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A B S T R A C T

A leading method for the crystallization of pharmaceutical compounds is to rapidly mix an antisolvent
with a solvent saturated with the desired drug. Compared to cross-flow mixers, coaxial nozzles have
negligible buildup of crystalline material on their surfaces and are less likely to plug. Rather than
requiring moving parts, the inlet velocities of the input solvent and antisolvent streams provide the
necessary mechanical energy for turbulent mixing. Computational fluid dynamics (CFD), micromixing
modeling, and the population balance equation (PBE) are coupled in the simulation of coaxial nozzle
crystallization of lovastatin-saturated methanol by intense mixing with the antisolvent water. The
simulations show that flow rates of inlet streams have a profound effect on crystal size distribution (CSD),
which is caused by different degrees of inhomogeneity in the supersaturation and nucleation and growth
rates. Other important process parameters are pipe length of pipe downstream of the injection point and
the inner and outer pipe diameters. To the authors' knowledge, this is the most detailed simulation study
on coaxial crystallizers reported to date. The simulation results show the feasibility of tailoring a specific
crystal size distribution by adjusting the operating conditions (such as inlet stream velocities) of the
coaxial crystallizer.
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1. Introduction

Pharmaceutical crystals should be optimally sized to dissolve at
the proper therapeutic rate. More specifically, controlling the
crystal size distribution (CSD) is necessary to meet product
specifications, such as bioavailability, and to ensure the efficiency
of downstream processes (e.g., filtration and drying) [1–3].
Otherwise, additional processes such as milling and granulation
are required [4–5].

Antisolvent crystallization refers to addition of a miscible
“antisolvent” to the solvent saturated with the desired solute. Since
the solubility of the solute in the antisolvent is very low,
supersaturation is quickly induced, creating a driving force for
crystallization. An advantage of using antisolvent crystallization is
its ability to induce the crystallization of thermally sensitive
pharmaceuticals without large temperature variations [6–7].
However, this method requires rapid and sufficient mixing of
the antisolvent with the solute dissolved in solvent, which, in turn,
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necessitates the design of an appropriate mixer/crystallizer to
accomplish intense mixing and crystallization on a fine scale.

Several different types of antisolvent mixers have been used for
crystallization. State-of-the-art crystallization units, such as coaxial
mixer/crystallizers (Fig. 1), utilize high intensity mixing of the
antisolvent and the solution to produce crystals smaller than 25 mm,
which improves the bioavailabilityand increases the dissolution rate
of the final drug product [1–3]. The ability to obtain such small
crystals can also allow the elimination of undesirable unit operations
such as milling [4–5]. Agitated semibatch mixers/crystallizers [38]
and impinging jet mixers/crystallizers [9] are two additional types of
crystallizers commonly used in industry.

Many crystallizer designs have been explored to generate high
supersaturation in such mixtures as an approach for generating
consistent crystal nuclei that are subsequently grown to a desired
size [3,10–14]. Compared to cross-flow mixers, coaxial jet mixers
have negligible buildup of crystalline material on their surfaces
and are less likely to plug. Coaxial mixers can be designed to deliver
rapid turbulent mixing using short sections of pipe. As the energy
required for mixing is provided by the inlet streams, with no
moving metal parts and no bearings, these devices have simple
maintenance and operation. Some experimental and modeling
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Fig. 1. Diagram of coaxial nozzle used as a mixer/crystallizer (courtesy of Parkaj Doshi).
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studies of coaxial crystallizers have been published to gain deeper
understanding and to facilitate more efficient development and
optimization of the coaxial mixer crystallization process [15–18].

Various experimental studies of antisolvent crystallization in an
agitated semibatch vessel indicate that the crystal size distribution
(CSD) depends strongly on operating conditions such as agitation
rate, mode of addition (direct or reverse), addition rate, solvent
composition, and size of the crystallizer [3,19–25,26–31]. The
polymorphic or pseudopolymorphic form can also depend on the
operating conditions [32–37].

The number of operating conditions that can be investigated is
large, so that investigating these combinations by bench-scale
experiments can be time consuming and costly. This development
time and cost can be reduced by using computer simulation to
augment the experimental approach to mixer/crystallizer investi-
gation and design. This article considers important design param-
eters for crystallization in coaxial mixers: the length of pipe
downstream of the injection point, the velocity and temperature
of the inlet streams, and the inner and outer pipe diameters.

Computer simulation is used throughout industry to gain
understanding and guidance in development of manufacturing
processes. These simulation problems usually involve large
systems of algebraic equations (AEs) and ordinary and partial
differential equations (ODEs, PDEs). In the case of pharmaceutical
crystallization, a meaningful description of the process requires
PDE/AEs over a multiscale spatial domain. For a dynamic model,
the independent variables consist of time (t), spatial location (X–Y–
Z) within the crystallizer, and geometric variables for the crystal,
such as a characteristic size r. In addition, some critical transport
processes occur at a subgrid, or sub-cellular level, which can be
handled without increasing the number of independent variables
through use of probability density functions.

This article describes an effort whose goal is to speed up the
design of the coaxial crystallizers totailorthe crystal sizedistribution
according to the bioavailability and drug administration require-
ments. Dynamic simulations of a confirmed coaxial crystallizer were
carried out that simultaneously solve partial differential equations
for macromixing, micromixing, and a population balance for the
crystals. The computational model [38–40] was used,which replaces
a quadrature-method-of-moments model used to simulate the time
evolution of the particle size distribution by Rodney Fox [41] with a
full spatiallyvarying population balance model implemented using a
high resolution finite-volume method. This article employs an
extension of the model [38–40] to include temperature effects on the
crystallization. Our simulations were used to perform a parameter
sensitivity analysis (see Varma et al. [42] for background on such
analyses) to identify the key model parameters and to simulate
variations in their values on the full crystal size distribution (CSD) in
the antisolvent crystallization of lovastatin, using kinetics reported
in the literature [43]. The effects of inlet concentrations and stream
flow rates on CSD were numerically investigated and compared with
CSDs obtained in a dual-impinging jet crystallizer [40]. As observed
in simulations of dual impinging jets, the mean crystal size and the
width of the distribution are found to decrease with an increase in
inlet stream velocity. The simulation results show different degrees
of inhomogeneity in the supersaturation and the nucleation and
growth rates for different inlet stream flow rates.

2. Model equations

2.1. Multi-scale modeling

A multi-scale system of algebraic and partial differential
equations is solved in order to simulate a pharmaceutical
crystallizer. For a dynamic system, time (t) is one of the
independent variables, which will range from 0 to a value
sufficiently large to approximate steady state. The axial and
transverse coordinates X–Y–Z represent the location in the mixer/
crystallizer. For an axisymmetric mixer such as the coaxial mixer, a
two-dimensional X–Y grid can be used to lower computational
cost. Although modeling the turbulent macromixing processes
requires the use of only these spatial coordinates and time as
independent variables, a higher resolution of the flow field is
required to model the interactions between hydrodynamics,
nucleation, and growth. An additional geometric independent
variable is also introduced, which is associated with the crystal size
represented by a single characteristic dimension r.

The approach used here couples a turbulent computational
fluid dynamic (CFD) code with a multienvironment probability
density (PDF) model, which captures the micromixing in the
subgrid scale, and the population balance equation (PBE), which
models the evolution of the crystal size distribution.

2.2. Macro-mixing equations (CFD code)

Turbulent transport of mass, momentum, and energy is
discussed thoroughly in Pope’s definitive textbook [44]. The Fluent
User’s Manual summarizes the relevant equations, and Fluent
13 was used to obtain solutions to these equations [45]. The version
of Fluent used for the calculations presented in this paper is
included in Ansys 14.5 [46]. In general form, the equations are:

Continuity equation :
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Scalar transport equation :
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(4)

where

Dt ¼ mt

rSct
; (5)

k is the kinetic energy of the turbulence, e is its dissipation rate, Gk

is the generation of turbulence kinetic energy due to mean velocity
gradients, Gb is the generation of turbulence kinetic energy due to
buoyancy, the other symbols are defined in the Nomenclature list
and Appendix A, and “5” refers to the del operator with respect to
the spatial coordinates (X,Y). The solution of the above equations
yields the flow field v and the turbulent diffusivity Dt, both of
which are functions of the domain (t,X,Y). These quantities are
needed in the solution of the population balance equations. The
scalar transport equations for macromixing provide for species and
energy transport.

2.3. Population balance equations

Spatially inhomogeneous crystallization processes can be
described by the population balance equation (PBE) [47,48]
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where the particle number density function (f) is a function of
external coordinates (xi) (X and Y in the axisymmetric case),
internal coordinates (ri) (the size dimensions of the crystal), and
time (t); the rates of growth (Gi) and nucleation (B) are functions of
the vector of solution concentrations (c) and the temperature (T), d
is the Dirac delta function, and h describes the creation and
destruction of crystals due to aggregation, agglomeration, and
breakage. For size-dependent growth, the rate of growth Gi also
varies with ri.

Unlike the PBEs most commonly used in this literature, this PBE
depends on external coordinates (the mixer positions X and Y) and
internal coordinates (a representative set of dimensions of the
crystal that define crystal size). The use of a single dimension r for
the internal coordinate implicitly assumes that the crystals have
uniform shape, with any asymmetry in crystal shape addressed by
a shape factor. As the solution concentrations and temperature
vary with spatial position and time, Eq. (6) must be solved
simultaneously with the bulk transport equations for mass, energy,
momentum, and turbulence to obtain f(x,r,t), c(x,t), T(x,t), the
velocity field vðx; tÞ, and the local turbulent diffusivity Dtðx; tÞ. This
simulation enables the determination of the effects of the localized
solution environment on the nucleation and growth rates, as well
as on the CSD. The values for v and Dt are obtained by solving the
momentum and turbulence conservation equations of the liquid
phase, respectively. Equation (6) assumes that the particles follow
the streamlines in the flow field [48], which is a good approxima-
tion for organic pharmaceutical crystals whose density is close to
the density of the liquid phase, and for primary nucleation in a
crystallizer for short times. This approximation becomes less
accurate as the crystals increase in size.

Due to its hyperbolic structure, the PBE can be solved by the
high-resolution finite-volume method. Gunawan et al. [49] and Ma
et al. [50–52] demonstrated the capability of using such methods
to numerically solve multidimensional PBEs that simulate the
evolution of crystal size and shape distribution. The main
advantage of using the high-resolution central scheme to
discretize the growth term is that its second-order accuracy
allows the use of a larger Dr, while retaining the same numerical
accuracy obtained by first-order methods (e.g., upwind method).
This is important because the number of transport equations that
can be solved in the CFD algorithm is limited. Moreover, the
method does not produce spurious oscillations in the solution,
which are common in second-order methods such as Lax–
Wendroff. Another advantage of using the high-resolution central
scheme is that the numerical dissipation depends on Dr, but not 1/
Dt. This is essential due to the fact that, in most cases, very small
time steps, much smaller than that limited by the Courant–
Friedrichs–Lewy (CFL) condition, are required to resolve the
turbulent flow and concentration field in the CFD computation.
Hence, this method avoids any additional numerical dissipation
associated with the time discretization. Although the approach
taken here is applicable to the general PBE, Eq. (6), this paper
focuses on the case of only primary nucleation and size-
independent growth along one internal principal axis. Details of
the high-resolution central scheme are provided in Appendix B.

Focusing first only on the first two terms of Eq. (9), semidiscrete
PBEs are obtained after integrating over r over each cell and
canceling terms:
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where fj is the cell-averaged population density in #/mc-m3, based
on Eq. (B.7) and the derivatives, (fr)j, are approximated by the
minmod limiter, defined in Eqs. (B.7) and (B.8). Note that the
growth rates are evaluated at the end points of each grid cell. The
supersaturation Dc = c – c*, where c* is the solubility of the solute.

The nucleation term is included in the cell corresponding to the
nuclei size by averaging the nucleation rate (the number of nuclei
per unit time per unit volume) over the cell width, B/Dr. The
computation of the average population density for the first grid
cell, f1, requires the values of f0 and f�1, which are fictitious points
with population densities of zero at all times. The computation of
fN in the last grid cell assumes that fN+1 = fN+2 = fN at all times, which
is known as the absorbing boundary condition [53].

Because the transport equations solved by the CFD algorithm
are already written on a mass basis, Eq. (7) was rewritten on a mass
basis to allow for easily coupling between the two sets of
equations. Thus, when this equation is coupled with the transport
equations of other species present in the system (solute, solvent,
and antisolvent), also written on a mass basis, the overall mass
balance of the system is also satisfied. The cell-averaged crystal
mass in the jth size bin can be evaluated as

f w;j ¼
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Z rjþ1=2

rj�1=2

r3f jdr ¼ rckvf j
4Dr
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; (8)

where fw,j has the units kg/mc� m3, and Dr = rj + 1/2� rj � 1/2. The
transport equation for crystal mass between size rj � 1/2 and rj + 1/2 is
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When micromixing effects are not important, Eq. (9) can be
directly incorporated into the CFD code as a transport equation by
treating the right-hand side as an additional source term. A
corresponding source term is added to the solute transport
equation to account for its depletion due to nucleation and crystal
growth, or its increment due to crystal dissolution, which is a
negative sum of Eq. (9) for j = 1, . . . , N.

2.4. Micro-mixing equations

Finer or subgrid scale mixing of fluids, which must precede
crystallization, requires a joint composition probability distribu-
tion function [41]. This PDF will depend on position and time, and
its evolution can be followed by solution of the transport equation.
Because of the many system variables in the PDF, the transport
equation cannot be solved by standard discretization methods and
is best solved by Monte Carlo methods [54].

A good alternative to the Monte Carlo solution of the trans-
ported PDF is the multienvironment CFD micromixing model
proposed by Fox [41] and applied to crystallization by Fox and
associates [54–58]. This model, also known as the finite-mode PDF
method, is used to model micromixing effects [38–40]. In this
approach, each computational cell in the CFD grid is divided into Ne

different probability modes or environments, which correspond to
a discretization of the presumed composition PDF into a finite set
of delta (d) functions:

ffðc; x; tÞ ¼
XNe

n¼1

pnðx; tÞ
YNs

a¼1

d ca � fah inðx; tÞ
 �
(10)

where f’ is the joint PDF of all scalars, Ns is the total number of scalars
(species), pn is the probability of mode n or volume fraction of
environment n, and fah in is the mean composition of scalar a
corresponding to mode n, and ca is the element of c
corresponding to the scalar a. The weighted concentration is
defined as

sh in � pn fh in (11)

The transport of probability and species in inhomogeneous flows is
modeled by
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where G and Mn are the rates of change of p = [p1 p2 ... pN] and sh in
due to micromixing, respectively, Gs and Mn

s are additional
micromixing terms to eliminate the spurious dissipation rate in
the mixture–fraction–variance transport equation (for details see
Fox [41]), and S is the chemical source term. The conservation of
probability requires that

XN
n¼1

pn ¼ 1 (14)
and

XNe

n¼1

GnðpÞ ¼ 0: (15)

The mean compositions of the scalars are given by

fh i ¼
XNe

n¼1

pn fh in ¼
XNe

n¼1

sh in (16)

and, since the means remain unchanged by micromixing,

XNe
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Mnðp; sh i1; . . . ; sh iNe
Þ ¼ 0 (17)

must be satisfied. The simulations in this article utilize a three-
environment model, as shown in Fig. 2. This approach was used by
Marchisio et al. [55–57] to model precipitation using the method of
moments to model the average properties of the crystalline phase.
They suggested that three environments are sufficient to capture the
micromixing effects in non-premixed flows with satisfactory
accuracy. The extension to a larger number of environments is
possible[41,54,58],butata largercomputationalburden,asonesetof
semidiscrete PBE has to be solved in each mixed environment. An
advantage of this multienvironment PDF model is that it can be
directly incorporated into existing CFD codes, in which the transport
Eqs. (12) and (13) can be computed directly by the CFD solver. Since
the compositions in Environments 1 and 2 are known from the
compositionof the feed and initial conditions,Eq. (13) will be applied
to all species in Environment 3 only. This third environment includes
solute, solvent, antisolvent, and the crystal mass in each grid cell of
the semidiscrete PBE. Another important variable evaluated by
Eq. (13) is jh i3, the mixture fraction in Environment 3, which
represents the fraction of fluid in Environments 3 that came from
Environment 1. The mixture fractions in Environments 1 and 2 are
jh i1 ¼ 1 and jh i2 ¼ 0, respectively. With Ne = 3, it is possible to
calculate the mean, variance, and skewness of the mixture fraction.
However, this paper will utilize the population balance equations,
Fig. 2. Three-environment micromixing model.
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discussed in Section 2, to compute the full crystal size distribution
(CSD).

The micromixing terms [41] are summarized below in Table 1,
where the values of f

� 

n = sh in=pn denote the unweighted

variables. The value of p3 can also be determined from Eq. (14),
although numerical error may lead to an inaccurate result when
P1 + P2 is close to 1. For a fully-developed scalar spectrum, the scalar
dissipation rate, ej, is related to the turbulent frequency, e=k, by

ej ¼ C’ j02
� 
e

k
(18)

where C’ ¼ 2 (as suggested by Wang and Fox [54]), e and k are the
turbulent dissipation rate and kinetic energy, respectively, and
j02
� 


is the mean variance of the mixture fraction jh i3. The
chemical source terms in Eq. (13) for the solute and crystals are
substituted with the right-hand side of Eq. (9) along with the
appropriate nucleation and growth kinetics that are not limited by
micromixing. For unseeded crystallization, the micromixing terms
for the crystals are zero.

Due to the adiabatic operation of the coaxial mixer/crystallizer,
a simple calculation can be made to estimate the effect of the heats
of crystallization and mixing on temperature. Heat of mixing
results from mixing the solute-containing fluid with the anti-
solvent fluid. This micromixing initially releases heat in Environ-
ment 3. Likewise, the crystallization of the solute occurs mostly in
Environment 3, so the heat of crystallization is released there as
well. If the interphase (or inter-environmental) transport of this
released heat is ignored, all of it stays in Environment 3. The heat
eventually gets distributed to all of the fluid in the mixer as
Environment 3 grows at the expense of Environments 1 and 2.
c�
kg
kg
of solvents

� �
¼ 0:001expð15:45763 1 � 1

u

� � �2:7455 � 10�4W3
as þ 3:3716 � 10�2W2

as � 1:6704Was þ 33:089; forWas � 45:67
�1:7884 � 10�2Was þ 1:7888; forWas > 45:67

( )

(22)
Under these assumptions, the temperature increase is calculated
by tracking the enthalpy (kJ/m3) in Environment 3 as a scalar using
Eq. (13). If the inner and outer input streams are at different
temperatures, then the enthalpies of Environments 1 and 2 need to
be specified. The value of the enthalpy in Environment 3 results
from the micro-mixing of Environments 1 and 2 (the M terms in
Eq. (13)), the heat of mixing due to change in the intermolecular
neighborhood of each antisolvent molecule, and the heat of
crystallization of the solute. The latter two are incorporated into
the source term p3S, which for the weighted enthalpy h is
expressed as

p3Sh ¼ p3
Sas1
� �ð�DHmix;H2O�CH3OHÞ

MWH2O
þ p3

P
jSfw;j

� 	
�DHcrys
� �

MWsolute
(19)
where Sas and
P

jSfw;j

� 	
are the rates of increase in concentrations

of antisolvent and total crystal mass in Environment 3, and the
other symbols are defined in Appendix A. This calculation is
handled in the UDF file (see below), along with other micromixing
phenomena. The subscript as1 denotes the concentration of water
in the antisolvent, �DHmix;H2O�CH3OH is the heat of mixing of
methanol with water, �DHcrys is the heat of crystallization of
lovastatin from a methanol–water mixture, and the other symbols
are defined in Appendix A. The values of DHmix;H2O�CH3OH depend
on the mole fraction of methanol in the mixture and are taken from
Bertran et al. [59] The heat of crystallization �DHcrys is derived
from a van’t Hoff relation used to fit the solubility data (see next
section). Following Fox [41], the rate of change STof temperature in
Environment 3 is obtained from

ST ¼ Sh
r3Cp3

(21)

2.5. Crystallization kinetics of lovastatin

A solubility relation is essential to compute the relative
supersaturation, which represents the driving force for the rates
of nucleation and growth. Solubility data for lovastatin in a
methanol/water mixture were used by Woo et al. [40] to compute
supersaturation in a confined impinging jet mixer. Solubilities at
other temperatures were obtained from Tung et al. [60] and Sun
et al. [61] The combined data from all three sources were fitted to
the expression
where Was is the weight percent of antisolvent (H2O) on a solute-
free basis and the dimensionless temperature u is

u ¼ T
Tref;

(23)

where T is the absolute temperature, Tref is the reference
temperature of 296 K, and the coefficient 15.45763 in the
temperature-dependence factor implies a heat of crystallization
value of –DHcrys = 38,042.5 kJ/kmol.

Based on the crystallization kinetics [43] of lovastatin from a
methanol–water mixture, the dependencies of primary nucleation
and growth kinetics upon relative supersaturation S are:



Table 2
Scalars calculated using user defined file in fluent.

j Variable Equation
used

1 p1 (12)
2 p (12)
3 p3 (12)
4 jh i3 (13)
5 p3 jh i3 (13)
6–12 p3 sih i3 (13)
13–42 fw,j (9)

Methanol/

Water

/Lovastati n 

Fig. 3. Entrance zone of coaxial nozzle.
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B ¼ Bhomogeneous þ Bheterogeneous

Bhomogeneous at 23oC =m3s
� � ¼ 6:97 � 1014exp

�15:8

½lnS�2
  !

Bheterogeneous at 23oC =m3s
� � ¼ 2:18 � 108exp

�0:994

½lnS�2
  ! (24)

G at 23oCðm=sÞ ¼ 8:33 � 10�30ð2:46 � 103lnSÞ6:7 (25)

According to Mahajan and Kirwan [43], crystal growth for the
lovastatin/methanol–water system is surface-integration limited,
and the growth rate is size-independent. Woo et al. [40] suggest
that secondary nucleation can be neglected due to the small solids
density in impinging jets, and this same assumption is made for the
coaxial mixer/crystallizer.

The simulation was carried out with methanol saturated with
lovastatin at 305 K in the outer inlet and liquid H2O at 293 K in the
inner inlet. The outer stream is designated as Environment 1 in the
micromixing model, while the inner stream is designated as
Environment 2. In the UDF file linked to Fluent (see Section 3),
methanol (MOH) is designated as the solvent, and the antisolvent
is pure liquid water. The material properties for the two input
streams and the mixed fluid, designated as Environment 3, are
computed by Fluent using appropriate mixture rules.

The density of lovastatin is 1273 kg/m3, and the volume shape
factor was assumed to be 0.000625. The population balance
equation was discretized into 30 bins for the longest growth axis,
with dr = 8 mm. The use of effective viscosity, as described in Woo
et al. [38], was omitted because the solid fraction was too small to
significantly affect the effective viscosity.

3. Fluent program and scope of calculations

3.1. Fluent

Calculations were performed by the computational fluid
dynamic (CFD) code Fluent [45], which is owned by Ansys [46].
The axisymmetric geometric design and spatial mesh of the coaxial
nozzle was built by Gambit of the pre-Ansys Fluent program,
although the DesignModeler feature of Ansys can also be used,
which provided the X–Y grid of cells, with X representing the axial
position and Y representing the radial or transverse position. The
proper turbulence model (standard k-epsilon with enhanced wall
treatment), the energy equation, and the species transport
equation were selected. The physical properties of the entering
fluids, methanol and water, were provided by built-in features of
Fluent, and the code also computes properties of the mixed fluid.

User-defined Function (UDF) files are used to link complex sub-
systems of equations into the overall FLUENT code. In the mixer/
crystallizer application, the PBE, crystallization kinetics, and
micromixing equations are linked to the CFD portion of the code
by a UDF. This portion of the code allows important changes to be
made without going through the lengthy setup steps in Fluent. Up
to three solvents and antisolvents can be handled, but the
calculations reported here involve only a single solvent and
antisolvent.

3.2. Scalars tracked by calculations

Table 2 lists the variables tracked in the CFD code using User
Defined Scalar (UDS) transport equations. The first three variables
are the volume fractions of the three environments, while the
fourth and fifth variables are the mixture fraction in Environment
3 and the weighted mixture fraction in Environment 3, respec-
tively. Since the UDSs have the ability to handle up to three solvents
and three antisolvents, the next seven UDSs are weighted
compositions of the mixture components (solutes, antisolvents,
and solvents). Since this particular study involves only one solute,
one antisolvent, and one solvent, only three of these UDSs will ever
be nonzero. The final thirty are the mass density functions in the
30 size bins.

3.3. Types of calculations

Simulations were performed using a 0.01816 m radius and 1.0 m
long coaxial nozzle. In the inlet zone, which is 0.1 m long, the
solvent/solute mixture was fed into the outer annulus (the method
and the code described in the manuscript are both general enough
to handle the case in which the position of the solvent/solute
mixture and antisolvent streams are switched). The inner radius of
this annulus was 0.007264 m, and the outer radius was 0.01816 m.
The antisolvent was fed into the inner tube, which had an inner
radius of 0.003911 m. The separation wall in the inlet zone was
tapered over the last 0.05 m to provide a small component of radial
velocity to the antisolvent stream. A diagram of the front portion of
the coaxial nozzle is shown in Fig. 3.

For the antisolvent stream, pure water was used, and the inlet
temperature was set 293 K. The temperature of the solvent/solute
(methanol/lovastatin) mixture was set at 305 K, which gives a
saturated concentration of lovastatin in pure methanol that is
0.0237 kg solute/kg solute free solvent higher than that at 293 K.
Heat transfer through the inner and outer tubes is neglected in the
simulations.

For the transient model, which can be run to achieve steady
state, the values of the flow variables and user-defined scalar
variables were set initially to describe antisolvent (pure water)
flowing through both regions of the nozzle. At time zero, the
solvent/solute stream was then started through the annular input
region.

Calculations reported in this paper represent two sets of
conditions. The first set of calculations begins with a solvent
(methanol) flow rate MFo of 0.707 kg/s and an antisolvent (water)
flow rate MFi of 0.368 kg/s. Subsequent calculations are made for
0.707 kg/s of methanol and increasing mass inputs of water:
MFo = 0.707 kg/s, MFi= 0.53 kg/s; MFo = 0.707 kg/s, MFi = 0.70 kg/s;
MFo = 0.707 kg/s, MFi= 0.80 kg/s; and MFo= 0.707 kg/s, MFi = 0.90



Table 3
Conditions for variable antisolvent to solvent ratio.

Methanol mass flow (kg/s) Water mass flow (kg/s) Residence time in mixing zone (s) Maximum turbulence Reynolds number % Solute
crystallized at X = 1.0 m

0.707 0.368 0.733 8206 58.11
0.707 0.510 0.659 12000 78.83
0.707 0.610 0.616 15287 78.23
0.707 0.700 0.581 18414 77.78
0.707 0.800 0.547 21855 77.31
0.707 0.900 0.516 25250 76.90
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kg/s. The second set of calculations involves holding the ratio of
antisolvent to solvent flow rates at 0.70–0.707. The total mass input
was changed to examine the effect of turbulence on crystallization.
The three pairs of input flow rates are: 0.536 kg/s methanol,
0.53 kg/s water; 0.707 kg/s methanol, 0.70 kg/s water; and
0.910 kg/s methanol, 0.90 kg/s water.

4. Results for variable antisolvent/solvent flow ratios

The ratio of inner (antisolvent fluid) flow to annular (solvent/
solute fluid) flow was increased to examine its effect crystalliza-
tion. Table 3 shows the nozzle flow conditions and percentage of
input solute that was crystallized.

The associated crystal size distributions corresponding to
various axial locations are plotted in Figs. 4–6. For lower water
to methanol flow ratios (0.368–0.700 kg/s CH3OH to 0.707 kg/s
H2O), the crystal size distribution (CSD) is biased toward the
smaller sizes. At higher flow ratios, 0.80–0.90 kg/s H2O to 0.707 kg/
s of methanol, the CSD is less dominated by smaller crystals, and
the larger-size ranges increase in population density. This could be
due to the increased turbulence from a higher total flow rate,
which provides rigorous mixing and higher concentration of
antisolvent fluid in the crystallization zone. The higher
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Fig. 4. Crystal size distribution at axial position X = 0.12 m for methanol (solvent) flow rat
on a semi-logarithmic scale, and the number density function in the last bin is more than
fraction of crystals that could grow out of the range of 0–240 mm is negligible.
concentration of antisolvent plays a role in accelerating crystalli-
zation by decreasing the saturated concentration of lovastatin (see
Eq. (22)), thus contributing more to supersaturation. For an
antisolvent flow rate of 0.900 kg/s, there is a slight dilution of the
solute concentration by the additional antisolvent, but the net
effect is an increase in relative supersaturation and enhanced
nucleation and crystallization. The increased flow rate also
corresponds to a moderately shorter residence time, yielding
slightly less crystallization, as shown in Table 3.

As the antisolvent to solvent/solute ratio changed in addition to
the total fluid flow rate, it is difficult to determine the effect of the
latter on mixing and crystallization. This uncertainty led to the
computations discussed in Section 5.

5. Results for variable total mass flow rates

5.1. Comparisons

Table 4 gives various total mass flow rates for the solvent and
antisolvent flow rates with the antisolvent/solvent ratio held
constant at 0.99, which ensures adequate antisolvent according to
Table 3. The purpose was to show the effect that turbulence had on
mixing and crystallization. Contour plots are given for several
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e MFo = 0.707 kg/s and various values of water (antisolvent) flow rate MFi. The plot is
 6 orders of magnitude smaller than the value of the function in the first bin so the
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Fig. 5. Crystal size distribution at axial position X = 0.135 m for methanol (solvent) flow rate MFo= 0.707 kg/s and various values of water (antisolvent) flow rate MFi. The plot is
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Table 4
Conditions for variable total mass flow rate.

Methanol mass flow (kg/s) Water mass flow
(kg/s)

Residence time in mixing zone (s) Maximum turbulence Reynolds number % Solute
crystallized at
X = 0.1 m

0.536 0.53 0.767 14152 79.47
0.707 0.70 0.581 18414 77.78
0.909 0.90 0.452 23947 76.93

Fig. 7. Local turbulent Reynolds number in coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet:
water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.

Fig. 8. Mean mixture fraction jh i3 in coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet:
water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.
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important variables in Figs. 7–17. For purposes of illustration, the Y
(or transverse) dimension has been expanded by a factor of 5 in
order to make the contours more visible to the reader. Also, as the
system is axisymmetric, only half of the mixer is shown. The center
line of the mixer (Y = 0) is the lower boundary, and the mixer wall
(Y = 0.01816 m) is the upper boundary. The axial length of the mixer
is 1.0 m, but the entrance zone for the unmixed streams is 0.1 m,
leaving 0.9 m for actual mixing. To compare the effect of input mass
flow rate, results for two inlet conditions are shown. These
conditions are: inner mass flow rate = 0.53 kg/s, annular mass flow



Fig. 9. Volume fraction p3 of the mixed environment in coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner
inlet: water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.
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rate = 0.536 kg/s; and inner mass flow rate = 0.90 kg/s, annular
mass flow rate = 0.909 kg/s. These two sets of flow rates, with a
constant ratio of antisolvent to solvent flow of 0.99, correspond to
total residence times in the mixing zone of the coaxial nozzle of
0.767 and 0.452 s, respectively. Thus, any axial position in a contour
plot for the higher flow rate will correspond to a shorter residence
time than the same axial position for the lower flow rate. In order
to compare the coaxial nozzle results to the impinging jet
calculations of Woo et al. [40], which involved short residence
times, key variables were sampled at locations just downstream of
the mixing junction in the nozzle. The shorter residence times
corresponding to these locations are in the range of those used for
the impinging jet mixer.
Fig. 10. Solute concentration c, (kg/kg solvents), in coaxial nozzle at steady state for diff
inlet: water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boun
5.2. Mixing

The local turbulent Reynolds number in the coaxial nozzle is
shown in Fig. 7, which has the same qualitative trend as impinging
jet calculations [40,65,66]. As expected, the magnitude of
turbulence increases with input mass flow, maximizing at about
X = 0.21 m and Y = 0.0 m in both cases. As the length of the inner
tube is 0.101 m, X = 0.21 m corresponds to a mixing length of
0.109 m and residence times of 0.092 and 0.054 s, respectively, for
the lower and higher mass flow rates. As expected, turbulence is
minimal at the tube wall, due to the no-slip condition.

As in the case of impinging jets, micro-mixing of the two input
fluids is rapid. As the mixed fluid, Environment 3, begins to form at
the junction of the inner and outer fluids, the fraction jh i3 of the
erent total mass input rates (outer inlet: methanol saturated with lovastatin, inner
dary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.



Fig. 11. Antisolvent concentration as (kg/m3
3) within environment 3 in coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with

lovastatin, inner inlet: water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.
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mixed fluid that is formed from Environment 1 is higher in the
outer region of the nozzle, as expected (see Fig. 8). For the higher
input flow conditions, the mixing is faster and more extensive,
requiring a mixing time of only 0.085 s to achieve the completely
mixed value (called the stoichiometric value) of jh i3 ¼ 0:51, as
compared to the 0.112 s required in the low flow case. In either case,
less than 0.194 m (or a fifth) of the mixing zone is required for
complete mixing.

As shown in Fig. 9, the volume fraction p3 of the mixed
environment, mass-averaged over the cross-section, reaches
0.95 at X = 0.31 m for the low input flow case, which corresponds
to a residence time of 0.173 s. For the high input flow rate, the
residence time required to achieve a mass-based cross-sectional
average of 0.95 for p3 (at X = 0.41 m) is only 0.155 s, thus showing
that increased turbulence enhances micro-mixing.
Fig.12. Saturated solute concentration c* (kg/kg solvents) in coaxial nozzle at steady state
inner inlet: water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower
5.3. Crystallization dynamics

As shown in Fig. 10, the solute concentration c declines more
quickly down the crystallizer for the lesser flow case than the
higher flow case, which is expected because the residence time is
higher for the former condition. The antisolvent concentration is
presented in Fig. 11, while contours for the saturated solute
concentration c* are illustrated in Fig. 12. Just downstream of the
junction of the two inlets, the antisolvent (Environment 2) is
sufficiently mixed with the solution (Environment 1), so c* drops
by an order of magnitude, in agreement with Eq. (22). The relative
supersaturation S, shown in Fig. 13, has a contour pattern that is
obviously correlated with antisolvent concentration, as does the
nucleation rate B (Fig. 14), and the crystal growth rate G (Fig. 15).
The latter two correlations are expected due to Eqs. (24) and (25).
 for different total mass input rates (outer inlet: methanol saturated with lovastatin,
 boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.



Fig. 13. Supersaturation S (= c/c*) in the coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet: water,
water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.
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All these variables reach their maxima on the nozzle axis (center),
and slightly downstream of the mixing junction. At the higher
input mass flow rate, the equivalent residence times are greater at
any given axial location X; thus, the maximal regions of B and G are
more spread out spatially.

The total mass density of crystals
Pj¼Ncell

j¼1 f w;j is shown in Fig. 16.

Not surprisingly, the distance required to achieve a total mass
density of 24 kg/m3 is larger for the higher input rate. As indicated
in Table 4, only 76.9–79.5% of crystallization is accomplished
within X = 1.0 m. In order to achieve more complete crystallization,
it is obvious that the nozzle length will need to be increased to
provide more residence time, or the nozzle output should be
discharged into a holding tank.
Fig. 14. Nucleation rate B (#/s m3) in the coaxial nozzle at steady state for different total 

water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle
5.4. Temperature and heats of mixing and crystallization

Temperature contours for the two total flow rates are compared
in Fig. 17. Other than turbulent diffusion, three major phenomena
are responsible for the spatial variation in temperature: (1) mixing
of warmer and colder fluids entering the mixing tube; (2) heat of
mixing due to disruption of H2O–H2O intermolecular forces by
intruding CH3OH molecules; and (3) heat released by crystalliza-
tion of lovastatin from the methanol–water mixture.

Recall that the entrance temperature of the solute-containing
fluid is 305 K, while that of the antisolvent-containing fluid is
293 K. As the two input fluids mix, the solute is exposed not only to
antisolvent but to a lower temperature as well. Both effects lower
solubility of the solute. Heats of mixing and crystallization negate
mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet: water,
 axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.



Fig. 15. Crystal growth rate G (mm/s) in the coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet:
water, water to methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.
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some of the lowering of solubility by slightly increasing tempera-
ture in Environment 3. The maximum increase of temperature due
to the mixing of methanol with water is 6.5 K, while that due to the
heat of crystallization is 0.8 K.

As shown in Fig. 17, a higher maximum temperature occurs for
the higher flow rate, which can be attributed to the greater delivery
of solute, solvent and antisolvent per unit volume. In both cases,
however, the region of maximum temperature is small. This results
from the rapid turbulent dispersion of heat near this region which
limits the effective temperature rise. At the point of initial mixing
(X = 0.1 m), the heat of mixing increases the temperature of
Environment 3 to just under 309 K. Further equilibration by
mixing drops the temperature to 304 K at X = 0.2 m.
Fig. 16. Total mass density of crystals
Pj¼Ncell

j¼1 f w;jin the coaxial nozzle at steady sta
lovastatin, inner inlet: water, water to methanol ratio = 0.99). Upper boundary (
length = 1.0 m.
5.5. Effect of mass input rate on crystal size distribution

For three total mass input flow rates, all with an antisolvent to
solvent flow ratio of 0.99, Figs. 18–22 show the cross-sectionally
averaged crystal size distribution (CSD) at axial locations X = 0.12,
0.135, and 0.15 m, respectively, within the coaxial nozzle. The
monotonically decreasing shape of the CSD resembles that of the
simulations by Woo et al. [39] and also the experimental CSD of
Mahajan and Kirwan [2] for an unconfined impinging jet. The
lower the mass throughput, the longer is the residence time
available for nucleation and crystal growth. Thus, CSD increases in
breadth and magnitude as mass input rates decrease. Of course,
crystal enlargement proceeds as the fluid mixture travels through
the nozzle. As the axial location increases, the difference in CSD
te for different total mass input rates (outer inlet: methanol saturated with
outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle



Fig. 17. Temperature T (K) in coaxial nozzle at steady state for different total mass input rates (outer inlet: methanol saturated with lovastatin, inner inlet: water, water to
methanol ratio = 0.99). Upper boundary (outer wall). Lower boundary (nozzle axis). Nozzle radius = 0.01816 m, Nozzle length = 1.0 m.

226 C. Pirkle et al. / Chemical Engineering and Processing 97 (2015) 213–232
with respect to input flow rate becomes less discernible, especially
for lower crystal sizes.

Figs. 21 and 22 compare the crystal size distributions for various
throughputs for fixed residence times of 0.01 and 0.02, respec-
tively, which clearly show how an increase in residence time
broadens the CSD. Also, even at the same residence time, the
higher throughputs yield a sharper CSD, which agrees with
experiments in unconfined impinging jets [2]. Table 4 shows that
the percentage of solute converted to crystals declines only slightly
with throughput, in spite of much lower residence times, which is
due to the increased turbulent mixing of antisolvent with solvent.
Fig. 18. Crystal size distribution at axial position X = 0.120 m for water (antisolven
6. Effect of mixer diameter upon crystallization

Turbulent transport properties could be affected by increasing
the mixer diameter, all other conditions being equal. By holding
input mass fluxes (in kg/m2 s) constant and increasing the mixer
diameter 10 and 20 percent from the base-case diameter
0.03632 m, calculations were made to determine the effect of
the transverse dimensions on crystallization. That is, how adequate
is transport in the radial direction. Table 5 shows the mixer
parameters and the resulting crystallization percentage. Crystal
size distributions corresponding to the three diameters are plotted
in Figs. 23 and 24 for X = 0.12 m and X = 1.0 m, respectively.
t) to methanol (solvent) flow ratio of 0.99 and various total mass flow rates.



Fig. 19. Crystal size distribution at axial position X = 0.135 m for water (antisolvent) to methanol (solvent) flow ratio of 0.99 and various total mass flow rates.
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Although there is some difference in CSD with respect to mixer
diameter at X = 0.12 m, there is little difference at X 	 1.0 m. For the
flow conditions in Table 5, the results indicate that the turbulent
transport parameters responsible for transport in the transverse
direction are sufficiently high to overcome the effect of transport
distances in the diameter range 3.6320–4.3584 cm.
Fig. 20. Crystal size distribution at axial position X = 0.150 m for water (antisolven
7. Summary and conclusions

The results in this paper on the simulation of mixing and
crystallization within a coaxial mixer are:

1. A simulation algorithm that couples macromixing and micro-
mixing models with the solution to the full spatially-varying
population balance equation (PBE) was implemented for a
t) to methanol (solvent) flow ratio of 0.99 and various total mass flow rates.



Fig. 21. Crystal size distribution at axial position tres = 0.01 s for water (antisolvent) to methanol (solvent) flow ratio of 0.99 and various total mass flow rates.
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coaxial mixer via a Fluent user-defined function (UDF) file. The
CFD-micromixing-PBE model computes the crystal size distri-
bution throughout the crystallizer while taking into account the
different mixing time and length scales. Crystal nucleation,
growth, and dissolution kinetics were included in the model. An
energy equation was incorporated to compute the temperature
at every location and time in the mixer.

2. The UDF file was designed so that the user can readily replace
the model parameters, including physical properties for
Fig. 22. Crystal size distribution at axial position tres = 0.02 s for water (antisolven
antisolvent and solvent components. In the simulation results
presented in this paper, the solvent was methanol and the
antisolvent was liquid water.

3. Steady-state simulations were carried out by integrating the
transient model equations until all of the variables converged to
their steady-state values. Appropriate settings were found for the
Fluent SETUP code that enabled stable and accurate calculations.

4. Simulation results were presented for the application of the
CFD-micromixing-PBE code to antisolvent crystallization within
t) to methanol (solvent) flow ratio of 0.99 and various total mass flow rates.



Table 5
Effect of mixer diameter on crystallization.

Base diameter case 10% Larger diameter case 20% Larger diameter case

Mixer length, m 1 1 1
Mixer diameter, cm 3.6320 3.9952 4.3584
Annular mass flux, kg/m2 s 829 829 829
Inner mass flux, kg/m2 s 11626 11626 11626
Annular hydraulic diameter, m 0.021079 0.023186 0.025294
Inner hydraulic diameter, m 0.008756 0.009631 0.010507
Annular turbulent intensity, % 4.379 4.327 4.280
Inner turbulent intensity, % 3.787 3.742 3.702
Percentage solute
Crystallized at X = 1.0 m

77.78 77.58 77.36

Fig. 23. Crystal size distribution at axial position X = 0.120 m for water (antisolvent) to methanol (solvent) flow ratio of 0.99, annular mass flux = 829 kg/m2 s, inner mass
flux = 11626 kg/m2 s, and various mixing nozzle diameters.

Fig. 24. Crystal size distribution at axial position X = 1.0 m for water (antisolvent) to methanol (solvent) flow ratio of 0.99, annular mass flux = 829 kg/m2 s, inner mass
flux = 11626 kg/m2 s, and various mixing nozzle diameters.
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a coaxial nozzle mixer. The model used solubility and
crystallization kinetics for lovastatin that were available in
the literature.

5. The simulations indicated the effect that operating conditions
had upon total crystallization and crystal size distribution.

This detailed simulation of coaxial crystallizers parallels that
done for impinging jet crystallizers. The results demonstrate the
possibility of influencing crystal size distribution by adjusting
operating conditions (such as inlet stream velocities) of the coaxial
crystallizer. Such simulations can facilitate development in the
pharmaceutical industry by providing a more insight into the
crystallization process, and by reducing the number of experi-
ments required to determine optimal operating conditions. This, in
turn, reduces the quantity of active pharmaceutical ingredient
(API) needed for the experiments. Consequently, the crystallizer
process design can be performed much earlier during the drug
development process, where a limited quantity of API is available.
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Appendix A.

Nomenclature
Ac Crystal surface area (m2)

asj Concentration of antisolvent j in Environment 3ðkg=m3
3Þ

b Nucleation rate exponent
B Nucleation rate (#/m3 s)
c Concentration of solute (kg/m3 or kg/kg)
c* Solubility or saturation concentration (kg/m3 or kg/kg)
Dc Supersaturation (kg/m3 or kg/kg)
ci Interfacial concentration (kg/m3)
Cp,3 Specific heat of Environment 3, kJ/kg
Cm Constant in turbulent viscosity expression
D,Dm Diffusion coefficient or laminar diffusivity (m2/s)
dp Particle size (mc)
Dt Turbulent diffusivity (m2/s)
f Number density function (#/mcm3)
F Target number density function (#/m)
fr Derivative of number density function (#/mc

2m3)
fw Mass density function (kg/mcm3)
f’ Joint probability function of all scalars
g Growth rate exponent
~g Gravitational acceleration (m/s2)
G Growth rate (m/s)
G(p) Rate of change of p = (p1 p2 � � � pNe) due to micromixing
Gs(p) Term to eliminate spurious dissipation rate in Eq. (12)
h Enthalpy per unit volume, kJ/m3

i Exponent for solute integration
k Turbulent kinetic energy (m2/s2) in turbulence and

micromixing equations and Boltzmann’s constant in
nucleation rate expression

K Tradeoff ratio between growth and nucleation rates
((mm/s)/(#/m3 s))

k1, k2 Reaction rate constant (m3/mol s)
kb Nucleation rate prefactor (#/m3 s (kg/kg)b)
ka Area shape factor
kd Mass transfer coefficient (m/s)
kg Growth rate prefactor (m/s (kg/kg)g)
ki Integration rate constant (m3i�1/kgi�1 s)
kv Volume shape factor
L Crystal size (mm)
Mn Rate of change of sh in due to micromixing
Mn

s Term to eliminate spurious dissipation rate in Eq. (13)
m Mass (kg)
_m Mass flow rate (kg/s)
MWH2O Molecular weight of water, kg/kmol
MWsolute Molecular weight of solute, kg/kmol
NA Avogadro’s number
N Number of particle size cells or bins
Ne Number of probability modes or environments
Ns Total number of scalars (species)
p Pressure (Pa) in momentum conservation equation
pn Probability of mode n or volume fraction of Environment

n in micromixing model
r Crystal size (m)
r0 Nuclei size (m)
Dr Discretized bin size for crystal size (m)
Re Reynolds number
sh in Weighted concentration of mean composition of scalars

w in mode n
S Relative supersaturation = Dc/c*
Sas User-defined source term of antisolvent concentration

(kg/m3 s)
Sfw,j User-defined source term of crystal mass density in the

jth bin (kg/mcm3 s)
Ss User-defined source term of solvent concentration (kg/

m3 s)
Se User-defined source term for dissipation rate of turbu-

lent kinetic energy
Sk User-defined source term for turbulent kinetic energy
Sc Schmidt number
Sct Turbulent Schmidt number
Sh Sherwood number
t Time (s)
T Temperature (
C)
tI Induction time (s)
tM Micromixing time (s)
ts Sampling time (s)
v Molar volume in nucleation rate expression (m3/mol)
V Velocity vector (m/s)
V Volume fraction of antisolvent
w Antisolvent mass percent (%)
x Spatial position vector (m)
X Reaction conversion
XA Fraction of polymorph A

Special units
m Length unit (meter) in mixer/crystallizer
mc Length unit (meter) in crystal
m3 Length unit (meter) in Environment 3

Symbols
a Scalar
b Geometric shape factor
Dc supersaturation = c – c*
e Turbulent kinetic energy dissipation rate (m2/s3)
ej Scalar dissipation rate (1/s)
f Volume fraction of solids in an effective viscosity expression
fk Scalar
fh i Mean composition of a scalar in an environment
r3 Fluid density of Environment 3
g Interfacial tension [N/m]
lk Kolmogoroff length scale
m Viscosity (kg/m s) effective viscosity of suspension (kg/m s)

in effective viscosity expression
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mn nth moment of number density function
ms Viscosity of suspending medium (kg/m s)
mt Viscosity (kg/m s)
u Constant in minmod limiter
uj Parameter value
r Density (kg/m3)
rc Crystal density (kg/m3)
se Turbulent Prandtl number for turbulent kinetic energy

dissipation rate
sk Turbulent Prandtl number for turbulent kinetic energy
t Stress tensor (kg/m s2)
n Kinematic viscosity (m2/s)
jh i Mixture fraction
j02
� 


Mixture fraction variance
c A dummy variable
ca An element of c corresponding to the scalar a

Subscripts
i Crystal dimension in population balance equation Instance for

dropping seed crystals
c Denotes crystal property
j Discretized bin for crystal size in population balance equation
n Environment in micromixing model Order of moment

Appendix B.

High-Resolution, Finite-Volume, Semidiscrete Central Schemes

High-resolution finite-volume methods have been investigated
primarily in the applied mathematics and computational physics
literature [52]. These methods provide high accuracy for simulat-
ing hyperbolic conservation laws while reducing numerical
diffusion and eliminating nonphysical oscillations that can occur
with classical methods. Being in the class of finite volume methods,
such methods are conservative, which ensures the accurate
tracking of discontinuities and preserves the total mass within
the computational domain subject to the applied boundary
conditions. Another advantage is that these numerical schemes
can be easily extended to solve multidimensional and variable-
coefficient conservation laws.

High-resolution central schemes for nonlinear conservation
laws, starting from the NT scheme of Nessyahu and Tadmor [62],
have the advantages of retaining the simplicity of the Riemann-
solver-free approach, while achieving at least second-order
accuracy. Kurganov and Tadmor [63] and Kurganov et al. [64]
extended the NT scheme to reduce numerical viscosity (nonphysi-
cal smoothing of the numerical solution) arising from discrete
approximations of the advection term. This KT high-resolution
finite-volume central scheme accumulates less dissipation for a
fixed Dy as compared to the NT scheme, and can be used efficiently
with small time steps since the numerical viscosity is independent
of (1/Dt). The limiting case, Dt ! 0, results in the second-order
semidiscrete version. In addition, the KT method satisfies the scalar
total-variation-diminishing (TVD) property with minmod recon-
struction, which implies that the nonphysical oscillations that
occur with many second-order accurate numerical methods
cannot occur with this method. The KT semidiscrete scheme is
particularly effective when combined with high-order ODE solvers
for the time evolution.

Consider the nonlinear conservation law,

@
@
uðy; tÞ þ @

@y
qðuðy; tÞÞ ¼ 0 (B.1)
The semidiscrete central scheme of Kurganov and Tadmor [63]
is classified as a finite-volume method, since it involves keeping
track of the integral of u over each grid cell. The use of cell averages,

ujðtÞ ¼ 1
Dy

Z yjþ1=2

yj�1=2

uðy; tÞdy; (B.2)

to represent computed values, where Dy ¼ yjþ1=2 � yj�1=2, ensures
that the numerical method is conservative. The second-order
semidiscrete scheme admits the conservative form:

d
dt
ujðtÞ ¼ �Hjþ1=2ðtÞ � Hj�1=2ðtÞ

Dy
(B.3)

with the numerical flux

Hjþ1=2ðtÞ :

¼
qðuþ

jþ1=2ðtÞÞ þ qðuþ
jþ1=2ðtÞÞ

2
� ajþ1=2

2
½uþ

jþ1=2ðtÞ � u�
jþ1=2ðtÞ� (B.4)

and the intermediate values given by

uþ
jþ1=2 :¼ ðujþ1=2ðtÞ �Dy

2
ðuyÞjþ1ðtÞ

uþ
jþ1=2 :¼ ðujðtÞ �Dy

2
ðuyÞjðtÞ

while the local propagation of speeds, for the scalar case, is

ajþ1=2ðtÞ :¼ max
u2½u�

jþ1=2ðtÞ;uþ
jþy2ðtÞ�

jq0ðu�
jþ1=2ðtÞÞj (B.6)

The derivatives are approximated with the minmod limiter:

ðuyÞnj :¼ minmond u
un
j � un

j�1

Dy
;
un
jþ1 � un

j�1

2Dy
;
un
jþ1 � un

j

Dy

  !
1�u�2

(B.7)

which is defined as

minmondða1; a2; . . .Þ ¼

minfaigi
maxfaigi

ifai > 08i
ifai > 08i

0 otherwise

8>>>>>><
>>>>>>:

(B.8)

Selecting the value of u = 1 results in nonphysical smoothing of the
numerical solution. A value of u = 2 results in minimal nonphysical
smoothing, but can introduce some nonphysical oscillation. The
value u = 1.5 is commonly selected to trade off minimizing the
amount of nonphysical dissipation/smoothing with minimizing
nonphysical oscillation. More details on such limiters can be found
in the above References
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