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Abstract
Dynamic flux balance analysis (DFBA) has become an instrumental modeling tool for describing the dynamic behavior of 
bioprocesses. DFBA involves the maximization of a biologically meaningful objective subject to kinetic constraints on the 
rate of consumption/production of metabolites. In this paper, we propose a systematic data-based approach for finding both 
the biological objective function and a minimum set of active constraints necessary for matching the model predictions to 
the experimental data. The proposed algorithm accounts for the errors in the experiments and eliminates the need for ad hoc 
choices of objective function and constraints as done in previous studies. The method is illustrated for two cases: (1) for in 
silico (simulated) data generated by a mathematical model for Escherichia coli and (2) for actual experimental data collected 
from the batch fermentation of Bordetella Pertussis (whooping cough).

Keywords  Dynamic flux balance analysis · Flux balance analysis · Metabolic networks · Metabolic engineering · 
Bioprocess modeling

Abbreviations
S	� Stoichiometric matrix
vk	� Vector of fluxes
n	� Number of reactions
k	� Time instance
�	� Concentration
J�	� Fluxes that satisfy tight constraints
J�	� Fluxes that satisfy relaxed constraints
u�	� Weight of sum of squared errors
I	� Identity matrix
wsc
i

	� Time-varying values of the weights for all the 
metabolites

wu
i
	� Weight of upper bound

Wu	� Maximum allowable value for wsc
i

wl
i
	� Weight of lower bound

NC	� Number of the objective functions’ candidates
n�	� Estimated noise in the growth rate
NSC	� Total number of metabolites
Nm	� Number of measured metabolites

Vi,max	� Maximum rate
Ki	� Half saturation concentration
�	� Measurement error
Xk	� The biomass value at time k
wci

	� The weight coefficients of the objective function 
candidates

Introduction

Cell metabolism is generally described by a complex net-
work of biochemical reactions involving different metabo-
lites interacting with each other [1]. Different levels of cellu-
lar control orchestrate the evolution of these reactions within 
kinetic or thermodynamic constraints. Systems biology elu-
cidates the combinatorial role of different level of interac-
tion between the reactions inside the cell as a system and its 
response to the changes in the surrounding environment of 
the cell [2]. This systematic understanding is instrumental 
for optimizing the growth and productivity of existing cell 
lines or for designing new cell lines.

Various metabolic models have been presented for an 
understanding of biological systems, including constraint-
based flux balance analysis (FBA) as an important category 
of metabolic models. FBA models are used to describe the 
fluxes at steady state based on the optimality assumption 
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of evolutionary biology whereby cells are using resources 
optimally to maximize or minimize a specific objective func-
tion to survive [3].

Since most of the biological processes are dynamic in 
their nature, e.g., batch operations, models that represent 
these processes during transients are sought. Dynamic flux 
balance analysis (DFBA) is the dynamic extension of flux 
balance analysis (FBA) models to have the ability to estimate 
the metabolites’ concentrations over time [4, 5].

Models of dynamic biological systems have tradition-
ally consisted of systems of differential equations, each 
describing a dynamic balance of a main nutrient or impor-
tant byproduct that is being consumed or produced generally 
following Michaelis–Menten reaction kinetics. These mod-
els have been often found lacking since they involve a large 
number of kinetic parameters that need to be calibrated to fit 
the experimental data. Being based on an optimization with 
few limiting constraints, DFBA models are advantageous 
over these traditional dynamic models because they typically 
required a smaller number of calibration parameters [6, 7].

Typically, DFBA models involve the solution at each time 
interval k of the optimization:

 subject to:

 where S is the stoichiometric matrix, vk = (v1,… , vn)k is a 
vector of fluxes (moles/h·mole of biomass) at time instance 
k , n is the number of reactions, and the biological objec-
tive function is expressed as a specific linear combination 
of fluxes, cTvk . This objective function is generally related 
to a biological variable that is representative of the overall 
evolution of the culture such as growth rate and ATP pro-
duction. The constraints given by functions f  and g that are 
dependent on specific metabolites’ concentrations at time 
k �k are describing kinetic limitations associated with the 
consumption or production of these metabolites.

Thus, the formulation of a DFBA model involves the 
choice of two main elements:

1.	 A biological meaningful objective function.
2.	 A set of limiting constraints.

The stoichiometric matrix (S), generally available from 
public sources such as the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG), describes the metabolic reactions 
among species for any microorganism of interest. The idea 

(1)max
vk

cTvk,

g(�k) ≤
||Svk|| ≤ f (�k)

vk ≥ 0

�k+1 ≥ 0

behind the use of the constraints in this model is that only 
a few key metabolites are limiting in terms of their rate of 
consumption or production whereas all other metabolites 
will follow the dynamic behavior of the limiting metabo-
lites based on static stoichiometric relations among all 
metabolites.

The formulation of the model as a constrained optimi-
zation is based on the assumption that cells have evolved 
through time to act as optimizers that allocate their resources 
through maximizing/minimizing an objective function sub-
ject to some kinetic constraints.

The choice of a biological meaningful objective func-
tion [8] is of key importance for formulating an accurate 
DFBA that will not require a large number of associated 
constraints and calibrating parameters. The choice of the 
objective function has been reported to greatly impact the 
model prediction accuracy [8].

Common objective functions used in previous stud-
ies, mainly for bacterial systems, are the maximization of 
growth rate or final biomass at the end of a batch [3]. How-
ever, several other objective functions were found, by trial 
and error, to more accurately predict the system behav-
ior such as minimization of the production rate of redox 
potential, minimization of ATP production rate, maximiza-
tion of ATP production rate, maximization and minimiza-
tion of nutrient uptake rate, maximization of biomass yield 
per unit flux, maximization of ATP yield (maximal energy 
efficiency), minimization of the overall intracellular flux, 
maximization of ATP yield per flux unit (maximizing ATP 
yield while minimizing enzyme usage), maximization of 
biomass yield per flux unit (maximizing biomass yield 
while minimizing enzyme usage), minimization of glucose 
consumption (more efficient usage of substrate), and mini-
mization of reaction steps (minimization of the number of 
reaction steps for cell growth) [8–11]. Furthermore, it has 
been suggested that the objective function that rules the 
cell behavior may be a nonlinear combination of different 
specific objectives such as redox minimization, growth 
maximization, or ATP production [12] rather than a linear 
combination as used in earlier DFBA models.

In terms of the choice of a suitable objective function, 
mammalian cells might accomplish different functionali-
ties during the course of the fermentation comparing to 
bacteria. For example, a previous study on hybridoma 
cell central metabolism [12] studied the three choices of 
objective function: (1) minimizing ATP production, (2) 
minimizing total nutrient uptake, and (3) minimizing 
redox metabolism through minimizing NADH produc-
tion. That study concluded that, while no single objective 
could solely rule the cell behavior, minimizing the NADH 
production can better describe the typical characteristic 
behavior of hybridoma cells such as their inefficient use of 
nutrients. This inefficient use of resources translates into 
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higher rates of consumption of glutamine and production 
of alanine [13].

Some methods have been proposed for systematically 
finding the biological objective function. For example, 
an approach referred to as ObjFind has been reported 
[10, 11] that is based on the minimization of the sum of 
squared errors between identified fluxes from experimental 
and simulated data. A drawback of this method is that it 
involves a non-convex constrained optimization for which 
local optima were possible [11, 12]. Furthermore, the loca-
tion of these multiple optima will be sensitive to the choice 
of limiting constraints.

Knorr et al. [11] developed a Bayesian-based method 
for selecting the most suitable objective function for E. 
coli growing on succinate and producing acetate. Among 
five possible objective functions, the minimization of 
the production rate of redox potential resulted in a better 
model in terms of its ability to fit the data, and was the 
only objective function capable of prediction of the acetate 
production by the cells.

The biological objective solution search (BOSS) method 
is an additional reported bi-level optimization algorithm 
for inference of the objective function that does not require 
assumptions of candidate objectives [7, 13]. However, this 
method was found to lead to overfitting of experimental data 
and to the finding of objective functions that do not have 
a particular biological meaning but are rather a particular 
combination of certain metabolic fluxes. Furthermore, the 
resulting bi-level optimization is non-convex and computa-
tionally expensive [8, 14].

FBA models are often referred as being “constraint-
based” since they rely on biological constraints that repre-
sent the limited ability of the cell to consume certain nutri-
ents or produce certain byproducts [15]. These constraints 
can be categorized into two groups: non-adjustable and 
adjustable. Non-adjustable constraints such as stoichiomet-
ric constraints, enzyme, and transporter capacities are time 
independent and describe intrinsic characteristics of the cells 
under consideration. On the other hand, kinetic and regula-
tory constraints may change as a function of environmental 
conditions and, therefore, are reasonable to adjust to match 
the model predictions to the experimental observations [15].

In an earlier work by the authors [16], the limiting con-
straints were found by inspecting the values of the Lagrange 
multipliers and assessing from them whether particular con-
straints are active or inactive at the solution. The disadvan-
tage of that approach is that we had to decide on threshold 
values for the Lagrange multipliers as these values could 
not be systematically related to actual uncertainty/noise in 
the measurements.

An additional challenge in our earlier study was related to 
multiplicity of solutions that is also common in FBA models 
due to a large number of reactions that are considered versus 

the limited number of measured variables that are used to 
constrain the problem. In the literature, the addition of both 
ad hoc-chosen capacity constraints and/or thermodynamic 
constraints have been proposed to limit the solution space 
[17]. In our previous work, it was necessary to choose by 
trial and error a set of loose constraints to limit the solution 
space to address multiplicity.

In this work, we propose a novel optimization-based algo-
rithm to systematically and simultaneously identify both the 
limiting adjustable constraints (that is, an additional set of 
constraints to limit the solution space) and the biological 
objective function. For the limiting constraints, the objec-
tive is to identify the metabolites for which a change in their 
uptake or production rates significantly affects the value of 
the objective function and as a result on the estimated flux 
values. Constraints that are used to limit the solution space 
are also systematically identified from the proposed opti-
mization. The significance of all the constraints is directly 
related in this work to measurement error. For the objective 
function, we investigate various probable objective functions 
by considering them simultaneously within the proposed 
optimization to find the solution of this problem that results 
in the best fit for describing the data.

Then, after identifying the necessary constraints and 
biological objective function, a predictive model is for-
mulated where the identified constraints are related to the 
corresponding metabolite concentrations and the future 
metabolite concentrations can be predicted using the fluxes 
resulting from the optimization into dynamic mass balances 
of all metabolites.

The paper is organized as follows. The mathematical 
algorithm for identifying the limiting constraints and objec-
tive function is presented in “Identification algorithm” 
and the following section formulates a predictive model of 
metabolites based on the identified objective function and 
constraints. The subsequent section presents experimental 
methods used to collect data for the B. Pertussis case study 
and how to generate the in silico data used for the E. coli 
study following which the results are explained. The final 
section concludes the paper.

Theoretical and experimental methods

The development of the DFBA model in this study involves 
two steps:

1.	 An identification algorithm of limiting constraints and 
the biological objective function.

2.	 The development of a predictive DFBA model based on 
the identified constraints and biological objective func-
tion.
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These two steps are discussed separately below.

Identification algorithm

The proposed identification algorithm was formulated to 
meet three main goals:

1.	 Formulate the identification problem as a one-level opti-
mization.

2.	 Find limiting constraints such as the level of fit that can 
be directly related to the measurement error.

3.	 Integrate into the algorithm a search for a biologically 
motivated objective function that results in best fit 
between data and model predictions.

Regarding Goal 1, as mentioned in the Introduction, 
some approaches that were proposed for identifying DFBA 
models are based on bi-level optimization formulations 
which can be numerically challenging due to the existence 
of local minima. This problem is especially important for 
the objective of simultaneously identifying the objective 
function and the set of limiting constraints. Bi-level for-
mulations derive from the need to minimize some measure 
of the quality of fit of model predictions and experiments 
while maximizing a biological objective as required in 
DFBA formulations as shown in Eq. (1). The measure of 
the fit, e.g., the sum of squared errors, is calculated with 
the input data which generally consist of the concentrations 
of extracellular metabolites at different time intervals. To 
avoid a bi-level formulation, a key idea for the approach 
proposed in the current study is that the data (concentra-
tions of extracellular metabolites) are represented by convex 
sets whereby, at each time interval, data points are limited 
by upper and lower bounds. For example, Fig. 1 shows the 
evolution of glucose concentration during a batch where at 
each time interval the glucose level lies between an upper 
and lower limit.

The use of convex sets to represent biological experi-
mental data has been recently reported in several studies 
dealing with identification of biological models [16, 18]. In 
this approach, the experimental data within the convex set 
are generally assigned the same probability to occur. Experi-
mental data in biological experiments are highly variable 
due to measurement noise or lack of exact repeatability due 
to unmeasured disturbances such as variability in initial con-
ditions. Then, if the number of experimental repeats is not 
large, it is reasonable to ascribe the same probability to the 
values contained between the bounds at each time interval 
as shown in Fig. 1.

Since the convex sets can be formulated as inequality 
constraints within an optimization, there is no need in our 
proposed approach to use a dedicated optimization level for 
minimizing the errors in fitting between data and model pre-
dictions. Hence, using set constraints, a bi-level optimization 
formulation is avoided.

Regarding Goal 2, to identify a model that is robust with 
respect to uncertainty in measurements, the key idea is to 
perform an optimization with respect to two different sets of 
fluxes: one set of fluxes ( J� ) that satisfies the convex sets’ 
inequalities without measurement uncertainty and a second 
set of fluxes ( J� ) that satisfies these inequalities with an 
accuracy related to the measurement error. This means that 
the original convex sets (used to solve J� ) represent lack 
of repeatability of batches due to unmeasured disturbances, 
e.g., unmeasured changes in inoculum amount and popula-
tion content, unmeasured changes in minor species, etc.

In addition to these unmeasured disturbances there is 
measurement noise of magnitude epsilon. The flux vector 
J� is solved by satisfying the original convex sets with the 
added noise.

Then, we seek a minimal set of constraints by adding to 
the optimization objective one term that it is related to the 
error between J� and J� and additional terms that penalize 
the activation of the limiting constraint. By minimizing the 
resulting objective function, we are minimizing the number 
of constraints that will be active at the solution while at the 
same time minimizing the error between the ideal set of 
fluxes J� and the uncertain set of fluxes J�.

Regarding Goal 3, the search for the most suitable biolog-
ically meaningful objective function for solving the DFBA 
is conducted by adding different candidate functions, e.g., 
growth rate, redox potential etc., into the overall objective. 
Then, to force the solution towards one specific candidate, 
the cross-products of the candidates’ biological functions are 
also added to the objective function such as, at the solution 
of the minimization, these cross-products will be driven to 
zero and only one particular candidate will be left.

Following the above considerations, the resulting opti-
mization isFig. 1   Convex set constraints for glucose concentrations of E. coli 

diauxic metabolism with 10% error bound
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 subject to:

We defined d�i

dt

|||

l

=
�

l,k+1

i
−�k

i

�T
 and d�i

dt

|
||

u

=
�

u,k+1

i
−�k

i

�T
 . The first 

term in the objective function (2a) is a quadratic term that 
minimizes the sum of square errors between the assumed 
two sets of fluxes J� and J� , J� represents the fluxes that 
satisfy tight constraints on metabolites’ concentrations or 
consumption and production rates of these metabolites as 
observed from the limited data available, and J� are the 
fluxes that satisfy relaxed constraints for which it is assumed 
that the data are uncertain. The Si is the row of the stoichio-
metric matrix representing metabolite i , and Xk is the bio-
mass value at time k.

The sum of square errors between the elements of the 
vector J� and the elements of the vector J� weighted by 
the scalar uw that is selected sufficiently large so as for at 
the solution the first term in (2a) is smaller than a toler-
ance (10− 4) that is of the order of the noise ng in the bio-
logical objective (e.g., the measurement noise of the growth 
rate if the latter is used as the biological objective). If uw is 
too large the difference between J� and J� is small but the 
results are conservative since the model outputs do not span 

(2a)
min

J�,J�,w
�,w�,w�

(J� − J�)
Tuw

(
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)
−

NC∑
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(wci
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(
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i
−
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i=1
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i

)
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�Nm
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d�i

dt

|
|
|
|

l
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≤ Si J�Xk ≤

d�i

dt

|
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|
|

u
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i

(2c)
d�i

dt

|
|
|
|

l

≤ Si J�Xk ≤
d�i

dt

|
|
|
|

u

(2d)1 ≤ wu
i
≤ 1 + �

(2e)1 − � ≤ wl
i
≤ 1

(2f)J� ≥ 0

(2g)J� ≥ 0

(2h)�
k+1
i

≥ 0

(2i)0 ≤ wci
≤ 1

(2j)
Nc∑

i=1

wci
= 1

the allowable set based bounds with noise � requiring the 
use of many active constraints. If we select the uw too small, 
the difference between the models results and the data was 
too large and the simulation becomes unfeasible at some 
time interval.

To account for the uncertainty in consumption/production 
rates, the bounds on the relaxed constraints are obtained by 
multiplying the bounds on the tight constraints by weights 
wu
i
 and wl

i
 in Eq. 2a. These weights change between 1 and 

1 + � or 1 − � and 1 for the upper or lower constraints, respec-
tively (Eqs. 2d, 2e) where � is chosen to reflect the expected 
uncertainty in the measurements of consumption/production 
rates of metabolites.

The second and third terms in the cost function (2a) 
describe the biological objective functions to be maxi-
mized in a DFBA model computed as a function of either 
the J� or the J� vectors of fluxes that satisfy either the 
tight and relaxed constraints, respectively. NC is the num-
ber of the objective functions’ candidates for the problem 
and the wci

 are the weight coefficients corresponding to the 
candidates of the objective function.

The fourth term in Eq. (2a) is cross-product of the cor-
responding weights of any two candidate biological objec-
tive functions. The minimization in (2a) is expected to 
force these cross-products close to zero values thus only 
leaving one nonzero value of the weights wci

 . This non-
zero value of a wci

 will indicate which one of the candidate 
biological objectives is the one to be chosen for the prob-
lem, i.e., the goal is that at each time interval only one of 
the weight coefficients which has the highest impact will 
be driven to one and the rest will tend to zero. Mathemati-
cally, there may be a situation that the resulting bilinear 
optimization will give fractional values, especially in the 
case that the sum of the cross-products of the weights 
is not significant as compared to the other terms in the 
objective function of the problem. If this happens it could 
be resolved by weighing the cross-products with a higher 
scalar weight.

The fifth term in Eq. (2a) is to drive as many constraints 
as possible to non-active status, i.e., the redundant ones so 
as to identify only the necessary ones. It should be noticed 
that 1 ≤ wu

i
≤ 1 + � and 1 − � ≤ wl

i
≤ 1 and these inequali-

ties imply that the extreme values of the weights are 
wu
i
= 1 + � and the smallest wl

i
= 1 − � . Thus, the mini-

mization of the 5th term 
�∑Nm

i=1
wL
i
−
∑Nm

i=1
wU
i

�
 will drive 
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as many as possible wl
i
 to 1 − � , or for wu

i
 to 1 + � , respec-

tively, and thus, when they are active at these extreme 
values, the corresponding constraints are not necessary 
(not active) for the given noise. Hence, if one can expand 
the bounds on the consumption/production rates up to the 
limit of the noise without affecting the error J� − J� in a 
significant way, this means that the corresponding con-
straints are not necessary to explain the data. Since the 
fifth term is of the order of �Nm (the ones are cancelling 
out with each other), we must introduce the factor, ng

�Nm

,

which ultimately renders this term of the order of the 
assumed noise in the growth rate of magnitude ng.

In fact, the first and the fifth terms are introduced in the 
objective function of the optimization (Eq. 1) to achieve 
a tradeoff between the error 

(
J� − J�

)
 and the limiting 

constraints active at the solution of J� and J�.
Constraints (2b) and (2c) are the key elements for the 

development of a predictive DFBA model presented in the 
next subsection. The idea is to find for which amino acid 
constraints (2b) and (2c) become active and to eventually 
replace these constraints by their corresponding kinetics 
functions to be able to predict future concentrations. More 
details of this process has been explained in “Predictive 
DFBA model”.

The objective function in (2a) is nonlinear involving a 
bilinear term and a quadratic term, and the constraints are all 
linear. Since the bilinear term involves products of weights 
that are each bounded between 0 and 1, the term is convex. 
Thus, overall this formulation results in a nonlinear con-
vex optimization that can be solved by common optimiza-
tion solvers such as fmincon in MATLAB. Accordingly, the 
optimization search must be conducted for different initial 
guesses.

For the special case that the biological objective func-
tion is known or assumed a priori and only the active con-
straints need to be identified, the nonlinear optimization 
of Eq. (2) that results from the presence of bilinear terms 
[terms 2 and 3 in Eq. (2a)] converts into the simple quadratic 
optimization:

 subject to:

(3a)min
J�, J�,w

�,w�
(J� − J�)

Tuw
(
J� − J�

)
− cT( J� + J�) +

(
Nm∑

i=1

wL
i
−

Nm∑

i=1

wU
i

)
ng

�Nm

(3b)
d�i

dt

||||

l

wl
i
≤ Si J�Xk ≤

d�i

dt

||||

u

wu
i

This quadratic optimization can be solved, for example, 
using cplexqp (IBM CPLEX) in a MATLAB-compatible 
code. If the fluxes J� = J� at the solution of the QP then the 
quadratic term in (3a) vanishes and the solution is identical 
to the solution of an LP that corresponds to the original 
formulation of a DFBA model (Eq. 1) augmented by the sec-
ond term that represents added uncertainty to the biological 
objective as explained before in this section.

A main negative consequence of the multiplicity of solu-
tions is that, for some problems such as the B. Pertussis case 
study in this work, some of the rate constraints in Eqs. (2b) 
and (2c) become active only on isolated time intervals along 
a batch fermentation and this sporadic activation of con-
straints depends highly on the initial guesses assumed for the 
optimization. On the other hand, it should be remembered 
that one of the expected benefits of the DFBA model is to 
predict concentrations using only a few kinetic constraints so 
a small number of kinetic parameters would be needed. The 
sporadic activation of many constraints defeats this purpose 
since it would require constraining many amino acids and 
calibration of many corresponding kinetic expressions.

A way to address this situation is by limiting the solution 
space for the optimization through the imposition of upper 
bounds on consumption or production rates of metabolites. 
Sometimes, these bounds are available from the literature. 
In the case that these bounds are not available, we propose 

(3c)
d�i

dt
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≤ 1
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(3h)�
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≥ 0

to find the bounds from a modification of the optimization 
in (2a):
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 subject to:

The optimization (4a), in contrast with (2a), includes a 
sixth term in the objective function whose purpose is to 
maximize at each instance the absolute consumption/produc-
tion rate of each metabolite (defined in 4k) towards an upper 
bound Wu as defined by (4l). It can be easily verified that 
the additional term in (4a) is also of the order of the noise, 
ng since the term is normalized by the maximum allowable 
value Wu (Eq. 4l) and by the total number of metabolites 
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NSC . To constrain the solution space, it has been often pro-
posed in the FBA literature to bound all the fluxes by a value 
of the order of the largest known consumption rate of the 
limiting nutrients [17]. In this work, we have used a similar 
criterion to choose the value of Wu . In principle, this value 
can be iteratively adjusted by executing the optimization in 
(4a)–(4e) for different values of Wu until a satisfactory fitting 
between the vectors of fluxes J� and J� is obtained.

The fundamental difference between constraints (4b)–(4c) 
with respect to the constraints (4k)–(4l) is that the former 
are tight constraints of the order of the noise ( � ) in the 
metabolite consumption/production rates that are frequently 
active along a batch whereas the latter are loose rate con-
straints related to the noise ng in the biological objective 
that are only important in isolated time intervals along the 
batch. In principle, the additional term in (4a) together with 
constraints (4i)–(4l) results in time-varying values of the 
weights wsc

i
(k) for each metabolite i . For the purpose of 

limiting the solution space of a predictive model, one time-
independent upper bound is found for each metabolite i from

where k ranges from 0 to T . Selecting the maximum bound 
is justified since, for the worst case that all w��

i
= W� , the 

effect of the sixth term in (4a) is guaranteed to be no larger 
than ng , i.e., the noise in the biological objective function. 
Then, the bound wsc,max

i
 for each metabolite i is used as an 

upper bound for the rate of that metabolite in the predictive 
model that is presented in the next section.

Predictive DFBA model

The predictive DFBA model is given by
At each time instance k (k = 1,… , T)

 subject to:

(5)w
sc,max

i
= max

[
wsc
i
(k)

]
,

(6a)max
vk

cTvk,

(6b)|
|Sivk

|
| ≤

Vi, max.�k
i

Ki + �
k
i

mmol

g dw h
(i = 1, 2,… , Nm; Nm is the number ofmetabolites)
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 where S is the stoichiometric matrix and Si is the row of 
stoichiometric matrix associated with the metabolite i. Equa-
tions (6a)–(6f) are a modified version of the optimization 
(4a)–(4k) with respect to four elements:

1.	 The objective function (6a) includes only the biological 
objective (second term in 4a). This objective is based 
on the assumption that, at the optimal solution of (4a), 
the first term vanishes since, at J� ≈ J� , the third term 
becomes identical to the second term, the fourth and 
sixth terms are neglected since they are of the order of 
the noise ng , and the fifth term also vanishes since only 
one wc1

= 1 and the rest are zero.
2.	 The limiting constraints identified, as explained above, 

the upper and lower bounds in (4b) and (4c), are 
replaced by explicit functions (6b) of the corresponding 
metabolite concentrations at time k.

3.	 Constraints (4i) and (4l) are replaced by upper bound 
constraints (6d) using the values wsc,max

i
 calculated from 

(5).
4.	 Equations to predict the concentrations of metabolites 

over time (Eq. 6f) are formulated based on mass bal-
ances, that is, Eq. (6f) is time-discretized mass balances 
for all metabolites that are used to integrate the concen-
trations over time.

The optimization (6a)–(6f) is an LP that is solved 
with the CPLEX optimization software. A fundamental 
advantage of the proposed model (6a)–(6f) is that the 
parameters in the kinetic expressions corresponding to 
the limiting constraints (6b) can be separately identified 
for each metabolite. This is particularly advantageous as 
compared to previously reported algorithms where the 
parameters corresponding to all the kinetic expressions 
involved in the constraints of the DFBA problem must 
be simultaneously identified from bi-level optimization 
formulations.

The ability to identify the kinetic expression separately is 
due to the fact that, at each time instance, the solution of the 
optimization (4a) provides which constraint i is active; it is 
possible to find the corresponding values of the gradients, 
either d�i

dt

|
||

u

 or d�i

dt

|||

l

 , that are active at the constraint. Then, 

Michaelis–Menten expression

(6c)vk ≥ 0

(6d)
|
|
|
|

d�i

dt

|
|
|
|
≤ w

sc,max

i

(6e)�
k+1
i

≥ 0

(6f)�
k+1
i

= �
k
i
+ Si�kXk�T ≥ 0

 or alternative types of kinetic expressions can be found to 
correlate the bounds on the uptakes or production rates 

(
d�i

dt

)
 

of the metabolite as a function of its concentration(�i) at 
every time interval, where Vi,max, Ki are the kinetic param-
eters that should be identified. For example, if it is found that 
glucose is a limiting constraint, then a kinetic expression can 
be used to represent the relation:

Then, the two parameters VGLC,max and KGLC can be 
found from time data of glucose alone since the gradient 
of glucose on the left-hand side of Eq. (5) and the cor-
responding concentration of glucose at each time interval 
are available.

If Michaelis–Menten kinetics are assumed, graphical 
methods such as the Lineweaver–Burk are used to identify 
the parameters in the kinetic expressions (7a) or (7b) [19]. 
For other types of kinetic expressions, nonlinear regres-
sion is done using the Curve Fitting Toolbox in the MAT-
LAB environment.

Experimental and in silico data used 
in the case studies

The proposed method is applied in two case studies for two 
model microorganisms. The first study is the batch fermen-
tation of E. coli system for which a DFBA model has been 
reported by Mahadevan et al. [7]. The model was used to 
generate in silico data consisting of simulated data with 
superimposed white noise. Since the DFBA model with the 
required biological objective function and constraints was 
available a priori, this case study serves to verify whether 
our methodology is able to identify the correct objective 
function and limiting constraints.

For the second case study, we studied the fermentation 
of Bordetella pertussis (B. Pertussis) used to produce the 
antigens of the whooping cough vaccine. The metabolic net-
work for this organism involves 49 reactions. This process 
was assumed to operate initially in batch and, after depletion 
of the main nutrient, in fed-batch mode. Glutamate was the 
main nutrient for this microorganism. For this example, we 
use actual measurements of sixteen amino acids’ concentra-
tions measured by HPLC.

(7a)
d�i

dt
=

Vi,max.�i

Ki + �i

X

(7b)
dGLC

dt
=

VGLC,max × GLC

KGLC + GLC
X
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Results

Case study 1: E. coli

The DFBA model describing the diauxic growth of an E. 
coli system involves four species: glucose, acetate, oxygen, 
and the biomass in its network. All species except the bio-
mass are considered as potentially active constraints.

The model proposed by Mahadevan et al. [7] is based 
on a simplified metabolic network of four reactions involv-
ing the four aforementioned species shown in “Appendix I”. 
Mahadevan’s model assumes that the growth rate is maxi-
mized at each time interval subject to two kinetic limiting 
constraints on glucose and oxygen consumptions.

At all time instances k:

This model was simulated for a total of 10 h to simulate 
experimental conditions. Gaussian noise was added to the 
metabolite responses at a level of 5% of the total range of 
change of each metabolite during the batch. These simu-
lated values were used as in silico data to test the proposed 
identification methodology as given by Eqs. (4a)–(4e). 
The sampling interval used for discretization was 0.1 h 
and the oxygen uptake rate was OUR = 10. Initial condi-
tion for metabolites and biomass at time zero was glucose 
(10.4 mM), acetate (0.4 mM), oxygen (0.21 mM) and bio-
mass (0.001 g). Based on this level of noise, � was set equal 
to 0.1 and the upper bound in constraint (4 k), Wu , was set 
to 10 mM/h gdw. The weight uw as per Eq. (2j) was set to 
0.01. As mentioned in the methodology section, this weight 

(8)max
v

cTv

||����v
|| ≤

VGlc,max.�Glc,k

KGlc + �Glc,k

mmol

gdw h

|||
��2

v
|||
≤ OUR

mmol

gdw h

is selected large enough such as the first term in (4a) at the 
optimum is of the order of ng (estimated noise in the growth 
rate). We used interior-point algorithms with cplexqp and 
cplexlp function in CPLEX for MATLAB toolbox.

To test our methodology, we assume that either one of 
the nutrients (glucose, acetate, or oxygen) can be potentially 
limiting. In addition, we assume two possible candidate 
biological objectives for maximization: (1) growth rate as 
given by Eq. (8), i.e., c1T = [1 1 1 1] (see Eq. 4a) (2) maxi-
mal consumption rate of acetate, which is represented by 
c2

T = [39.43 0 − 1.24 − 12.12] in Eq. (4a).
The solution over time of the weights wu

i
 and wl

i
 for all 

the species is identified. These values indicate which rate 
constraints are considered at each time interval according to 
Eqs. (4b) and (4c). Following the solution of problem (4a), 
it was found that the upper bound of oxygen depletion rate 
is active from t = 0 until the end of the batch whereas the 
upper bound in glucose becomes active after t = 4.2 h and 
thereafter. These results coincide with Mahadevan’s model 
where the limiting rate constraints are glucose and oxygen 
while acetate is not limiting, thus corroborating the ability 
of the method to identify the constraints.

The weights involved in constraints (4k) and (4l) which 
are introduced to limit the solution space were found to be 
equal to their upper bound, i.e., wsc

i
= Wu , for all the four 

species and for the entire duration of the batch. The weights 
wc1

 and wc2
 that correspond to the growth rate and to the ace-

tate objectives in Eq. (4a) are 1 and 0 for the entire duration 
of the batch, thus correctly identifying the growth rate as the 
objective to be maximized. This again verifies the ability 
of the proposed approach to identify the correct biologi-
cal objective function. For the purpose of formulating the 
predictive model according to Eqs. (6a)–(6f), it is necessary 
to identify kinetic expressions of the two identified limiting 
rate constraints as a function of the corresponding metabo-
lite concentrations, i.e., the rate constraints in glucose and 
oxygen are expressed as a function of the corresponding glu-
cose and oxygen concentrations respectively. Figure 2 shows 
the consumption rate of glucose obtained at each time inter-
val as a function of the corresponding glucose concentration. 
For this plot, a Michaelis–Menten kinetic expression was 
identified using the Lineweaver–Burk graphical method. The 
resulting kinetic parameters for the glucose are as in the fol-
lowing table. It should be noted that these results are almost 
identical to the non-linear parametric estimation.

Parameter Original value Estimated value

VGlc,max 10 11.11
kGlc 0.015 0.02

The procedure identifies, in accordance with Mahadevan’s 
model used to generate the in silico data, Michaelis–Menten 

Fig. 2   Kinetic curve of glucose
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Fig. 3   Metabolite concentration 
profiles of E. coli case study red 
line is the simulated original 
model and the blue line is our 
identified model

Fig. 4   Metabolite concentra-
tion profiles of B. Pertussis case 
study resulted from the DFBA
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kinetics for the glucose consumption rate bound whereas 
a constant upper bound for the consumption of oxygen is 
identified. The numerical values of the kinetic constants are 
slightly different from Mahadevan’s model because they 
were identified by the procedure in (4a)–(4l) from simula-
tions of the original model with superimposed noise.

Figure 3 shows the comparison between the time evolu-
tions of the four species as a function of batch time obtained 
from the original model without the noise (red line) and 
the identified model (blue line). The simulated results are 
slightly different between the original and identified models 
due to the differences in the kinetic rate expressions for the 
limiting constraints that resulted from the assumed noise.

Case study 2: B. pertussis

Bordetella Pertussis is a Gram-negative, aerobic, and patho-
genic bacteria causing Pertussis or whooping cough [20]. In 
this case, our algorithm is used for systematic identification 
from experimental data of limiting constraints and a suit-
able biological objective function of a B. Pertussis fed-batch 
culture. Glutamate is the main carbon source used for the 

feeding of this culture, which is started at time 0 in batch 
operation until depletion of glutamate occurs and then fed-
batch operation is started with a constant glutamate feed rate 
of 4.3 g/h. A metabolic network involving 49 metabolites 
and 50 reactions was available from a previous study by 
Budman et al. [21]. The reactions that were considered are 
listed in “Appendix II”. HPLC measurements of 16 amino 
acids were available for a 50 h fermentation process at 8 
time instances: 0, 6, 24, 29, 31.1, 32, 34, 48.3 h. The data are 
shown by circles in Fig. 4. Due to confidentially reasons, all 
the presented data in this figure have been normalized based 
on the initial concentration of glutamate which is the main 
nutrient in this fermentation process.

A nonlinear polynomial interpolation function was 
applied to interpolate the data between the available meas-
ured values. The sampling interval used for the identification 
procedure given by equations (4a)–(4l) was 0.1 h. The level 
of noise in the HPLC measurements was estimated as 10% 
of the full range of change of each amino acid and this value 
was used to estimate the � = 0.1 used in the rate constraints 
(4b) and (4c). The upper bound Wu in constraint (4l) was set 
to 10 mM/h mM as in the previous case study. In principle, 
this value can be iteratively further adjusted as explained in 

Fig. 4   (continued)



652	 Bioprocess and Biosystems Engineering (2018) 41:641–655

1 3

“Theoretical and experimental methods”. The weight uw in 
Eq. (2j) was set to 0.01.

Two candidates were considered as possible biological 
objectives for maximization: maximization of the growth 
rate and maximization of the lactate production rate. The 
growth rate is defined by the stoichiometric relations derived 
from the reactions listed in “Appendix II”.

The identification procedure given by Eqs. (4a)–(4l) was 
applied to the data to identify the objective function and 
limiting constraints. Among constraints (4b, 4c), only one 
constraint is active for the entire duration of the batch corre-
sponding to the upper bound in the consumption rate of phe-
nylalanine. The biological reason for phenylalanine being 
the limiting active constraint might be due to the fact that 
phenylalanine is not produced by B. Pertussis and should be 
externally supplied in the medium.

A key difference between the current case study and the 
previous case study is that here only a fraction of the species 
involved in the network is measured whereas in the previ-
ous study all species were measured. Thus, the current case 
study is highly under-determined and consequently, con-
straints (4k)–(4l) that are used to limit the solution space 
become important. These constraints were found to be 
important for limiting the solution space for both consuming 
and producing species that are not being measured.

The weights wsc
i

 (constraint 4k) were identified at each 
time interval and accordingly wsc,max

i
 was calculated using 

Eq. (5).
Six of the amino acids can be produced according to the 

metabolic reactions listed in “Appendix II”: alanine, aspar-
tate, glutamate, isoleucine, arginine, and proline. However, 
it was found from the data that the concentration of these 
metabolites did not exhibit any noticeable increases in time. 
The reason is that these metabolites start to be synthesized 
only after they are completely depleted so as to further gen-
erate biomass, i.e., the production of these amino acids is 
exactly balanced by their consumption towards biomass 
especially during the fed-batch phase. In principle, an upper 
bound of 0 could have been assumed for the production rates 
but it was found that due to Euler discretization that it was 
difficult to satisfy the positivity constraint (6e) when the 
produced amino acid concentrations are very close to zero. 
For these six amino acids, having a constant upper bound 
with the value of 10−4 was necessary. The preferable objec-
tive function was found to be the growth rate. This coincides 
with the objective function that has been prevalent if previ-
ous bacterial models and also corresponds to the objective 
function used in a B. Pertussis model reported in Budman 
et al. [21].

Using the growth rate as the biological objective, it is 
possible to formulate the optimization problem as a QP 
as explained in Eq. (3a). Solving the problem as a QP 
serves to verify the nonlinear optimization used to solve 

the problem in (3a)–(3h). The cplexqp solver in MAT-
LAB was used to solve this quadratic optimization. The 
results were very similar to the results of the nonlinear 
optimization except for small differences in the values of 
the weights, wsc

i
.

To formulate a predictive model as given by Eqs. 
(6a)–(6f), a kinetic expression was sought relating the 
maximum consumption rate in phenylalanine as a func-
tion of its concentration. From the relation between the 
measured consumption rates and the corresponding con-
centrations, it was concluded that a Michaelis–Menten 
relation is not suitable. Instead, as assumed in our earlier 
work [16], a Hill-type function [22] was used to describe 
the maximal uptake rate of the phenylalanine by

The values of the parameters in this expression were 
found using the lsqcurvefit of MATLAB.

The bounds wsc,max

i
 used in constraints (6d) are 

obtained from the calculated values of the correspond-
ing wsc

i
 according to Eq. (5); their values are presented in 

“Appendix II”.
The simulated results for the 16 measured amino acids 

using Eqs. (6a–6f) using the phenylalanine expression in 
Eq. (9) and the constraints (6b) are shown in Fig. 4. The 
sum of squared errors between simulations and measured 
values is SSE = 6.25. This error is significantly lower as 
compared to our earlier model of SSE = 15.42 [21] where 
the limiting constraints in developing the DFBA model 

(9)rPhe =
0.0066 �Phe

3.2

0.0223.2 �Phe
3.2

Fig. 5   Biomass profile of B. Pertussis in fed-batch mode: red, blue, 
and green lines are model predictions with fed-batch rate of 4.3, 6, 
and 7.4 g/h; circle, ×, and pink dots mark experimental data points 
for the feed rate of 4.3, 6, and 7.4 g/h
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were based on trial and error in contrast with the system-
atic approach proposed in this work. The reason that our 
model is not able to give a perfectly prediction for some 
of the metabolites might be due to the inaccuracies in the 
stoichiometric matrix and in the calculation of biomass 
amino acids’ composition.

To test further the predictive ability of the model, no 
constraints were included for biomass. The goal was to 
test whether the model without any biomass-related con-
straints could correctly predict the biomass evolution over 
time. This test is significant since all amino acids contrib-
ute to the composition of biomass and thus predicting cor-
rectly the evolution of biomass implies also a certain level 
of fidelity in the prediction of the amino acids. Biomass 
measurements were available for two different feeding 
rates of glutamate 4.3 and 4.7 g/h .The model predictions 
of biomass for both feeding rates show very good agree-
ment between measured and predicted values (Fig. 5).

It also should be noted that the accuracy of the model 
could be increased by including more measurements in 
the identification step.

Conclusion

The formulation of a dynamic metabolic flux balance model 
requires the identification of a suitable biological objective 
function to be maximized or minimized and active limiting 
constraints. In this contribution, we propose a systematic 
approach to identify both of these attributes for developing 
DFBA models. A key advantage of the proposed approach 
is that its formulation as a one-level optimization that simul-
taneously maximizes the biological objective together with 
terms that are related to the limiting constraints on consump-
tion and production rates of amino acids. Proper weighting 
of these additional terms allows the constraint to be related 
to the relative errors incurred in measuring both amino acid 
concentrations as well as the biological objective variable. 
The use of set-based constraints ensures fitting between the 
data and the model predictions while avoiding the need for 
two-level optimization formulations. Two case studies were 
investigated. In the first case study for E. coli for which a 
priori known model was used to generate in silico data, 
the proposed approach successfully recognized the correct 
objective function and constraint of the model. In the second 
case study that involved experimental data of B. Pertussis 
fermentation, the scarcity of data and the complexity of the 
metabolic network rendered the problem underdetermined. 
Additional constraints were required to only allow realistic 
solutions. In this case, our approach systematically identified 
a single kinetic rate bound on one amino acid (phenylala-
nine) and a set of constant upper bounds on consumption and 

production rates where the latter served to limit the solution 
space.

The resulting model was able to predict the evolution of 
biomass concentration with time whereas biomass values 
were not used for model calibration.

Acknowledgements  The authors would like to thank Natural Science 
and Engineering Research Council (NSERC).

Appendix I

J1	� 39.43 Ac + 35O2 → X
J2	� 9.46Glc + 12.92O2 → X
J3	� 9.84 Glc + 12.73O2 → 1.24Ac + X
J4	� 19.23Glc → 12.12Ac + X

Appendix II

J1	� Pyruvate → PEP
J2	� Pyruvate + CoA → Acetyl-coA + CO2
J3	� Acetyl-CoA + H2O + oxaloacetate → citrate + CoA
J4	� Citrate → �-ketoglutarate + CO2
J5	� �-ketoglutarate + enz-N6 → succinyl transf. + CO2
J6	� Succinyl transf. + CoA → succinyl-CoA + enz-N6
J7	� Succinyl-CoA + phosphate → CoA + succinate
J8	� Succinate + acceptor → fumarate + reduction acceptor
J9	� Fumarate + H2O → malate
J10	� Malate → oxaloacetate
J11	� Glutamate + NH3 → phosphate + glutamine
J12	� 2 Glutamate ← glutamine + �-ketoglutarate
J13	� Glutamate + H2O → �-ketoglutarate + NH3
J14	� Proline + 2H2O → glutamate
J15	� Oxaloacetate + glutamate → aspartate + �-ketoglutarate
J16	� Aspartate + NH3 ← aspargine
J17	� PEP + HCO−

3
→ phosphate + oxaloacetate*
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J18	� Lactate → pyruvate
J19	� Acetate + CoA ← acetyl-CoA + phosphate
J20	� 2 Acetyl-CoA → CoA + acetoacetyl-CoA
J21	� Acetoacetyl-CoA → PHB
J22	� Glucose-6-phosphate + 3 glyceraldehyde-3-phos-

phate → 3 ribose-5-phosphate
J23	� Acetyl-CoA + carrier-protein → acetoacetyl-car-

rier + CoA + CO2
J24	� Threonine + 3 pyruvate + 2 glutamate + acetyl-

CoA + H2O → NH3 + 3CO2 + 2H2O + isoleucine + �
-ketoglutarate + valine + CoA + leucine

J25	� Serine + tetrahydrofolate ←→ 5,10-methylenetetrahy-
drofolate + glycine + H2O

J26	� Serine ←→ pyruvate + NH3
J27	� Threonine ←→ glycine + acetaldehyde
J28	� Aspartate → threonine + phosphate
J29	� H y d r o g e n  s u l f i d e  +  a c e t y l - C o A  +  s e r -

ine → CoA + cysteine + acetate
J30	� Glutamate + pyruvate ← �-ketoglutarate + alanine
J31	� Aspartate + pyruvate + glutamate + succynyl-CoA → phos-

phate + �-ketogultarate + succinate + lysine + CO2 + CoA
J32	� Malate → pyruvate + CO2
J33	� Amino acids → biomass
J34	� Amino acids → pertactin
J35	� PEP → glyceraldehyde 3-P + phosphate
J36	� 2GAP + H2O → glucose 6-P + phosphate
J37	� J3
J38	� Amino acids → Pertussis toxin
J39	� Amino acids → fimbria
J40	� Amino acids → FHA
J41	� Inverse of J14
J42	� Inverse of J27†
J43	� Inverse of J30
J44	� 2  G l u t a m a t e  +  a s p a r t a t e  →  f u m a r a t e  + �

-ketoglutarate + arginine
J45	� Glucose  + 6-P GAP + 2  PEP + g lu tamate  →

tyrosine + d-xylose + α-ketoglutarate
J46	� Inverse of J26
J47	� Va l i n e  +  α - k e t o g l u t a r a t e  →  g l u t a m a t e  +  4 

methyl-2-oxopentanoate
J48	� 2 pyruvate + serine + aspartate + cysteine → CoA + 3 

CO2 + glycine
J49	� Inverse of J18

Stoichiometry of purines

Adenine: pyruvate + 2 glutamine + 2 aspartate + gly-
cine → adenine + 2 glutamate + fumarate

Guanine: pyruvate + 3 glutamine + aspartate + gly-
cine → guanine + 3 glutamate + fumarate

Stoichiometry of pyrimidines

UMP (Uridylic acid): glutamine + HCO−

3
+ aspar-

tate + ribose-5-phosphate → UMP  +  CO2  +  glutamate
CMP (Cytidylic  acid):  glutamine  +HCO−

3
 þ 

aspartate  +  ribose-5-phosphate  +  NH3  →  CMP  
+  CO2 + glutamate

TMP (Thymidylic acid):  HCO−

3
 + ser ine + glu-

t amine  + a spa r t a t e  + r i bose -5 -phospha t e  → g ly-
cine + TMP + glutamate + CO2

Metabolite Value

Ala − 1.028497997
Arg − 0.023
Asp − 0.209047
Asn − 0.029
Gln 0.6234
Glu − 3.623564
Gly − 0.635784
His − 0.173987138
Ileu − 0.253078
Leu − 0.26459
Lys − 0.232495
Meth − 0.45017
Phe − 0.028945
Pro − 1.532302
Ser − 2.423
Thr − 0.02846
Try 0
Tyr − 0.00823
Val − 0.92
Cys 0
Pyr 0
AcCoA 0
GAP 0
Lac 7.125
Ammonia 6.2675
Co2 5.243
Α-Ketoglutarate 0
Biomass 200
Pertactin 0.4171
Citrate 0.50043
Succ-transferase 0
Succ CoA 0
Succinate 0
Fumarate 0
Malate 0
Oxaloacetate 0.005
Ribose 8
G6P 0.4184
PEP 0
AcAcCoA 0
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Metabolite Value

PHB 0
FFA 0.234
Pt toxin 0.33
Fimbria 0.31243
FHA 0.334125
Xylose 0
CoA 0
ATP 0
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