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Abstract 

In order to significantly expand the BEV market, and to increase the use of lithium-ion 

batteries in electric grids, there is a need to develop optimal charging strategies to utilize the 

batteries more efficiently and enable longer life. Advanced battery management systems that can 

calculate and implement such strategies in real time are expected to play a critical role for this 

purpose. This article investigates different approaches for determining model-based optimal 

charging profiles for batteries, and experimentally validates the gain obtained using such 

profiles. Optimal profiles that maximize the cycle life of the cells are implemented on 16 Ah 

NMC cells for 30 minutes of charge followed by 5C discharge, and the cycle life is compared to 

a standard 2C CC-CV charge and 5C discharge. An improvement of more than 100% in cycle 

life is observed experimentally, for our test conditions on this cell design. This study is the first 

to experimentally demonstrate that the improved extra knowledge obtained by sophisticated 

physics-based models results in significant improvements in battery performance when 

employed in a real time control algorithm. 

 

Introduction 

With the increase in global warming, societal pressure is increasing emphasis on 

renewable and clean energy. Alternative energy sources are aggressively being investigated and 

developed. Norway has become the first country to ban fuel-based cars by 2025, pushing the 

development of electric vehicles (EVs). With programs such as ARPA-E sponsored by the U.S. 
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Department of Energy and the recent announcement of a $50M grant for the Battery500 

initiative,1 the U.S. government is also encouraging the commercialization of EVs. Apart from 

the automobile industry, the economics of distributed energy resources for power generation are 

also becoming increasingly favorable. The efficient use of these systems composed of 

intermittent renewable sources, such as wind and solar energy, depends critically on the 

efficiency of energy storage technologies. Because of its high power and energy density 

compared to other battery chemistries, the lithium-ion battery is one of the front-runners for 

energy storage alternatives. With the prices of the batteries reducing each year, the market for Li-

ion batteries is bigger than ever.2 

The performance of a Li-ion battery depends on the conditions of use, along with the 

state of internal variables. Thermal runaway, capacity fade, underutilization, and loss in power 

density are some of the main concerns with Li-ion batteries. Active research is being pursued to 

mitigate these issues. Various system-level strategies are being investigated to increase the 

efficiency of the existing and emerging systems. At the system level, battery management 

systems (BMS) play a critical role in managing the battery. 

Most of the currently available BMS use empirical or lookup table-based models to 

predict the internal states of the battery.3 While computationally easy to solve, these models are 

not always accurate.4 The inaccuracy increases as the battery degrades and as it cycles. Use of 

continuum-level physics-based battery models is an alternative to empirical models. Physically 

meaningful models could be used to derive charging profiles that use the battery with higher 

efficiency. Most physics-based battery models are computationally expensive to solve, which 

limits their direct use in real time control applications. Many past efforts have proposed reduced-

order or simplified models5-7 that are only valid at low rates due to neglecting some physics that 

are significant at high rates. Several reviews of different battery models are available.8-12 

Most model-based control approaches for battery operations use empirical13,14 or single-

particle models (SPM).15,16 The energy maximization problem with constraints on voltage has 

been solved over fixed time periods,17 and the optimal charging current has been determined for 

a Li-ion battery experiencing capacity fade using the SPM.18 More recently, models with more 

detailed descriptions of physicochemical phenomena have been used to predict optimal charging 

profiles for minimizing the intercalation-induced stresses inside the particle.19 Optimal profiles 
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have been determined for storing a given amount of charge while avoiding lithium plating, using 

a combination of time-scale separation and pseudo-spectral optimization.20 Optimal current 

profiles with constraints on solid- and electrolyte-phase concentration and temperature has been 

calculated.21 The minimum-time charging problem with constraints on the voltage and 

temperature has been solved.22 A method has been proposed to minimize the cost of vehicle 

battery charging also accounting for the battery degradation with variable electricity costs using 

the single-particle model.23 

However, none of the past papers have validated optimal model-based control strategies 

in a detailed experimental study. One of the main reasons for the lack of validation is that, for the 

coin cells typically tested in university laboratories, the cycle lives are bad because of precision 

issues. For long-life cycle testing, large-format cells are needed. Large-format cells need large 

currents, which are difficult to provide in small laboratory settings. In this work, model-based 

control algorithms were derived in a university environment, and laboratory testing was 

performed at the National Renewables Energy Laboratory (NREL). This study is the first to 

experimentally demonstrate that the improved extra knowledge obtained by sophisticated 

physics-based models results in significant improvements in battery performance when 

employed in a real time control algorithm. Of course, the closed-loop performance is positively 

related to the accuracy of the model used in the control algorithm. This work employs the Pseudo 

2-Dimensional (P2D)10 model which captures spatial variations within particles and across the 

electrode, while modeling the electrochemical transport and kinetics within a cell. Using an SPM 

or lower level model would result in a reduction in the performance improvement obtained from 

model-based control. The identification of parameters for the P2D model that fits the 

experimental data is a separate research topic, and has been investigated in detail for different 

parameters in the past from various research groups,24-28 and so is not explored in this study. 

This article presents experimental results obtained using optimal control strategies 

derived using a reformulated P2D model developed earlier, for minimizing the capacity fade 

caused by Solid Electrolyte Interface (SEI) layer formation in graphite anodes. The derived 

profiles are tested at NREL on 16 Ah NMC based pouch cells. The capacity vs. cycle life data 

are compared with a baseline case of 2C CC-CV charge for 30 min/5C discharge at the same 

temperature, which shows an improvement in battery life of more than 100% for this particular 
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charge/discharge/battery chemistry. The mathematical model for the battery, model-based 

control profiles, the experimental procedures, and the results are detailed in the next sections. 

Model Description 

As mentioned earlier, the reformulated P2D model8 is used in this work. The model 

accounts for the electrochemical, transport, and thermodynamic processes in a battery to predict 

its internal states. The model and approach are general enough to be integrated with any capacity 

fade mechanism including plating side reactions and intercalation-induced particle stress 

fracture, as discussed below. 

Capacity Fade: SEI layer formation is considered as one of the important side reactions 

responsible for capacity loss of Li-ion batteries with repeated cycles. This study uses the model 

of Ramadass et al.
29 integrated with a reformulated model to predict the battery performance and 

to derive the optimal control profile. The model is based on the assumption of a continuous and 

very slow solvent diffusion followed by reduction side reaction at the surface of the anode while 

charging the cell. The loss of active material is assumed to be due to this side reaction, which is 

also responsible for the SEI layer formation, on the surface of the anode, during continuous 

cycling of the cell. SEI layer formation is assumed to occur only while charging the cell. Since 

the ratio of charging capacity remains almost equal to the discharged capacity across every cycle, 

the capacity fade or any other side reaction is neglected during discharge, as in Ramadass et al.
29 

Butler-Volmer (BV) kinetics are assumed to describe the Li-ion intercalation reaction in 

the anode, as well as the formation of SEI layer side reaction. The local volumetric charge 

transfer current density is given by 

                                                          n SEIJ J J= +                                                             (1) 

where the volumetric current density for the anodic intercalation reaction is 

                               
, ,

0, exp exp
a n c n

n n n n n

F F
J a i

RT RT

α α
η η

    
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,                               (2) 

the equilibrium exchange current density of the anodic intercalation reaction is 

                                           ( ) ( ) ( )
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the overpotential is 
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the reference Un,ref is a function of the state of charge (θ) of the electrode, the volumetric current 

density for the SEI layer side reaction is 

                                            
SEI 0,SEI SEIexp
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the SEI overpotential is 

                                            
SEI 1 2 ref,SEI filmη φ φ= − − −

n

J
U R

a
,                                          (6) 

the SEI reference Uref,SEI is assumed to be 0.4 V vs. Li/Li+, the film resistance for the first cycle 

is 

                                                    film SEI ( )= +
p

R R R t ,                                                      (7) 

and 

                                                  film( )
δ
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p

R t ,                                                                (8) 
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The film resistance for subsequent cycles is given by 

                                                  
film film 1

( )
−

= + pN N N
R R R t .                                            (10) 

The capacity lost due to the side reaction is given by 

                                                             SEI SEI

0

= −∫
ft

Q i dt                                                    (11) 

where 

 SEI SEI

0

= ∫
nL

i J dx .                                                   (12) 

Representative values for the parameter set obtained from the literature are given in the 

Appendix. Model equations for the P2D model are listed in Table 1. 

Optimal Model-based Control Formulations 
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Since the growth of the SEI layer is a function of the applied current and overpotential, 

optimal charging profiles can be developed that minimize the SEI layer growth, while ensuring 

the same capacity in a given time. Minimizing the SEI layer growth reduces the lost capacity, 

which in turn increases the cycle life. Various control strategies ranging from indirect methods to 

simultaneous discretization can be used to obtain the optimal profiles for Li-ion battery models. 

We implemented model-based optimal control to minimize the capacity fade for Li-ion batteries. 

To obtain the control profiles, a modified version of Control Vector Parameterization (CVP) was 

implemented and verified with simultaneous optimization strategies which are straightforward to 

apply for path-constrained problems. The mathematical formulation for minimizing the capacity 

fade due to SEI layer growth is 

app
SEI SEI

( )
0 0

min *
f n

t L

i t
Q A J dx dt

 
= −   

 
∫ ∫                   (13) 

2

app0  ( )  54 A/mi t≤ ≤                      (14) 

2.8 V  ( )  4.2 VV t≤ ≤                       (15) 

stored 16 Ahr≥Q       (16) 

subject to the model equations in Table 1. 

This optimal control formulation and calculation is the exactly same as one step of model 

predictive control (MPC), which is the most commonly implemented advanced process control 

method implemented in industry and has been explored for application to lithium-ion battery 

operations.20,22,30-32 In MPC, the optimal control problem is solved at multiple sampling 

instances, based on the most recent measurements (for batteries, the measurements are voltage 

and temperature). The main advantage of MPC is that the online calculations account for the 

effects of model uncertainties and disturbances on the computed optimal control profiles; the 

main disadvantage is the online computational cost. A drawback of MPC is that the online 

computations expend energy, which reduces the amount of energy from the battery available for 

the use. As such, the appropriateness of online optimal control calculations for a particular 

battery application depends on the quantity of energy incurred by online calculations compared 

to the energy and battery lifetime savings that would be incurred by the online calculations and 

the total energy used for intended purpose of the battery. For example, the extra cost of online 

optimal control calculations would not be justifiable for an implantable cardiac pacer application, 
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in which online calculations would cause the battery to drain too quickly. Motivated by such 

small battery applications, the optimal control profile in this study computed for Cycle 1 was 

repeated for later cycles, rather than recomputed. For large battery applications, the optimal 

control profiles can be updated online based on new parameter values during each cycle, or once 

after each cycle or after many cycles. 

The implemented control profile was obtained after trying to implement different profiles 

experimentally for a given cycle. We performed simultaneous discretization, conventional CVP, 

and a modified version of CVP to finally arrive at the optimal profile. Each of these approaches 

for calculating the optimal profiles is described below for the reformulated P2D model. 

1) Simultaneous Discretization: In this approach, the governing partial differential 

equations are discretized in the spatial direction to generate ordinary differential equations 

(ODEs) in time. The ODEs are further discretized in time using Euler backward discretization to 

create a system of nonlinear algebraic equations. Although only first-order accurate, Euler 

backward was chosen due to its unconditional numerical stability and ease of demonstration. In 

this approach, both the control and state variables are discretized in temporal space. During 

optimization, this set of nonlinear equations acts as constraints. The objective function to be 

minimized was then defined as QSEI(tf), with the maximum charging current as 54 A/m2, and the 

bounds on the voltage to be between 2.8 V and 4.2 V. The constraint on the total charge stored to 

be greater than 16 Ah was also implemented as defined in eq. (13)-(16) above. Note that the 

bounds on the manipulated variable (applied current in this case) and voltage of the cell were 

implemented by providing a bound on the resulting discretized variables for current and voltage 

at each discretized time point. The resulting nonlinear optimization was solved in IPOPT,33 

which is based on an interior-point algorithm implemented in the C programming language, with 

the optimized current and voltage profiles shown in Figures 1a and 1b. 

2) Control Vector Parameterization (CVP): In this approach, the total time horizon is 

divided into a finite number of time intervals. The manipulated variable (applied current) is 

assumed to be constant in each time interval, and the resulting optimization is solved for the 

discrete manipulated variables in each time interval. To explain further for this optimization, the 

total 1800 s time interval was divided into six time intervals, and the current was assumed to be 
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constant in the first four regions, until 1200 s. For example, the currents at the times 0, 300, 600, 

900, 1200 s are given by i1, i2, i3, i4, i5, respectively. The current as a function of time is given by 

1

2

app 3

4

5 4.2V

, for 0 300

, for 300 600

( ) , for 600 900

, for 900 1200

, for 1200 =

≤ ≤
 < ≤

= < ≤
 < ≤


< ≤ V

i t

i t

i t i t

i t

i t T

                                             (17) 

For the latter time period, the battery is charged with a constant current i5 until the voltage 

reaches 4.2 V, after which the battery is charged at a constant voltage of 4.2 V for a total time of 

30 minutes. For the control implementation, the optimization was solved for maximizing the 

charge stored in 1800 s, with a penalty on the capacity fade of the battery, that is, 

app

app
( )

0

max ( )
f

f

t

t
i t

Q A i t dt= ∗ ∫           (18) 

20  ( )  54 A/mappi t≤ ≤            (19) 

2.8 V  ( )  4.2 VV t≤ ≤                        (20) 

SEI SEI,max0.5≤Q Q             (21) 

subject to model equations in Table 1, where 
ft

Q is the total capacity of the battery or the amount 

of charge stored in the battery, f
t  is 30 minutes, and SEI,maxQ is the maximum capacity lost to the 

SEI layer side reaction in a single cycle, which also means the capacity fade of the battery in a 

single cycle. This value was obtained from the experimental data after repeatedly cycling the 

battery at C/2 charge/1C discharge (Case A) as explained more in the next section. 

The resulting optimization is solved using NLPSolve optimizer in Maple 14, to find the 

optimal values of i1, i2, i3, i4, i5 in the specified time intervals, with the current and voltage 

profiles shown in Figures 2a and 2b. 

3) Modified CVP: This approach is a slight variation of the above CVP. The total 1800 s 

time interval was divided again into six time intervals, but in this case, the current was assumed 

to be varying linearly in the first four regions, until 1200 s. For example, the currents at the times 

0, 300, 600, 900, 1200 s are given by i1, i2, i3, i4, i5, respectively. The current in each of the time 

regions is assumed to vary linearly, and is given by 
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       (22) 

After time t = 1200 s, the current i5 is assumed to be constant until the voltage reaches 4.2 

V. Charging is at constant voltage after that until the total time is 1800 s. The optimization 

formulation is the same as in equations 18 to 21. The optimal control problem is solved in each 

of the regions using the NLPSolve optimizer in Maple 14, to obtain the optimal values for i1, i2, 

i3, i4, and i5, with the optimal current and voltage profiles shown in Figures 3a and 3b. 

From Figures 1ab, it can be seen that finally towards the end of charge in the 

simultaneous approach, the charging profile mimics the constant potential mode. In the 

implementation of the CVP and modified CVP approaches, assuming constant potential at the 

end decreased the optimization time and the number of stages, and provided a better objective 

function value. The total number of stages was chosen as 6, because increasing the number of 

stages any further did not have significant impact on the optimal value for the cell capacity. 

Since the current is continuous, there is no jump in potential as in the previous case. 

The current and voltage profiles obtained from experiments have good agreement with 

the model predictions for the simultaneous discretization, CVP, and modified CVP approaches 

(see Figures 4 to 6). The best agreement was for the modified CVP approach. The 

implementation of the conventional CVP and the modified CVP approach requires robust solvers 

to integrate highly stiff nonlinear equations in time. In the modified CVP approach, the 

assumption of a linear current profile in each time interval results in a continuous profile that 

avoids initialization issues for DAEs,34 whereas the conventional CVP approach leads to 

discontinuities and hence have DAEs that are harder to solve. As such, the modified CVP 

approach has lower computational cost and preferred for experimental implementation. 
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Experimental Validation 

To quantify the benefits obtained from these control profiles, 16Ahr NMC pouch cells 

were cycled with the obtained charging profiles. In Case A, the cells were cycled under mild 

currents to obtain a baseline for the best-case performance of the cells. The cells were charged at 

a C/2 rate to 4.2 V, followed by a CV charge at 4.2 V until the charge current tapered off to C/10 

(1.6 A) or less and then discharged at 1C rate to 2.8 V. In another set of cycling experiments, the 

cells were charged at the 2C rate until the cutoff voltage of 4.2 V was reached followed by a CV 

charge such that the total charge time was 30 minutes, followed by a 5C discharge to 2.8 V. This 

set of experiments is referred to as Case B. A third set of cells were charged with the optimal 

control profile for the same duration as Case B (i.e., 30 minutes) and discharged under identical 

conditions (i.e., 5C currents to 2.8 V), which is referred to as Case C. All the cycling 

experiments were performed in a controlled environmental chamber at 30oC. The optimization 

was formulated using 

(1) Life estimates based on the cycling conditions from Case A. This case provides the 

values for SEI,maxQ as mentioned above. 

(2) Charge and life behavior from Case B. 

(3) The Case C objective, minimize fade while charging in 30 minutes (with SEI layer 

growth at all the points less than 50% of Case B, making sure full charge was stored). 

This number needs to be as low as possible. If only 10% is indicated, please note that 

battery might not charge at all. The idea of this approach is to store the same charge while 

keeping the fade minimal. While strictly speaking, this is a pareto-optimal problem, only 

the best possible fade minimization with guaranteed charge stored was used. 

Results and Discussion 

The profile in Figure 3a was used to charge the cells, which is referred to as “MPC” as 

discussed in the mathematical formulation. Figure 7 shows the experimentally determined 

reduction in capacity vs. number of cycles for the CC-CV case and the MPC case. While the 

battery charged with the CC-CV profile reaches end of life after around 900 cycles, the battery 

with the MPC profile cycles more than 1800 cycles before reaching end of life, which is a gain 

of more than 100% in cycle life. 
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Figures 8 to 10 compare the concentration of lithium ions in the electrolyte solution at the 

cathode-current collector interface, cathode-separator interface, and the anode-separator interface 

respectively, for the CC-CV and the optimal control cases. As the battery charges, the 

concentration varies minimally with time in any of the regions. The shape of the concentration 

profiles mimics that of the current profile in the cathode as the concentration of lithium in the 

electrolyte decreases with time (compare Figs. 8 and 9 with Fig. 3a), whereas the reverse 

happens in the anode (compare Fig. 10 with Fig. 3a). 

Figure 11 compares the battery capacity (charge stored) with time for the CC-CV and 

MPC cases. For the MPC case, more charge is stored at short times, compared to longer times 

when the battery undergoes higher fade. The CV charging phase is also shorter in the MPC case, 

compared to the CC-CV case. The final capacity in both cases is observed to be the same. 

Figure 12 and 13 compare the overpotential vs. time, at the cathode-separator and the 

separator-anode interface, for the CC-CV and MPC cases. The overpotential at the cathode-

separator interface are similar for both cases at most times, with the largest difference occurring 

between 1200 and 1400 s (Fig. 12). In contrast, the overpotential at the anode-separator interface 

are quite different for most of the time, with MPC being lower than the CC-CV case at short 

times and towards the end (Fig. 13). A lower overpotential leads to a decreased rate of the SEI-

layer side reaction at the end, which reduces the capacity fade of the battery. 

Figure 14 compares the capacity lost (QSEI) for the CC-CV and the MPC cases based on 

the profile of the first cycle. While the total capacity of the battery after charging remains same 

(Fig. 11), the capacity lost during the charging is lower at the end of the charging for MPC than 

the CC-CV case (Fig. 14). With repeated cycling, the MPC profile continues to do a better job, 

resulting in a gain as is evident in Figure 7. 

The optimal profile based on the first cycle using base parameters was impelmented until 

the battery reached its end of life. The end of life is defined as the number of cycles after which 

the battery reaches 80% of its initial capacity. This definition of end of life is consistent with 

many battery applications, including for most EV/PHEV batteries, so this definition was used to 

be consistent with an industry-prevalent standard practice. Without updating the control profile, 

we obtained in excess of 100% gain in cycle life of the cells as compared to the 2C CC-CV case 

(Fig. 7). As the parameters of the battery change with aging, updating the model parameters or 
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model with use would likely produce an even higher benefit. The relative improvement would be 

a function of the materials and chemistry of the battery, along with the temperature and the 

charging/discharging conditions in which the battery is used. Whether this benefit would be 

worth the extra energy costs of online optimal control calculations would depend on the specifics 

of the application, as discussed in the section on Optimal Model-based Control Formulations. 

Conclusions 

This article presents strategies for determining optimal charging profiles for lithium-ion 

batteries, to maximize their cycle life, while storing a given amount of charge in 30 minutes. 

Although not the main focus of this article, the modified-CVP approach implemented with the 

reformulated battery model is not computationally prohibitive, and could be used in real-time 

control. The optimal profile calculated for the first cycle of use was implemented on 16 Ah NMC 

cells at NREL. The optimal charging profiles were compared to the standard CC-CV charging 

method used for Li-ion batteries, with the CC charge rate of 2C. A gain of more than 100% in 

cycle life was observed using the predicted optimal charging profile. 

Future work involves the development of an advanced self-learning battery management 

system (BMS), which would implement the standard MPC charging on a Li-ion battery of 

unknown chemistry. In this BMS, the parameters will be calculated and updated on the fly, in 

real time, based on the error in the voltage-time measurement. The optimal charging profiles will 

be calculated and updated every few cycles to maximize the capacity or cycle life based on the 

application the battery is being used in. The gain in life or capacity will be quantified after 

experimental validation at NREL. In our opinion, such a BMS has a potential to be a game-

changer in the industry, and could help in faster adoption of Li-ion battery technology. 
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Table 1: Equations for P2D thermal model 
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Table 2: Additional equations 
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Table 3: List of parameters 

Symbol Parameter 
Positive 

Electrode 
Separator 

Negative 

Electrode 
Units 

iσ  Solid-phase 

conductivity 
100  100 S/m 

,f iε  
Filler fraction 0.025  0.0326  

iε  Porosity 0.385 0.724 0.485  

Brugg Bruggman coefficient  4   

D  Electrolyte diffusivity 
107.5 10−×  107.5 10−×  107.5 10−×  m

2
/s 

s

iD  
Solid-phase diffusivity 

141.0 10−×   143.9 10−×  m
2
/s 

ik  Reaction rate constant 
112.334 10−×   

115.031 10−×
 

mol/(s 

m
2
)/(mol/m

3
)

1+αa,i 

,max

s

ic  Maximum solid-phase 

concentration 
51554  30555 mol/m

3
 

,0

s

ic Initial solid-phase 

concentration 
25751  26128 mol/m

3
 

0c Initial electrolyte 

concentration 
 1000  mol/m

3
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,p iR
Particle radius 2.0×10

-6 
 2.0×10

-6
 M 

ai 
Particle surface area to 

volume 
885000  723600 m

2
/m

3 

il Region thickness 80×10
-6 

25×10
-6

 88×10
-6

 M 

t+ Transference number  0.364   

F Faraday’s constant  96487  C/mol 

R Gas constant  8.314  J/(mol K) 

refT Temperature  298.15  K 

ρ Density 2500 1100 2500 kg/m
3 

CP Specific heat 700 700 700 J/(kg K) 

Λ Thermal conductivity 2.1 0.16 1.7 J/(m K) 

s
i

a

D
E  

Activation energy for 

temperature-

dependent solid-phase 

diffusion 

5000  5000 J/mol 

i

a

k
E  

Activation energy for 

temperature-

dependent reaction 

constant 

5000  5000 J/mol 
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Figure 1: (a) Current vs. time and (b) voltage vs. time profiles computed for the simultaneous 

discretization approach. 

Figure 2: (a) Current vs. time and (b) voltage vs. time profiles computed for the CVP 

approach. 
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Figure 3: (a) Current vs. time and (b) voltage vs. time profiles computed for the modified CVP approach. 

Figure 4: Comparison of experimental and predicted (a) current vs. time and (b) voltage vs. 

time profiles obtained using simultaneous discretization. 
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Figure 5: Comparison of experimental and predicted (a) current vs. time and (b) voltage vs. 

time profiles for CVP approach. 

Figure 6: Comparison of experimental and predicted (a) current vs. time and (b) voltage vs. time profiles 

for the modified CVP approach. 
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Figure 8: Lithium-ion concentration at the cathode-current collector interface. 

Figure 7: Capacity vs. number of cycles for 2C CC-CV and the MPC profiles, 
where “MPC” refers to the optimal charging profile obtained by the modified 

CVP approach. 
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Figure 9: Lithium-ion concentration at the cathode-separator interface. 

Figure 10: Lithium-ion concentration at the anode-separator interface. 
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Figure 11: Capacity of the battery vs. time for the CC-CV and MPC profiles. 

Figure 12: Overpotential at the cathode-separator interface 

for the CC-CV and MPC profiles. 

ECS Transactions, 75 (23) 51-75 (2017)

72
) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.101.16.180Downloaded on 2017-10-10 to IP 

http://ecsdl.org/site/terms_use


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 13: Overpotential at the anode-separator interface 

for the CC-CV and MPC profiles. 

Figure 14: Capacity fade of the battery vs time for the first cycle 

for the CC-CV and MPC profiles. 

ECS Transactions, 75 (23) 51-75 (2017)

73
) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.101.16.180Downloaded on 2017-10-10 to IP 

http://ecsdl.org/site/terms_use


References 

1. http://energy.gov/technologytransitions/articles/battery500-consortium-spark-ev-innovations-pacific-
northwest-national, Battery500 Consortium to Spark EV Innovations: Pacific Northwest National 
Laboratory-led, 5-year $50M Effory SEEKS to Almost Triple Energy Stored in Electric Car Batteries, in 
Department of Energy, US Website (2016). 
2. E. Wesoff, How Soon Can Tesla Get Battery Cell Costs Below $100 per Kilowatt-Hour?, in 
http://www.greentechmedia.com/articles/read/How-Soon-Can-Tesla-Get-Battery-Cell-Cost-Below-100-
per-Kilowatt-Hour (2016). 
3. A. Bizeray, S.R. Duncan and D.A. Howey, Advanced battery management systems using fast 
electrochemical modelling, in Proceedings of IET Hybrid and Electric Vehicles Conference 2013 (HEVC 

2013),  London, UK (2013). 
4. G. L. Plett, Battery management systems, Volume I: Battery modeling, Artech House Publishers (2015). 
5. V. Ramadesigan, V. Boovaragavan, J.C. Pirkle Jr., and V.R. Subramanian, Journal of the 

Electrochemical Society, 157, A854 (2010). 
6. V. R. Subramanian, V. Ramadesigan, and M. Arabandi, Journal of the Electrochemical Society, 156, 
A260 (2009). 
7. V. R. Subramanian, V.D. Diwakar, and D. Tapriyal, Journal of the Electrochemical Society, 152, 
A2002 (2005). 
8. P. W. C. Northrop, V. Ramadesigan, S. De, and V.R. Subramanian, Journal of the Electrochemical 

Society, 158, A1461 (2011). 
9. P. W. C. Northrop, M. Pathak, D. Rife, S. De, S. Santhanagopalan, and V.R. Subramanian, Journal of 

the Electrochemical Society, 162, A940 (2016). 
10. M. Doyle, T.F. Fuller, and J. Newman, Journal of the Electrochemical Society, 140, 1526 (1993). 
11. G. Ning, R.E. White and B.N. Popov, Electrochimica Acta, 51, 2012 (2006). 
12. V. Ramadesigan, P.W.C. Northrop, S. De, S. Santhanagopalan, R.D. Braatz, and V.R. Subramanian, 
Journal of the Electrochemical Society, 159, R31 (2012). 
13. H. Rahimi-Eichi, and Mo-Yuen C., in Proceedings of the IECON 2012 - 38th Annual Conference on 

IEEE Industrial Electronics Society, Montreal, Quebec, Canada (2012). 
14. R. C. Kroeze, and P.T. Krein, in Proceedings of the Power Electronics Specialists Conference 

(PESC),IEEE (2008). 
15. D. Zhang, B.N. Popov and R.E. White, Journal of the Electrochemical Society, 147, 831 (2000). 
16. S. Santhanagopalan, Q. Guo, P. Ramadass and R.E. White, Journal of Power Sources, 156, 620 
(2006). 
17. R. N. Methekar, V. Ramadesigan, R.D. Braatz, and V.R. Subramanian, ECS Transctions, 25, 139 
(2010). 
18. S. K. Rahimian, S.C. Rayman and R.E. White, Journal of the Electrochemical Society, 157, A1302 
(2010). 
19. B. Suthar, P.W.C. Northrop, R.D. Braatz,and V.R. Subramanian Journal of the Electrochemical 

Society, 161, F3144 (2014). 
20. J. Liu, G. Li and H.K. Fathy, Journal of Dynamic Systems, Measurement and Control, 138, 021009 
(2016). 
21. H. E. Perez, X. Hu and S.J. Moura, Proceedings of the American Control Conference (ACC), 4000 
(2016). 
22. R. Klein, N.A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, in Proceedings of 

the American Control Conference (ACC), San Francisco, CA, USA, 382 (2011). 
23. A. Hoke, A. Brissette, K. Smith, A. Pratt, and D. Maksimovic, IEEE Journal of Emerging and 

Selected Topics in Power Electronics, 2, 691 (2014). 
24. V. Ramadesigan, K. Chen, N.A. Burns, V. Boovaragavan, R.D. Braatz, and V.R. Subramanian, 
Journal of the Electrochemical Society, 158, A1048 (2011). 

ECS Transactions, 75 (23) 51-75 (2017)

74
) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.101.16.180Downloaded on 2017-10-10 to IP 

http://energy.gov/technologytransitions/articles/battery500-consortium-spark-ev-innovations-pacific-northwest-national
http://energy.gov/technologytransitions/articles/battery500-consortium-spark-ev-innovations-pacific-northwest-national
http://www.greentechmedia.com/articles/read/How-Soon-Can-Tesla-Get-Battery-Cell-Cost-Below-100-per-Kilowatt-Hour
http://www.greentechmedia.com/articles/read/How-Soon-Can-Tesla-Get-Battery-Cell-Cost-Below-100-per-Kilowatt-Hour
http://ecsdl.org/site/terms_use


25. K. B. Hatzell, A. Sharma, and H.K. Fathy, in Proceedings of the American Control Conference 

(ACC), Montreal, Canada, 584 (2012). 
26. J. C. Forman, S.J. Moura, J.L. Stein, and H.K. Fathy, Journal of Power Sources, 210, 263 (2012). 
27. S. Santhanagopalan, Q. Guo, and R.E. White, Journal of the Electrochemical Society, 154, A198 
(2007). 
28. D. D. Speltino C., G. Fiengo, and A. Stefanopoulou, in Proceedings of the European Control 

Conference, Budapest (2009). 
29. P. Ramadass, B. Haran, P. M. Gomadam, R. White and B. N. Popov, Journal of the Electrochemical 

Society, 151, A196 (2004). 
30. M. Torchio, L. Magni, R.D. Braatz, and D.M. Raimondo, in Proceedings of the 11th IFAC Symposium 

on Dynamics and Control of Process Systems, including Biosystems, Trondheim, Norway, 827 (2016). 
31. M. Torchio, N.A. Wolff, D.M. Raimondo, L. Magni, U. Krewer, R.B. Gopaluni, J.A. Paulson, and 
R.D. Braatz, in Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 4536 (2015). 
32. B. Suthar, V. Ramadesigan, P.W.C. Northrop, B. Gopaluni, S. Santhanagopalan, R.D. Braatz, and 
V.R. Subramanian, in Proceedings of the American Control Conference (ACC), Seattle, WA, USA, 5350 
(2013). 
33. A. Wachter, and L.T. Biegler, Mathematical Programming, 106, 25 (2006). 
34. M. T. Lawder, V. Ramadesigan, B. Suthar, and V.R. Subramanian, Computers and Chemical 

Engineering, 82, 283 (2015). 

 

 

ECS Transactions, 75 (23) 51-75 (2017)

75
) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 18.101.16.180Downloaded on 2017-10-10 to IP 

http://ecsdl.org/site/terms_use

