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ABSTRACT
This article investigatesmodel predictive control (MPC) of linear systems subject to arbitrary (possibly
unbounded) stochastic disturbances. An MPC approach is presented to account for hard input con-
straints and joint state chance constraints in the presence of unbounded additive disturbances. The
Cantelli–Chebyshev inequality is used in combination with risk allocation to obtain computationally
tractable but accurate surrogates for the joint state chance constraints when only themean and vari-
ance of the arbitrary disturbance distributions are known. An algorithm is presented for determining
the optimal feedback gain and optimal risk allocation by iteratively solving a series of convex pro-
grams. The proposed stochastic MPC approach is demonstrated on a continuous acetone–butanol–
ethanol fermentation process, which is used in the production of biofuels.

1. Introduction

Recent years have witnessed significant developments
in the area of robust model predictive control (MPC)
with the aim to devise optimal control approaches
that enable systematic handling of system uncertainties
(Mayne, 2014). In general, robust MPC approaches con-
sider bounded, deterministic descriptions of uncertain-
ties. The deterministic approaches to robust MPC com-
monly use a min–max optimal control formulation in
which the control policy is designed with respect to the
worst-case performance and system constraints are satis-
fied for all possible uncertainty realisations (Bemporad &
Morari, 1999). These approaches can lead to overly con-
servative or possibly infeasible control designs.

In practice, system uncertainties are often considered
to be of stochastic nature. When a stochastic description
of uncertainties is available, a natural approach to robust
MPC involves explicitly accounting for the likelihood of
occurrence of these uncertainties in designing the robust
control policy. This consideration has led to the emer-
gence of stochastic MPC (SMPC). A core component of
SMPC is (state) chance constraints that allow for con-
straint satisfaction in a probabilistic sense. Chance con-
straints enable SMPC to trade off robustness to uncer-
tainties (in terms of constraint satisfaction) with control
performance in a systematicmanner, possibly resulting in
less conservative control performance.

A recent review on different SMPC approaches
and their applications is given in Mesbah (2016).
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Stochastic tube approaches to SMPC (e.g. Kouvaritakis
& Cannon, 2015) use probabilistic tubes with fixed or
variable cross sections to replace chance constraints
with linear constraints on the nominal state predictions
as well as to construct terminal sets for guaranteeing
recursive feasibility. These approaches use a prestabil-
ising feedback controller to ensure closed-loop stabil-
ity. However, stochastic tube approaches cannot handle
hard input constraints as the prestabilising state feed-
back controller is determined offline. SMPC approaches
based on an affine parametrisation of the feedback con-
trol law have been extensively investigated (e.g. Hokayem,
Cinquemani, Chatterjee, Ramponi, & Lygeros, 2012;
Oldewurtel, Jones, & Morari, 2008; Paulson, Streif, &
Mesbah, 2015). Such control law parametrisations allow
for obtaining convex SMPC algorithms while solving the
stochastic optimal control problem over the feedback
gains as well as the open-loop control actions. The notion
of the affine disturbance parametrisation of the feed-
back control laws originates from the fact that the distur-
bance realisations can be reconstructed from state mea-
surements that will be available to the controller in the
future (Goulart, Kerrigan, & Maciejowski, 2006). There-
fore, the controller can use this information when deter-
mining the future control inputs over the horizon. A key
challenge in using such parametrisations, however, arises
from handling hard input constraints in the presence of
unbounded stochastic uncertainties (e.g. Gaussian noise),
as unbounded uncertainties almost surely lead to excur-
sions of states from any bounded set. To address this
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challenge, the inclusion of saturation functions into
the affine feedback control policy has been proposed
(Hokayem et al., 2012). Saturation functions render the
feedback control policy nonlinear to enable direct han-
dling of hard input constraints without relaxing the hard
input constraints to probabilistic input constraints.

Extensivework has also been reported on SMPCmeth-
ods that use the so-called sample-based approaches (also
known as scenario-based approaches). These algorithms
represent the stochastic system using a finite set of real-
isations of the uncertainties sampled from the contin-
uous distribution, which are used to solve the opti-
mal control problem in one shot (e.g. Blackmore, Ono,
Bektassov, & Williams, 2010; Calafiore and Fagiano,
2013). This class of SMPC approaches typically does not
rely on any convexity requirements; however, establish-
ing the recursive feasibility and closed-loop stability of
these algorithms is generally challenging, particularly for
the case of unbounded uncertainties.

This paper considers the MPC problem for stochas-
tic linear systems with arbitrary (possibly unbounded)
disturbances. An SMPC approach is presented that han-
dles both joint state chance constraints and hard input
constraints with feedback accounted for in the predic-
tions. The key contribution of this work lies in using
risk allocation (Ma, Vichik, & Borrelli, 2012; Vitus &
Tomlin, 2011) in combination with the Cantelli–
Chebyshev inequality (Marshall & Olkin, 1979) to obtain
computationally tractable surrogates for the joint state
chance constraints when only the first two moments of
an arbitrary disturbance distribution are known (i.e. the
full distribution is unknown). An algorithm is presented
for solving the SMPC problem to determine the optimal
feedback gain and optimal risk allocation iteratively. The
problem setup is similar to that in Hokayem et al. (2012)
and Farina, Giulioni, Magni, and Scattolini (2015). In
contrast to Hokayem et al. (2012), the proposed SMPC
approach accounts for both hard input constraints
and state chance constraints. What distinguishes this
work from Farina et al. (2015) is the direct handling
of hard input constraints without relaxation as well as
the convexity of the optimisation program. The pro-
posed SMPC approach is demonstrated on a continuous
acetone–butanol–ethanol (ABE) fermentation process
(Haus et al., 2011), which is used in the production of
high value-added drop-in biofuels from lignocellulosic
biomass. The performance of the proposed approach
is evaluated with respect to that of a certainty equiva-
lence MPC algorithm and an MPC algorithm with fixed
uniform risk allocation.

Notation:Hereafter,R andN = {1, 2, . . .} are the sets
of real and natural numbers, respectively; N0 = N ∪ {0}.
S
n
+ and S

n
++ are the sets of positive semidefinite and

definite matrices, respectively. IN denotes the N by N
identity matrix and 1N denotes a column vector of ones
of length N. tr(·) denotes the trace of a square matrix.
‖·‖p denotes the standard p-norms. � denotes the Kro-
necker product. For given random vectors X and Y,
E[X] denotes the expected value, σ [X,Y ] = E[(X −
E[X])(Y − E[Y ])�] denotes the cross covariancematrix,
and�[X]= σ [X,X] denotes the covariancematrix. P(A)

denotes the probability of event A.

2. Problem statement

Consider a discrete-time stochastic linear system

x+ = Ax + Bu + Gw, (1)

where x ∈ R
n, u ∈ R

m, andw ∈ R
p are the system states,

inputs, and disturbances at the current time, respectively;
x+ denotes the system states at the next time; and A, B,
and G are the known system matrices. It is assumed that
the states x are observed exactly at all times, and the dis-
turbances are mutually independent such that system (1)
is a Markov process. The disturbances w can have an
arbitrary (unbounded) distribution that is unknown to
the controller; themeanE[w] and covariance�[w] ∈ S

p
+

are, however, assumed to be known.
LetN ∈ N denote the prediction horizon of the predic-

tive control problem. The states, inputs, and disturbances
over the prediction horizon are defined, respectively, by

x = [x�
0 , x�

1 , . . . , x�
N ]�

u = [u�
0 , u�

1 . . . , u�
N−1]�

w = [w�
0 , w�

1 , . . . , w�
N−1]�,

where xk = Axk − 1 + Buk − 1 + Gwk − 1 is the predicted
states k steps ahead from the known current states x0 = x;
anduk andwk are the inputs and disturbances k time steps
into the future, respectively. Using this compact notation,
the system model is written as

x = Ax0 + Bu + DGw, (2)

where the matrices A, B, D, and G can be straight-
forwardly derived, e.g. see Hokayem, Chatterjee, and
Lygeros (2009) for details on the explicit construction of
these matrices.

The control inputs are assumed to be constrained to a
convex feasible region FU described by a finite set of NU
linear inequalities

FU = {u | Hu ≤ h} , (3)
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where H ∈ R
NU×Nm and h ∈ R

NU . The system states are
also restricted to lie in a convex region FX, which is
defined by a collection of NX linear inequality con-
straints

FX =
NX⋂
i=1

{
x | a�

i x ≤ bi
}
, (4)

with ai ∈ R
(N+1)n and bi ∈ R. For linear systems, the cost

function is typically chosen to be quadratic, i.e.

VN (x0, u,w) = x�Qx + u�Ru, (5)

where Q ∈ S
(N+1)n
+ and R ∈ S

Nm
++ are specified weight

matrices. As the distribution of the disturbances is
unknown and could be unbounded, it cannot be guar-
anteed that there always exists a control action such that
hard state constraints x ∈ FX are satisfied. Therefore, x ∈
FX is replaced with a joint state chance constraint of the
form

P(x �∈ FX ) ≤ δ, (6)

where δ � (0, 1) is themaximumprobability of constraint
violation. The SMPC problem is now stated as

SMPC Problem (P1)
min
u

E[VN (x, u,w)]
subject to: x = Ax0 + Bu + DGw

u ∈ FU , P(x �∈ FX ) ≤ δ, x0 = x

Problem P1 is solved online, given the most recently
observed states x. Let u�(x) be the optimal feedback con-
trol policy that solves P1 as a function of the initial states.
The receding-horizon implementation of P1 indicates
that only the first element of this policy, u�

0, is applied
to system (1 ). Note that VN (x0, u,w) is a random vari-
able with an unknown distribution (as it is a function of
w). Here, the expected value of the value function is opti-
mised to obtain a convex program.

There are two main difficulties that prevent the direct
solution of P1. First, the control input u should be a causal
feedback policy that is some function of the current and
past states. In general, solving P1 over arbitrary functions
of states is impractical using available optimal control
approaches. Second, the distribution of the disturbances
is unknown and possibly unbounded, which makes han-
dling the hard input constraints and joint state chance
constraints challenging.

To address these challenges, a certain class of causal
feedback policies is adopted to define the control

policy u. The adopted feedback policy allows for build-
ing feedback into the prediction to reduce uncertainty
in the state predictions as well as directly handling the
input constraints in the face of unbounded disturbances.
In addition, the joint state chance constraints are approx-
imated for arbitrary disturbance distributions using dis-
tributionally robust bounds that are only a function of
the mean and variance of the stochastic disturbance (i.e.
bounds do not depend on the full distribution of the dis-
turbance, which is usually not known in practical appli-
cations).

3. Feedback parametrisation

A natural approach to obtaining a computationally
tractable surrogate for P1 is to adopt an affine state feed-
back parametrisation for the control policy u. Affine state
feedback is in fact the solution to the linear-quadratic-
Gaussian (LQG) problem, which minimises (5) in the
absence of the input and state constraints. Solving P1 over
an affine state feedback control policy, however, results in
a nonconvex optimisation due to the product of the gains
over time. An alternative parametrisation is an affine
function of the sequence of past disturbances (Goulart
et al., 2006)

ui =
i−1∑
j=0

Mi, jGw j + vi, ∀i = 0, . . . ,N − 1, (7)

where Mi, j ∈ R
m×n and vi ∈ R

m. This parametrisation
yields convex optimisations, and is shown to be equiva-
lent to the class of feedback control policies that are affine
in the states (Goulart et al., 2006, Theorem 9). Using (7),
the control policy u can be written as

u = MGw + v, (8)

where the block lower triangular matrix M ∈ R
mN×nN

and stacked vector v ∈ R
mN are given by

M =

⎡
⎢⎢⎢⎣

0 · · · · · · 0
M1,0 0 · · · 0
...

. . . . . .
...

MN−1,0 · · · MN−1,N−2 0

⎤
⎥⎥⎥⎦, (9)

v = (v0, v1, . . . , vN−1). (10)

The pair (M, v) then comprises the decision variables in
P1.

A key challenge in using the feedback control pol-
icy (8) arises from guaranteeing the hard input con-
straints (3) in the presence of unbounded disturbances.
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SMPC algorithms commonly overcome this difficulty
by relaxing the hard input constraints to expectation-
type constraints (Primbs & Hwang Sung, 2009) or prob-
abilistic/chance constraints (Farina et al., 2015). These
approaches, however, suffer from the fact that the com-
puted inputs may not be feasible in practice, which will
cause the inputs to saturate unknowingly to the controller.
In this work, a saturated disturbance affine parametrisa-
tion of the form (Hokayem et al., 2009)

u = MGϕ(w) + v, (11)

is used, where, for any vector z = [z1,… , zn]�, ϕ(z) =
[ϕ(z1), . . . , ϕ(zn)]� with ϕ : R → R denoting any func-
tion with the property supa∈R |ϕ(a)| ≤ ϕmax for some
ϕmax > 0. The functions ϕ(·) are known as saturation
functions (Hokayem et al., 2009). This definition implies
that ‖ϕ(w)‖∞ ≤ ϕmax, which can bewritten as a polytope
of the form

FW = {w | Sw ≤ s} ,

with S ∈ R
NW×Np and s ∈ R

NW , and allows the hard input
constraints u ∈ FU to be rewritten as

Hv + max
ϕ(w)∈FW

(HMGϕ(w)) ≤ h, (12)

where the maximisation is row-wise (i.e. maximum of
each element in the vector). The following lemma, which
is inspired by the work of Ben-Tal and Goryashko (2004)
and Goulart et al. (2006), indicates that (12) can be
defined by a set of linear inequalities.

Lemma 3.1 (Robust linear constraints with polytopic
disturbance sets): The input constraint (12) is represented
exactly by linear inequalities Hv + Z�s ≤ h and Z ≥ 0
(element-wise) for any Z satisfying Z�S = HMG.

Proof: The proof follows from the concept of the dual
norm as shown in, e.g. Bertsimas and Sim (2006). Let the
ith row of the maximisation in (12) be the primal linear
program. The corresponding dual linear program is

min s�zi, subject to: S�zi = (HMG)�(i), zi ≥ 0,

where (HMG)(i) denotes the ith row of HMG and zi ∈
R

NW denotes the dual variables. By the strong duality the-
orem, it is known that

max
ϕ(w)∈FW

(HMG)(i)ϕ(w) ≤ s�zi

holds for any zi satisfying the dual linear program con-
straints. Stacking the dual variables into a matrix Z �

[z1, . . . , zNU ] yields the inequality

max
ϕ(w)∈FW

(HMGϕ(w)) ≤ Z�s

for any Z ≥ 0 satisfying Z�S = HMG. Hence, the asser-
tion of the lemma directly follows. �

Remark 3.1: The saturation functions ϕ can be chosen
in any way that ensures |ϕ(z)|� ϕmax for all z ∈ R. Com-
mon examples include sigmoid functions such as z

1+|z| ,
tanh(z), and z√

1+z2
as well as the standard saturation func-

tion sat(z)�sign(z)min {|z|, 1}. An interesting route for
future research could involve developing amethod (based
on theory or heuristics) for choosing ϕ based on the sys-
tem characteristics. In addition, exploring the tradeoff
between control performance and optimisation cost for
different saturation functions ϕ may be of interest.

Remark 3.2: The value of ϕmax is selected offline, and
can be chosen as any value greater than zero. The larger
the value of ϕmax, the closer the saturated control law (11)
is to the unsaturated control law (8); however, the size of
the saturated disturbance set FW will become larger. In
other words, there is a tradeoff between selecting a large
ϕmax to mimic (8) and selecting a small ϕmax to reduce
the uncertainty in predicted satisfaction of the input con-
straints. A rule-of-thumb is to select ϕmax to cover two or
three standard deviations of the disturbances away from
the mean.

4. Joint state chance constraints

It is generally impractical to ensure that the system
states lie in the feasible region x ∈ FX when the distur-
bances w are unbounded. Hence, the hard state con-
straints (4) must be replaced with the joint chance con-
straint (6) in P1. However, joint chance constraints are
generally intractable and nonconvex (Ben-Tal, El Ghaoui,
& Nemirovski, 2009; Bertsimas, Brown, & Caramanis,
2011). This is because evaluating joint chance constraints
requires solving amultivariate integrate over a knowndis-
tribution of the uncertainty.

To obtain a tractable deterministic surrogate for (6),
this work uses Boole’s inequality to bound the probability
of violation of the joint chance constraint

P(x �∈ FX ) = P

(
x ∈ ⋃NX

i=1
{
x | a�

i x > bi
})

(13)

≤ ∑NX
i=1 P(a�

i x > bi).

This expression implies that the joint chance constraint
(6) can be replaced withNX individual chance constraints
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of the form

P(a�
i x > bi) ≤ εi, i = 1, . . . ,NX , (14)

where ϵi � [0, δ] denotes the violation probability for the
ith individual chance constraint. When the so-called risk
allocation ϵi is chosen such that

∑NX
i=1 εi ≤ δ,

is satisfied, then the joint chance constraint (6) will be sat-
isfied according to (13). Two main approaches exist for
defining the risk allocation. The first assumes a fixed risk
allocation in which the values of ϵi are fixed a priori, usu-
ally using a uniform allocation ϵi = δ/NX (Nemirovski
& Shapiro, 2006). Although this approach simplifies the
optimisation problem, it may lead to significant conser-
vatism in many situations as the prespecified risk may
be better allocated to near-active constraints. To address
this shortcoming, the second approach optimises the risk
allocation by treating ϵi as decision variables in the opti-
misation (Blackmore & Ono, 2009).

The knowledge of the cumulative distribution func-
tion (cdf) of the disturbances w is required to exactly
evaluate the individual chance constraints (14). Once
this knowledge is available, the cdf of x can be straight-
forwardly determined using the linear relationship (2).
Then, the probability of violating an individual chance
constraint is given by

P(a�
i x > bi) = 1 − cdfa�

i x(bi).

This expression is, however, difficult to evaluate for gen-
eral disturbances as their cdfs do not necessarily have a
convex form. More importantly, the distribution of dis-
turbances is not known in many practical applications.
Hence, the Cantelli–Chebyshev inequality is used in this
work to evaluate the individual chance constraints (14)
for arbitrary distributions of disturbanceswhen only their
first two moments are known.

Lemma 4.1 (Cantelli–Chebyshev inequality (Marshall
& Olkin, 1979)): Let Z be a scalar random variable with
finite variance. For every c � 0, it holds that

P(Z ≥ E[Z] + c) ≤ �[Z]
�[Z] + c2

.

To apply the result of Lemma 4.1 to (14), it is assumed
that some �bi � 0 exists such that

a�
i E[x] + �bi ≤ bi. (15)

The goal is to derive a lower bound on �bi. Notice that

P(a�
i x > bi) ≤ P(a�

i x ≥ a�
i E[x] + �bi),

≤ a�
i �[x]ai

a�
i �[x]ai+�b2i

.

When this upper bound is less than or equal to ϵi, then the
individual chance constraint (14) must be satisfied. This
inequality implies that

√
1 − εi

εi

√
a�
i �[x]ai ≤ �bi. (16)

Combining (15)with (16), the individual chance constraint
(14) can be (conservatively) approximated by the determin-
istic constraint

a�
i E[x] +

√
1 − εi

εi

√
a�
i �[x]ai ≤ bi, (17)

which is guaranteed to hold for any distribution of the states
x. This result has been derived previously in Calafiore and
El Ghaoui (2006, Theorem 3.1). The key contribution of
this work is to combine this result with optimal risk alloca-
tion to substantially reduce the conservatism of (17). In the
next section, we present anMPC formulation that incorpo-
rates these robust constraints while also including feedback
in the predictions so that the controller can more effectively
shape the state variance.

5. SMPC algorithm

This section uses the saturated affine disturbance
parametrisation of the control inputs in conjunction
with the risk allocation method for bounding the joint
state chance constraint to obtain a tractable formulation
for the SMPC problem P1. To this end, explicit expres-
sions are first derived for the mean and covariance of the
states. Using the systemmodel (2), the dynamics forE[x]
and �[x] are described by

E[x] = Ax0 + BE[u] + DGE[w], (18a)

�[x] = B�[u]B� + DG�[w]G�D� + Bσ [u,w]G�D�

+ DGσ [u,w]�B�, (18b)

where E[w] = 1N ⊗ E[w] and �[w] = IN ⊗ �[w]
are assumed to be known. The statistics of the control
inputs u are derived from (11) as

E[u] = MGE[ϕ(w)] + v, (19a)

�[u] = MG�[ϕ(w)]G�M�, (19b)
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σ [u,w] = MGσ [ϕ(w),w]. (19c)

For any chosen saturation function ϕ(·), the statistics
E[ϕ(w)], �[ϕ(w)], and σ [ϕ(w),w] can be straightfor-
wardly computed by applying the saturation function to
the data used to estimate the mean and covariance of the
disturbances w. The mean and variance equations (18)
and (19) are used to recast P1 to the following program.

Deterministic surrogate for SMPC problem (P2)
min
M,v,ε

E[x]�QE[x] + E[u]�RE[u] + tr(Q�[x]) + tr(R�[u])

subject to: (E[x], �[x]) given by (18) (P2.1)
(E[u], �[u], σ [u,w]) given by (19) (P2.2)
M satisfies (9) (P2.3)
(M, v) satisfy Lemma 3.1 (P2.4)
βi = √

(1 − εi)/εi (P2.5)

νi =
√
a�
i �[x]ai (P2.6)

a�
i E[x] + βiνi ≤ bi (P2.7)

εi ≥ 0 (P2.8)∑NX
i=1 εi ≤ δ (P2.9)

x0 = x (P2.10)
∀i = 1, . . . ,NX

In P2, the risk allocation is defined in terms of ε =
(ε1, . . . , εNX ).

Let (M�(x), v�(x)) be the optimal control policy (i.e.
solution to P2) for any initial condition x. Receding-
horizon implementation of the optimal control pol-
icy results in a time-invariant control law μN : R

n →
R

m defined as the first element of the optimal control
sequence

μN (x) = v�
0(x). (20)

Hence, the closed-loop response of system (1) is given by

x+ = Ax + BμN (x) + Gw. (21)

Note that at every sampling time, the state x is measured
and P2 is subsequently solved to obtain the control input
μN(x), which defines the recursive SMPC algorithm (i.e.
M�(x) and v�(x) are solved at every sampling time, and
are only functions of the initial states).

5.1 Convexity analysis

Program P2 is nonconvex due to the multiplication of ν i
and β i in (P2.7), whichmakes simultaneous optimisation
over the feedback gain M and risk allocation ε a non-
convex problem. An iterative strategy can be devised to
solve P2 by taking advantage of the fact that the optimi-
sation problem is convex when either M or ε is fixed. To

prove this, notice that E[u] and E[x] are linear functions
of the decision variables v and M, while �[u] and �[x]
are quadratic functions of M. Thus, the objective func-
tion is quadratic in v and M, and is a convex function of
the decision variables since Q and R are assumed to be
positive semidefinite and definite matrices, respectively.

Requiring M to be lower block triangular can be
represented by linear equality constraints so that (P2.3)
be convex. The hard input constraints (P2.4) are exactly

represented by a set of linear inequalities that are
convex in v and M (see Lemma 3.1). Clearly, (P2.8)–
(P2.10) are linear inequalities or equalities, which are
convex.

Now, let us consider the surrogate expressions for the
chance constraints (P2.7). When the feedback gain M is
fixed, �[x] and �[u] must be constant matrices from
(18) and (19), respectively. Therefore, ν i from (P2.6) will
be constant for i = 1,… , NX. Since ε are still decision
variables, (P2.7) reduces to a�

i E[x] + νi
√

(1 − εi)/εi ≤
bi. The first term is an affine function of v. The second
term is convex for any ϵi � [0, 0.75], which can be verified
by observing that the second derivative of

√
(1 − εi)/εi is

positive on this range. Since the sum of convex functions
is a convex function, (P2.7) will be convex for any fixed
M and any choice of δ � 0.75.

On the other hand, when the risk allocation ε is fixed,
β i from (P2.5) will be constant for i = 1,… , NX. In
this case, (P2.7) reduces to a�

i E[x] + βiνi ≤ bi where the
first term is linear in v and the second term is linear
in ν i. By substituting the expression for �[x] in (P2.6),
this constraint can be rewritten as a second-order cone
constraint

νi =
∥∥∥∥∥
[

�[ϕ(w)] σ [ϕ(w),w]
� �[w]

]1/2[G�M�B�ai
G�D�ai

]∥∥∥∥∥
2

.
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Substituting this expression into (P2.7) then renders P2 a
convex second-order cone program for fixed ε.

5.2 Iterative optimisation strategy

The optimal control problem in P2 can be solved by opti-
mising both the risk allocation ε and the control feed-
back gain M. An iterative two-stage optimisation strat-
egy is presented in Vitus and Tomlin (2011) to bisect the
uniform risk allocation in the upper stage and to opti-
mise the feedback gain with fixed uniform risk alloca-
tion in the lower stage. On the other hand, Ma et al.
(2012) proposed optimising the risk allocation and feed-
back gain simultaneously using a tailored interior point
method that exploits the sparse multistage structure of
the nonconvex optimisation. Although these approaches
were developed under different disturbance assumptions
and control law parametrisations, they can be applied for
solving P2 owing to the similar structure of the optimisa-
tion problems.

In this work, a simple iterative approach is proposed
for solving P2, as summarised in Algorithm 1. The pri-
mary notion of Algorithm 1 is to solve for the optimal
risk allocation given a fixed feedback gain and then solve
for the optimal feedback gain given a fixed risk alloca-
tion. This approach is similar to the well-known DK iter-
ation used inμ-synthesis problems (Balas, Doyle, Glover,
Packard, & Smith, 1994). This technique is known as
a (block-)coordinate descent algorithm, and has been
applied more broadly to optimisation problems subject
to bilinear matrix inequality (BMI) constraints (Simon,
R-Ayerbe, Stoica, Dumur, & Wertz, 2011). Although this
algorithm is not guaranteed to converge to a local opti-
mum (as each iteration provides a solution that is opti-
mal in the ‘directions’ of one subset of variables, but not
in all directions), it is a commonly applied heuristic that
performs well in practice.

Algorithm 1: Coordinate descent for SMPC
Require Initial feedback gain M(0) and maximum

number of iterations Imax.
1: for i = 0 to Imax − 1 do
2: Solve convex optimisation P2 with fixed M ←

M(i) for the optimal risk allocation ε�

3: Set ε(i+1) ← ε�

4: Solve convex optimisation P2 with fixed ε ←
ε(i+1) for the optimal feedback gainM�

5: SetM(i+1) ← M�

6: end for

Two choices have been made in Algorithm 1: (1) ini-
tialising the algorithm with a fixed feedback gain M(0)

(instead of a fixed risk allocation ε(0) and switching the
order of the optimisation problems), and (2) running the

algorithm for a fixed number of iterations instead of run-
ning until a prespecified tolerance has been met. The ini-
tial feedback gainM(0) can be designed optimally without
explicitly considering constraints using any of the numer-
ous existing robust control methods (e.g. Kouvaritakis,
Rossiter, & Schuurmans, 2000). Since there has been a
plethora of work on offline feedback control design, ini-
tialising the algorithmbased on a nearly optimal feedback
gain is likely to yield better performance than initialis-
ing the algorithm using a fixed uniform risk allocation,
which will rarely be optimal in practice. In addition, since
adequate closed-loop performance can often be obtained
with just a few iterations from a near-optimal choice of
M(0), it is best to run Algorithm 1 for a fixed number
of iterations so as to ensure that the control inputs can
be computed within a reasonable computation time. This
idea has beenwidely used in the fastMPC literature to sig-
nificantly reduce the cost of solvingMPCproblems online
(Wang & Boyd, 2010).

5.3 Feasibility and stability

Due to the inclusion of input and state constraints, the
region of attractionXN for P2 (i.e. the set of initial condi-
tions for which there exists a feasible solution to the opti-
misation problem) will be a subset of R

n. When the dis-
turbances lie in a compact set, recursive feasibility (as well
as closed-loop stability) of theMPC problem can be guar-
anteed by defining terminal constraints and/or terminal
penalties (Goulart et al., 2006; Mayne, Rawlings, Rao, &
Scokaert, 2000).

The proposed SMPC approach, however, consid-
ers arbitrary stochastic disturbances with a (possibly)
unbounded support. Hence, it is impractical to ensure
that the states remain inside XN in the presence of input
constraints (Chatterjee & Lygeros, 2015). One approach
for guaranteeing recursive feasibility for SMPC problems
with unbounded disturbances is to choose between a
closed-loop and open-loop initialisation strategy online
(Farina et al., 2015). The key idea in this approach is
to choose the closed-loop strategy when the problem
is feasible and to choose the open-loop strategy (whose
feasibility is guaranteed through a proper selection of
terminal constraints) when the SMPC problem is infea-
sible for the most recently observed states. Although this
approach guarantees recursively feasibility, it disregards
the most recent state measurements, which may degrade
closed-loop performance when the states are not in the
region of attraction of the controller.

Alternatively, a backup controller can be applied when
the system states leave the region of attraction of P2.
In this case, a natural choice is to soften the state con-
straints in P2 since this will enable driving the states back
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into XN (Oldewurtel et al., 2008). To this end, the exact
penalty function method can be used to ensure that the
backup controller yields the same solution as the fully
constrained MPC problem when it is feasible (Kerrigan
& Maciejowski, 2000). This approach allows for solving
a single optimisation problem instead of having to ver-
ify feasibility and decide which MPC problem to solve
accordingly, as is the case in Farina et al. (2015).

Stability of stochastic linear systems (in amean-square
boundedness sense) in the presence of unbounded dis-
turbances and bounded control inputs has been explored
by Chatterjee, Ramponi, Hokayem, and Lygeros (2012). If
the eigenvalues of the system matrix A lie inside the unit
disc, the variance of the states is shown to be bounded
as long as the disturbance has bounded variance. When
A has eigenvalues on the unit disc (with equal geomet-
ric and algebraic multiplicities), the variance of states will
be bounded provided that ‖u‖2 �R for a sufficiently large
R. However, ifA has even one unstable eigenvalue and the
system is subjected to unbounded stochastic disturbances
along the directions of the unstable eigen-subspace of
A, the linear system cannot be stabilised by means of
bounded control inputs (Chatterjee et al., 2012). Inspired
by these results, the feasibility and stability properties of
the proposed SMPCapproach outlined inAlgorithm1 are
summarised below.

Theorem 5.1: Let X s
N be the domain of attraction for the

softened version of P2 with positive slack variables added
to the chance constraints (P2.7). Letμs

N (x) be the receding-
horizon control policy defined similarly to (20) based on the
softened P2. Let xk+1 = Axk + Bμs

N (xk) + Gwk for k ∈
N0 describe the evolution of the closed-loop system from
any initial condition x0 ∈ X s

N. Then, X s
N = R

n such that
the softened version of P2 will have a feasible solution for
all initial states x ∈ R

n, ensuring recursive feasibility of
the optimisation problem. In addition, the evolution of the
closed-loop system is mean-square bounded such that the
sequence (xk)k∈N0 satisfies

sup
k∈N0

E
[‖xk‖22] < ∞, ∀x0 ∈ R

n, (22)

if either of the following conditions is met:

(i) A is Schur-stable (eigenvalues inside of the unit cir-
cle) and �[wk] is bounded;

(ii) A is discrete-time, Lyapunov stable (eigenvalues on
the unit disc with equal geometric and algebraic
multiplicities), �[wk] is bounded, and FU ⊇ {u ∈
R

Nm : ‖u‖∞ ≤ U ∗
max} where U ∗

max is defined based
on reachability of the orthogonal decomposition of
the state space and a bound on the fourth moment

of the disturbances as given in Cherukuri, Chatter-
jee, Hokayem, and Lygeros (2011).

Proof: The fact thatX s
N = R

n follows directly from soft-
ening constraints in P2. In this case, the remaining hard
constraints are related to the system dynamics (P2.1)–
(P2.2) and the control inputs (P2.3)–(P2.4). These con-
straints are trivially satisfied with M = 0 and some v ∈
FU �= ∅.

The proof of condition (i) follows fromHokayem et al.
(2009), and is summarised here for completeness. When
A is Schur-stable, there exists a positive definite matrix
P that satisfies A�PA − P � −In. From the closed-loop
system dynamics, we have

Exk[x
�
k+1Pxk+1]

= x�
k A

�PAxk + 2x�
k PBμN (xk) + 2x�

k A
�PGE[wk]

+ μ�
N (xk)B�PBμN (xk) + 2μ�

N (xk)B�PGE[wk]
+ E[w�

k G
�PGwk].

Since the set FU is bounded, there must exist some finite
Ub > 0 for which μN (xk) ∈ U∞ = {u ∈ R

m | ‖u‖∞ ≤
Ub}. Taking advantage of Hölder’s inequality and well-
known norm properties, we can bound terms involving
the control inputs on the right-hand side of the above
inequality

2x�
k PBμN (xk) ≤ 2‖B�PAxk‖∞‖μN (xk)‖1

≤ 2m‖B�PA‖∞Ub‖xk‖∞,

μ�
N (xk)B�PBμN (xk) ≤ ‖B�PBμN (xk)‖∞‖μN (xk)‖1

≤ m‖B�PB‖∞U 2
b .

Therefore, there exist positive constants c1 > 0 and c2 >

0 such that

Exk[x
�
k+1Pxk+1] ≤ x�

k A
�PAxk + 2c1‖xk‖2∞ + c2

≤ x�
k Pxk − ‖xk‖22 + 2c1‖xk‖∞ + c2,

where the Lyapunov inequality A�PA − P � −In is used
to derive the second inequality. Defining the compact set
D = {x ∈ R

n | ‖x‖∞ ≤ r} for r = 1
θ
(c1 + √

c21 + c2θ ), it
can be verified that the following inequality must hold for
all xk �∈ D:

2c1‖xk‖∞ + c2 ≤ θ‖xk‖2∞ ≤ θ‖xk‖22
=⇒ Exk[x

�
k+1Pxk+1]

≤ x�
k Pxk − (1 − θ )‖xk‖22.
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Combining the above expression with x�
k Pxk ≤

λmax(P)‖xk‖22 leads to

Exk[x
�
k+1Pxk+1] ≤

(
1 − 1 − θ

λmax(P)

)
‖xk‖22, ∀xk �∈ D.

To ensure the multiplying constant above is positive, we
must select some θ � (max {0, 1 − λmax(P)}, 1), which is
guaranteed to exist due to the fact that A is Schur-stable.
Then, from Hokayem et al. (2009, Lemma 8), the value
function V(x) = x�Px satisfies a geometric drift condi-
tion outside of the compact set D such that Ex0 [x�

k Pxk]
is bounded for all x0 ∈ R

n. Since λmin(P)‖xk‖22 ≤ x�
k Pxk,

assertion (i) directly follows.
This proof does not hold for (ii) since there will not

exist a θ for which the same geometric drift condition is
satisfied. A detailed proof of condition (ii) is provided in
Chatterjee et al. (2012), which involves a similar geomet-
ric drift condition, but requires amore complex argument
based on the reachability and higher order moments of
the system. �

6. Case study

6.1 Problem description

The performance of the proposed SMPC approach is
evaluated on a continuous clostridial ABE fermentation.
The model of Haus et al. (2011) and Buehler andMesbah
(2016) is linearised around a desired steady-state operat-
ing point to obtain the system description in the form of
(1) consisting of 12 states and 2 inputs. The state vector is
defined by

x = [
CAC, CA, CEn, CAaC, CAa, CBC, CB, CAn,

CBn, CAd, CCf, CAh
]�

,

where C denotes the concentration (mM) of species
acetyl-CoA (AC), acetate (A), ethanol (En), acetoacetate-
CoA (AaC), acetoacetate (Aa), butyryl-CoA (BC),
butyrate (B), acetone (An), butanol (Bn), enzyme adc
(Ad), enzyme ctfA/B (Cf), and enzyme adhE (Ah). The
inputs are

u = [
D, G0

]�
,

where D is the dilution rate (h−1) and G0 is the inlet glu-
cose concentration (mM). The system matrices A, B, and
G are given in the Appendix.

The control problem is defined in terms of setpoint
tracking for the ABE products (ethanol, acetone, and

butanol) concentrations. Hard input constraints

0.005 h−1 ≤ D ≤ 0.145 h−1

0 mM ≤ G0 ≤ 80 mM

as well as joint chance constraints on acetate and butyrate
(which are two key intermediate species in the metabolic
pathway) with a maximum allowed violation of 20%

P(13.83 mM ≤ CA ≤ 15.68 mM, 10.55 mM ≤ CB

≤ 12.30 mM) ≥ 0.8

are enforced. The control problem is converted into a reg-
ularisation problem by defining the states/inputs in terms
of deviation variables with respect to the setpoint

xss = [
1.04, 14.83, 7.35, 1.66, 0, 2.95e–7, 11.55,

43.51, 56.94, 1.46, 14.14, 37.98
]�

uss = [
0.075, 40.0

]�
.

The initial conditions (in deviation variables) are then
given by

x0 − xss = [
0 0 0 0 0 0 0 0 −5.16 0 0 0

]�
.

Since butanol is the main product of interest, the weight
matrix in the cost function of MPC is selected such that
butanol has a weight that is 1000 times higher than that
for ethanol and acetone

Q = diag(0, 0, 0.01, 0, 0, 0, 0, 0.01, 10, 0, 0, 0),

while the input penalty weight is chosen to be R =
diag(0.1, 0.1). The sampling time for this process is 1 h,
and a horizon of N = 10 is chosen for subsequent simu-
lations (unless otherwise noted).

6.2 Closed-loop performance

The control problem is solved using Algorithm 1, which
iteratively solves the deterministic surrogate SMPC prob-
lem P2 for the optimal feedback control policy and risk
allocation. The performance of the proposed approach is
compared to that of a certainty equivalence MPC algo-
rithm (inwhich the disturbance is set equal to its expected
value for the purposes of prediction) and an SMPC algo-
rithm with fixed uniform risk allocation. The fixed gain
optimisation problem is solved using IPOPT, whereas the
CVX package with the Mosek solver is utilised to solve
the fixed risk allocation optimisation problem (Grant &
Boyd, 2014).

Figure 1 shows the closed-loop response of butanol,
under 300 realisations of the disturbances, obtained
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Figure . Comparison of closed-loop response of butanol concentration (controlled state) under  disturbance realisations for (a) the
proposed SMPC approach, (b) certainty equivalence MPC, and (c) SMPC with fixed uniform risk allocation. The setpoint is shown with a
black dashed line.

using the three control algorithms. The proposed SMPC
approach shows comparable setpoint tracking perfor-
mance to certainty equivalence MPC wherein both algo-
rithms keep the butanol concentration around its set-
point with minimal variation. On the other hand, SMPC
with fixed uniform risk allocation yields the worst per-
formance due to the relatively large variation in butanol
concentration. The poor setpoint tracking performance
can be attributed to conservative constraint handling
since the SMPC algorithm with fixed uniform risk allo-
cation attempts to fulfil each individual chance con-
straint (decomposed from the joint chance constraint)
with equal risk regardless of how close the states are to
any particular constraint.

Figure 2 shows the closed-loop response of acetate and
butyrate concentrations, under 300 realisations of the dis-
turbances, obtained using the three control algorithms.
The proposed SMPC algorithm results in a maximum
constraint violation of 14%, which is below the allowed
violation of 20%. This result is expected as the proposed
algorithm guarantees satisfaction of the joint chance
constraint, regardless of the distribution of the

disturbance, while not being overly conservative since
the risk allocation is optimised online. On the other
hand, certainty equivalence MPC yields 79% constraint
violation, which is much larger than the allowed 20%,
since it does not explicitly account for uncertainty. The
improved setpoint tracking performance observed in
Figure 1 for certainty equivalence MPC is due to this
large constraint violation. SMPC with fixed uniform risk
allocation exhibits 0% constraint violation at all times,
indicating very conservative handling of the joint chance
constraint leading to the poor setpoint tracking perfor-
mance. Overall, the proposed SMPC approach provides
the best control performance, while effectively satisfying
the hard input and joint chance constraints.

6.3 Convergence and optimality

As discussed in Section 5, the convergence of Algorithm
1 has not been established. However, the convergence
properties of the proposed SMPC algorithm are evalu-
ated for the case study at hand in order to illustrate possi-
ble advantages of Algorithm 1 in practice. For multiple
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Figure . Comparison of the closed-loop response of acetate and butyrate concentrations (joint-constrained states) under  distur-
bance realisations for (a) the proposed SMPC approach, (b) certainty equivalence MPC, and (c) SMPC with fixed uniform risk allocation.
The four state constraints are shown with black dashed lines. The chance constraints are enforced jointly with a maximum allowed viola-
tion of %.

Iterations
0 1 2 3 4

C
os

t

0

5

10

15

20

25

30
t = 10 hr
t = 20 hr
t = 30 hr
t = 40 hr

Figure . Value of the cost function as a function of number of iter-
ations of Algorithm . Iteration  corresponds to the initial condi-
tion. The cost function converges within two iterations.

sampling times in a closed-loop simulation, Figure 3
shows the value of the cost function as a function of the
number of iterations of Algorithm 1. At all time points,
the cost function converges to its minimum value within

at most two iterations (most points require only one iter-
ation). This indicates that, for this case study, only two
iterations of Algorithm 1 are sufficient for convergence.
Note that, based on this analysis, the results of the pro-
posed SMPC algorithm shown in Section 6.2 utilised two
iterations of Algorithm 1.

Now that (practical) convergence of Algorithm 1 has
been demonstrated, we look to investigate the optimal-
ity of the converged solutions by comparing the results
to a nonlinear gradient-based optimisation method. To
this end, the general nonlinearMatlab solverfmincon is
used for comparison. The horizon is decreased fromN=
10 to N = 2 for these simulations due to the large com-
putational cost of fmincon since there are more than
2400 decision variables whenN= 10 and only 36 decision
variables when N = 2. Note that variants of the gradient-
based algorithms utilised by fmincon provide guaran-
teed convergence to a local minimum.

Figure 4 shows the value of the ‘optimal’ cost
function over a closed-loop simulation using the
proposed SMPC algorithm (with two iterations) and the
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Figure . Value of the ‘optimal’ cost function obtained with the
proposed SMPC algorithm and with a general nonlinear solver
over an entire closed-loop simulation. Both optimisation algo-
rithms were initialised with the unconstrained LQR solution at all
times for consistency.

nonlinear optimisation solver fmincon. For
consistency, both optimisation methods were supplied
the same initial conditions derived from the uncon-
strained LQR solution. Figure 4 indicates that the value
of the ‘optimal’ cost function in the proposed algorithm
is always less than or equal to that of fmincon. The
proposed algorithm results in cost function values that
are almost an order of magnitude lower than fmincon
(note that the y-axis is displayed in logarithmic scale).
Similar results were observed for different initial condi-
tions, including a cold-start of all zeros. These results are
likely due to the nonlinear optimiser being trapped near
a local solution. This was verified by solving the nonlin-
ear program for different initial conditions wherein the
optimiser converged to different solutions (not shown
here).

The results indicate that the proposed SMPC approach
in Algorithm 1 (that dynamically allocates risk to the
constraints) is robust to the initialisation strategy, which
makes intuitive sense due to the properties of P2. When
the states are far away from their constraints (acetate
and butyrate in this case), the problem is insensitive to
the chosen risk allocation. In this case, P2 is convex and
both the proposed algorithm and fmincon reach the
global optimum, as seen in Figure 4 where the curves
overlap. However, when constraints become active, the
proposed algorithm optimises in the directions of ε and
(M, v) separately as opposed to a general nonlinear solver
that optimises in all directions simultaneously. Hence, the
directions in which the decision variables can be updated
will be effectively constrained in the proposed algorithm,
likely reducing the chance of getting stuck in local solu-
tions (defined as zero gradient with respect to all decision

Table . Comparison of CPU time of the proposed
SMPC algorithm and a general nonlinear solver.
Results were obtained on a desktop computer with
a . GHz Core i CPU.

Optimisation Mean CPU time per MPC Total CPU
method iteration (s) time (s)

Algorithm  ±  
Nonlinear solver ±  ,

variables). This is supported by Figure 4, wherein
fmincon yields a higher ‘optimal’ cost than the pro-
posed algorithm at the sampling times where the con-
straints are (nearly) active at the beginning and at the end
of the simulation.

Finally, the computational cost of the proposed SMPC
algorithm (with two iterations) is compared to the
nonlinear optimisation solver fmincon in Table 1,
which shows the mean CPU time per MPC iteration
(± standard deviation) and the total CPU time for one
closed-loop simulation. The proposed algorithm takes
significantly less time than fmincon (over 400 times
faster) due to the fact that only a small number of convex
optimisation problems need to be solved in comparison
with a general nonlinear optimisation problem. Note that
tailored interior point methods such as that proposed by
Ma et al. (2012) can provide improved performance over
fmincon; however, the same applies to the convex opti-
misation problems in Algorithm 1.

7. Conclusions

This paper presents an MPC approach for linear systems
subject to arbitrary (possibly unbounded) stochastic dis-
turbances with known mean and variance. The approach
enables: (1) accounting for hard input constraints and
joint state chance constraints under a feedback predic-
tion, (2) efficient handling of joint chance constraints
by using the Cantelli–Chebyshev inequality in conjunc-
tion with risk allocation, and (3) determining the opti-
mal feedback gain and risk allocation by iteratively solv-
ing convex optimisations. The proposed SMPC approach
is demonstrated on a continuous ABE fermentation pro-
cess with 12 states, and its performance is compared to
certainty equivalence MPC and SMPC with fixed risk
allocation. Convergence and optimality properties of
the proposed iterative optimisation strategy are demon-
strated in the context of this case study.
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Appendix. ABE fermentation systemmodel

The system matrices are given by

A = 10−2 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

51 5.3 0 29 0 0 −2.7 0 0 0 3.4 −10
−2.5 85 0 −43 0 0 3.4 0 0 0 −5.1 −0.014
37 1.8 93 12 0 0 −0.59 0 0 0 1.4 1.1
3.3 −4.5 0 18 0 0 −5.0 0 0 0 −8.8 −0.036
0 0 0 0 0 0 0 0 0 −0.030 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−2.1 2.6 0 −35 0 0 85 0 0 0 −4.1 0.012
4.6 4.9 0 78 93 0 4.9 93 0 0.030 9.1 −0.027
2.1 −2.6 0 35 0 93 8.3 0 93 0 4.1 −0.012
0 0 0 0 0 0 0 0 0 93 0 0
0 0 0 0 0 0 0 0 0 0 93 0
0 0 0 0 0 0 0 0 0 0 0 93

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =
[ −1.7 −13 −7.8 0.94 −1.4e–4 0 −10 −45 −51 −1.4 −14 −37
57e–6 0 16e–6 2e–6 0 0 0 1.5e–6 0 0 0 0

]�
,

and

G =
⎡
⎣0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎤
⎦

�

.
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