2; 1]

10 587 8 219
4 [6; 6] [6; 6] [4; 4] [4; 4]

71 101 70 641
5 4 3 2 2

4 063 5 221
6 [12; 11] [8; 10] [6; 4] [6; 4]

244 908 185 394
7 [14; 14] [3; 3] [3; 2] [3; 2]

291 700 14 470
8 [5; 5] [4; 4] [3; 2] [4; 3]

24 242 25 346
9 [12; 6] [4; 6] [2; 1] [2; 1]

90 231 43 010
10 [11; 6] [4; 5] [4; 1] [4; 2]

75 082 35 964

Now we will investigate the performance of the algorithms on uncertain systems of larger
dimensionality with varying sparseness. Let us consider the n× n banded transfer function matrix
M (p)mn with a band of size m and the i; jth element given by

[M (p)]mnij =


kij(− 1

2�ijs+ 1)

(�ijs+ 1)( 12�ijs+ 1)
for |i − j|6m

0 otherwise

(12)

where kij = koij + wkij �kij ; �ij = �
o
ij + w�ij ��ij ; �ij = �

o
ij + w�ij ��ij ; �

o
ij = �

o
ij = 1; wkij = w�ij = w�ij =

0:1; ∀i; j, and for the appropriate non-zero elements in the banded matrix,

koij =



1 for |i − j|60
0·9 for |i − j|61
0·7 for |i − j|62
0·8 for |i − j|63
1 for |i − j|64

(13)

The structure of M (p)mn is typical for modelling adhesive coaters and polymer extruders20; 23.
The parameter vector p is given by p = [s−1; �k11 ; ��11 ; ��11 ; : : : ; �kn; (n−m) ; ��n; (n−m) ; ��n; (n−m) ]:
Table 3 contains the computational results for these banded transfer function matrices with a

variety of dimensions n and band sizes m. It is clear that by considering these results (number
of 
ops, error estimates and realization dimension) the order of preference from most to least
is: 1z) new algorithm, 2) Cheng and DeMoor’s algorithm1 with intermediate one-dimensional
reduction steps, 3) Cheng and DeMoor’s algorithm1 with intermediate generalized Fan and Tits’
reduction steps,25 and 4) Cheng and DeMoor’s algorithm.1 Note that 3) and 4) contain comparable
errors.
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Table 3. Block structure vectors and computational results for the various algorithms

Band Dimension C=D C=D C=D New
(m) (n) 1-D FT=1-D 1-D=1-D 1-D

2 5 bs wo=1-D [247; 19× (3; 3; 5)] [87; 19× (2; 2; 5)] [76; 19× (2; 2; 1)] [57; 19× (1; 1; 1)]
bs w=1-D [48; 19× (32; 2; 1)] [48; 19× (2; 2; 1)] [48; 19× (2; 2; 1)] [43; 19× (1; 1; 1)]

Number of 
ops 9.48E+08 2.26E+08 8.49E+08 3.15E+07
Error 2.29E−15 4.56E−15 1.57E−15 5.73E−16

2 6 bs wo=1-D [312; 24× (3; 3; 5)] [110; 24× (2; 2; 5)] [96; 24× (2; 2; 1)] [72; 24× (1; 1; 1)]
bs w=1-D [60; 24× (32; 2; 1)] [60; 24× (2; 2; 1)] [60; 24× (2; 2; 1)] [54; 24× (1; 1; 1)]

Number of 
ops 2.02E+09 4.47E+08 1.68E+08 6.30E+07
Error 3.18E−15 5.30E−15 2.30E−15 8.60E−16

2 9 bs wo=1-D No convergence [179; 39× (2; 2; 5)] [156; 39× (2; 2; 1)] [117; 39× (1; 1; 1)]
bs w=1-D [96; 39× (2; 2; 1)] [96; 39× (2; 2; 1)] [87; 39× (1; 1; 1)]

Number of 
ops 2.09E+09 7.07E+08 2.71E+08
Error 9.54E−15 4.11E−15 1.39E−15

3 5 bs wo=1-D [299; 23× (3; 3; 5)] [107; 23× (2; 2; 5)] [92; 23× (2; 2; 1)] [69; 23× (1; 1; 1)]
bs w=1-D [56; 23× (32; 2; 1)] [56; 23× (2; 2; 12)] [56; 23× (2; 2; 1)] [51; 23× (1; 1; 1)]

Number of 
ops 1.78E+09 3.99E+08 1.53E+08 5.24E+07
Error 2.62E−15 5.46E−15 2.82E−15 4.83E−16

3 7 bs wo=1-D No convergence [173; 37× (23; 2; 5)] [148; 37× (2; 2; 1)] [111; 37× (1; 1; 1)]
bs w=1-D [88; 37× (23; 2; 12)] [88; 37× (2; 2; 1)] [81; 37× (1; 1; 1)]

Number of 
ops 1.71E+09 5.85E+08 2.24E+08
Error 9.11E−15 3.01E−15 8.23E−16

4 6 bs wo=1-D No convergence [160; 34× (23; 2; 5)] [136; 34× (2; 2; 1)] [102; 34× (1; 1; 1)]
bs w=1-D [80; 34× (23; 2; 12)] [80; 34× (2; 2; 1)] [74; 34× (1; 1; 1)]

Number of 
ops 1.53E+09 4.50E+08 1.70E+08
Error 8.67E−15 3.54E−15 7.20E−16

23 = either 2 or 3 repetitions of the parameter, but usually 2.
C=D = realizations from Cheng and DeMoor’s algorithm.1

1-D = one-dimensional reduction procedure (Step 10).
1-D=1-D = one-dimensional reduction procedure applied in the intermediate part of the algorithm.
FT=1-D = generalized Fan and Tits’ reduction procedure25 applied in the intermediate part of the algorithm.
No convergence = no convergence for the SVD during the one-dimensional reduction step.

It is important to highlight three key features of the results from Table 3. First, for the cases
where the one-dimensional reduction procedure converges [(m; n) ∈ {(2; 5); (2; 6); (3; 5)}], the di-
mension of �(p) matrices produced by the new algorithm (Column 7) is approximately half that
produced by Cheng and DeMoor’s1 (Column 4). In fact, the realizations produced by the new
algorithm are minimal for all of the parameters excluding s−1. A careful look at the algorithm
indicates that this will be true for all matrices with the structure of M (p)mn given by (12), irre-
spective of the values of m and n. Second, in each case Cheng and DeMoor’s algorithm1 required
over an order of magnitude more 
ops to calculate the �nal realization than the new algorithm.
Third, since the one-dimensional reduction step at the end of the algorithm did not converge for
[(m; n) ∈ {(2; 9); (3; 7); (4; 6)}], obtaining lower order intermediate realizations may be essential to
using the reduction routine.
The run-time memory requirements for the four algorithms were tested on the same computer.

The largest problem size that Cheng and DeMoor’s algorithm1 could realize was m = n = 7.
Cheng and DeMoor’s algorithm1 with either intermediate reduction scheme could handle the
m = n = 9 problem. On the other hand, the new algorithm could realize the m = n = 10
problem.
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5. CONCLUSIONS

An algorithm which provides a multidimensional realization of reduced dimension is derived which
exploits the structure of the transfer functions. For several realization problems of small dimen-
sion, both Cheng and DeMoor’s1 and our algorithm gave realizations of similar dimensions. For
realization problems of larger dimension, the realizations (dimension of the �(p) matrix) resulting
from our algorithm were of signi�cantly lower order, were more accurate, were calculated with
much less computation, and required less run-time memory.
Two ways to extend the algorithm are: 1) extend Step 4 to applying 2-D realization theory11; 26

in addition to the 1-D realization theory12; and 2) an additional �nal step, in which the multidi-
mensional minimal realization algorithm of Beck and Doyle16; 17 is applied.

APPENDIX A. MULTIDIMENSIONAL REALIZATION ALGORITHM

The following is the multidimensional realization algorithm. The steps devised by Cheng and DeMoor1 are
indicated by the absence of an asterisk (∗) by the step number. The new steps which exploit the structure
of the rational functions are indicated by an asterisk (∗) by the step number.

Step 1∗. Performing the LR decomposition on each Mi

Mi = LiR
T
i (14)

allows us to construct matrices

U = [L1; : : : ; Ld]; V = [R1; : : : ; Rd] (15)

which satisfy

M (p) = U�(f)V T (16)

We see that M (p) is an LFT in terms of the scalar transfer functions fi(p)

M (p) = Fu(La;�(f)) (17)

where

La =

[
0 V T

U 0

]
; �(f) = blockdiag(f1(p)Ia1 ; : : : ; fd(p)Iad) (18)

The LFT’s in the remaining steps are in terms of p. Steps 3 to 7 are used to calculate the LFT for all fi(p)’s.
All of these LFT’s are combined in Step 8. The coe�cient matrix of the LFT for fi(p) is represented by Lfi .
The vector bsfi referes to the block structure associated with fi(p), and bs with other subscripts are related
similarly.

Step 2∗. If M (p) contains a row with a common denominator d(p), then M (p) can be factored as

M (p) =

 I 0 0

0 1
d(p) 0

0 0 I


G

 ; [G]jk =


[M (p)]jk for j 6= r′
m∏
j=1

yij(p) for j = r′
(19)

where r′ is the row with the common d(p). Note that if there is more than one row with the same denominator
on the same row, then the previous factorization can be performed successively for each row. If M (p) contains
at least one row with the same denominator on the same row, then

(i) obtain L and bs for each of the factored matrices from (19) by implementing steps 1 to 9;
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(ii) determine L and bs for M (p) by placing the two LFT’s from step (i) in series and rearranging the
block diagram;

(iii) implement step 10 on L and bs from step (ii).

Step 3∗. If fi(p) has a time delay which is approximated using the �rst order Pad�e, then fi(p) has the
form n(p){[(−(�0 + w���)=2] + s−1)}={[(�0 + w���)=2] + s−1}, where n(p) is a rational function with the
same form as fi(p) de�ned in (8). Then

(i) use the following LFT, where p = [s−1; ��], for Pad�e’s �rst order approximation from Reference 19;

Ltd =



−2
�0

2w�
�20

2
�0

1
−w�
�0

0

2
−2w�
�0

−1

 ; bstd = [1; 1] (20)

(ii) perform steps 4 to 7 to determine the LFT for n(p);
(iii) place {[−(�0 + w���)=2] + s−1}={[(�0 + w���)

/
2] + s−1} and n(p) in series and rearrange the block

diagram to obtain Lfi ;
(iv) set bsfi = bsn + bstd; and
(v) go to the beginning of step 3 with the next fi(p).

Step 4∗. If there exists
∏a

j=1 yij(p)=
∏b

k=1 zik(p) as a factor of fi(p) in terms of only one parameter pl,
then

(i) obtain the LFT of
∏a

j=1 yij(pl)=
∏b

k=1 zik(pl) by applying one-dimensional realization theory;
12

(ii) repeat step (i) for each possible parameter; and
(iii) go to the beginning of step 5 with the yij(p) and zik(p) not used in step (i).

Step 5∗. This step factors a polynomial expression to possibly reduce the number of times each parameter
appears in the expression. This step applies independently to all yij(p) and zik(p) not used in step 4. The
factorization process is listed below:

(i) expand the expression and collect like terms;
(ii) isolate the terms in which the parameter present in the most number of terms pj are present and factor

pj out of these terms, i.e., to give pju(p) + w(p); and
(iii) apply step (ii) to u(p) and w(p) successively until complete.

Step 6. Any factored polynomial forms resulting from step 5 are trivially written in the form of a block dia-
gram. Rearrange the block diagrams to determine the LFT expressions in terms of the parameters (p1; : : : ; pq).

Step 7. The LFT expression for fi(p) is determined in the following manner:

(i) place all of the LFT’s from step 4 obtained by one-dimensional realization theory and the LFT’s for
each of the yij(p) from step 6 in series and obtain the LFT by rearranging the block diagram;

(ii) place all of the zik(p) from step 6 in series and obtain the LFT by rearranging the block diagram;
(iii) place the LFT from step (ii) in parallel with −1, place this sum in the backward part of a feedback

loop, and obtain the LFT by rearranging the block diagram; and
(iv) determine Lfi and bsfi by placing the LFT’s from steps (i) and (iii) in series and rearranging the block

diagram.
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Step 8. L′b is constructed by placing all of the Lfi as block diagonals of matrix. By reordering the variables
Lb can be determined such that

�(f) = Fu(Lb;�(p)) (21)

where

Lb =

[
Lb11 Lb12
Lb21 Lb22

]
(22)

and bs =
∑d

i=1 aibsfi where ai is the number of times fi(p) is repeated in �(f).

Step 9. The L in (6) is calculated by using the Redhe�er Star Product,13 where L = S(Lb; La) is de�ned
as

S(Lb; La)

=

[
Lb11 + Lb12La11(I − Lb22La11)−1Lb21 Lb12(I − La11Lb22)−1La12

La21(I − Lb22La11)−1Lb21 La22 + La21Lb22(I − La11Lb22)−1La12

]
(23)

Plugging in La from (18) gives the simpli�ed equation for L

L =

[
Lb11 Lb12V

T

ULb21 ULb22V
T

]
(24)

Step 10. Successively apply minimal one-dimensional realization theory to each parameter pj until further
reduction does not occur.

APPENDIX B. COEFFICIENT MATRICES FOR REALIZATIONS OF EXAMPLES 1–11

Example 1

See controllable and observable canonical forms in Reference 12.

Example 2

For wk = 1; wc = 2; wm = 3; k0 = 4; c0 = 5; m0 = 6;

L =


0 0 0 −1 0 0
0 0 0 0 −2 0
0.5 0.5 −0.5 −2 −2.5 0.5
0 0 0 0 1 0

0.1667 0.1667 −0.1667 −0.6667 −0.8333 0.1667
0 0 0 1 0 0


Example 3

For s = 1;

L =

 −0.4231 0.2308 0.3997 0.03846
0 0 0 0.1667

0.03331 0.2443 −0.57691 0.04071
−0.4231 0.2308 0.3997 0.03846


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Example 4

L =



0 0 0 0 0 −0.1730 0 8.444 0 0.5643
0 −0.0168 −0.1826 0 −0.1157 0.1834 −5.974 0.00376 −3.521 0
0 −0.1826 −1.983 0 0.0107 1.991 0.5501 0.0408 0.3242 0
0 0 0 0 0 −0.0168 0 0.8210 0 −5.804
−0.1991 0.0193 −0.00178 2.048 −3.999 0 0.0774 0 0 0
0.0132 0 0 0.0138 0 0 0 0 1 0
0.00386 1 −0.0917 −0.0397 0.0774 0 −0.00150 0 0 0
−0.6450 0 0 −0.6718 0 0 0 0 0.0205 0
0 −0.0917 −0.9958 0 0 0.9708 0 1.434 1 0
0.0498 0 0 −0.5121 0.9724 0 −1.433 0 0 1



Example 5

For � = 1 and � = 2;

L =

 −0.1667 0.2357 −0.5774 0.5774
−0.1179 0.1667 0.8165 0.4082
0 2.449 2 4
0 0 1 0



Example 6

L =



−0.254 0.745 −0.578 0.231 0.746 0.194 0.034 −0.956 1.23 −0.600 0 0
0.745 −0.612 0.697 −0.408 0.761 0.262 −0.348 1.20 0.768 0.0066 0 0

−0.059 0.196 −0.181 0.018 0.095 −0.900 0.076 −0.183 0.249 0.765 0.859 −0.240
0.285 0.303 −0.098 −0.194 −0.027 −0.248 0.368 0.167 0.412 0.298 −0.291 −1.18
0.714 0.447 −0.0020 −0.460 −0.176 0.529 0.737 0.599 0.628 −0.254 0.119 0.538

−0.121 0.330 −0.316 0.044 0.170 −1.58 0.113 −0.335 0.417 1.34 −0.403 0.502
0 0 −0.324 0.242 −0.104 0.112 0.075 −0.560 −0.171 −0.330 −1.12 0.109
0 0 0.282 −0.499 0.221 −0.0079 −0.196 0.862 −0.312 0.0049 −0.645 0.103
0 0 0.165 0.466 −0.213 −0.239 −0.178 −0.235 −0.839 0.426 0.246 0.548
0 0 0.425 0.318 −0.150 −0.342 −0.0038 0.023 0.357 0.902 −0.522 −0.104
0 0 0.018 0.165 1.81 0.452 −0.231 −0.012 1.77 −0.573 0 0
0 0 0.085 0.045 −0.359 2.52 0.105 −0.044 −0.449 −2.30 0 0



Example 7

L =


1 0 −1 −0.7459 1.202 −1

−2 0 2 −0.2073 −3.458 2
0 0 0 0 0 2
0 0.8496 −1.119 −0.8346 1.344 −1.492
0 0.5274 1.802 1.344 −2.165 2.403

−1 0 1 −0.1037 −1.7209 1


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Example 8

L =



0 0 0 0 0 −0.1426 1.726 0

0 0 0 0 0 0.7662 0.6426 0

0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 −0.4544 0.7662 0 −0.4544 0 0 0

0 0.5418 0.6426 0 0.5418 0 0 0

0 0 0 0 0 0.1426 −1.726 0


Example 9

L =


−1·009 −5·900 1·288 −0·6978
0·1630 −4·991 1·232 −0·2062

−0·8217 14·65 −4 0·4082
−1·119 −10·76 2·449 0


Example 10

L =



0·00665 −0·0393 0·1343 0·0185 0·6928 1·852 −0·0471
−0·0385 0·2338 −1·394 −6·803 0·1505 −2·383 0·2782
−0·0146 0·0866 −0·3236 −0·3536 0·00211 −0·1246 −0·9504
0·0219 −0·1178 −0·6619 −11·92 0·0555 −4·834 −0·1307
0 0·1626 −0·5835 26·09 −0·2283 10·09 0·4683
0 0·4601 0·2426 −8·824 0·0854 −3·772 −0·1751
0 0·0132 −1·264 −13·73 0·1219 −5·384 0


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