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Abstract

Lithium-ion battery packs are usually composed of hundreds of cells arranged in

series and parallel connections. The proper functioning of these complex devices

requires suitable Battery Management Systems (BMSs). Advanced BMSs rely

on mathematical models to assure safety and high performance. While many

approaches have been proposed for the management of single cells, the control of

multiple cells has been less investigated and usually relies on simplified models

such as equivalent circuit models. This paper addresses the management of a

battery pack in which each cell is explicitly modelled as the Single Particle Model

with electrolyte and thermal dynamics. A nonlinear Model Predictive Control

(MPC) is presented for optimally charging the battery pack while taking volt-

age and temperature limits on each cell into account. Since the computational

cost of nonlinear MPC grows significantly with the complexity of the underly-

ing model, a sensitivity-based MPC (sMPC) is proposed, in which the model
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adopted is obtained by linearizing the dynamics along a nominal trajectory that

is updated over time. The resulting sMPC optimizations are quadratic programs

which can be solved in real-time even for large battery packs (e.g. fully electric

motorbike with 156 cells) while achieving the same performance of the nonlinear

MPC.

Keywords: Lithium-ion batteries, Battery management systems, Advanced

battery management systems, Model predictive control, Predictive control

1. Introduction

Electric vehicle battery packs usually consist of several cells which are ar-

ranged in series and parallel connections in order to meet power and capacity

requirements. The proper functioning of these complex devices requires Battery

Management Systems (BMSs) [1]. One of the main tasks of a BMS is to safely

charge the battery. This objective is usually addressed through standard pro-

tocols, such as Constant Current or Constant Current–Constant Voltage [2, 3].

These methods rely on fixed voltage limits that assure reasonable performance

for each cell composing the pack over its lifetime. In practice, these approaches

lead to a suboptimal exploitation of the battery, in which some cells are under-

charged and some are overcharged. As a consequence, some cells may experience

fast degradation, thermal runaway, and, in certain cases, even explosions. These

problems can be significantly alleviated if advanced BMSs, which rely on math-

ematical models of the pack, are employed [4].

In this work, we focus on batteries based on lithium-ion chemistries which,

thanks to their unique characteristics, have proven to be the most promising

energy accumulators for many applications [5, 6]. Within this context, the

two main categories of cell models employed in advanced BMSs are: Equiv-

alent Circuit Models (ECMs, [7]) and Electrochemical Models (EMs, [8, 9]).

While the former are simple and intuitive, the latter provide a detailed descrip-

tion of the electrochemical phenomena which occur inside a cell. Among the

EMs, the Pseudo-Two-Dimensional (P2D) model [10] – also known as Doyle-
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Fuller-Newman – is the most widely used. This model consists of coupled and

nonlinear Partial Differential Algebraic Equations (PDAEs). Due to its high

computational cost, the P2D is more suited for simulation purposes rather than

for on-board control applications. Moreover, the use of the P2D model within a

control framework is limited by identifiability and observability issues [11, 12].

For all these reasons, the research community has been interested in the de-

velopment of simplified electrochemical models, which are faster to simulate,

are identifiable and observable, and still provide a reasonable description of the

internal cell phenomena [13]. Among them, the Single Particle Model (SPM)

[14, 9]), which is derived from the P2D by modelling the electrodes as single

particles, has received a lot of attention. The parameters in the SPM are fit

to input-output data from the battery. The parameter identifiability and state

observability of the SPM have been analyzed in several works, e.g. [15, 16, 17].

While the SPM has much lower computational cost than the P2D, which is an

advantage for control purposes, the SPM neglects electrolyte, thermal, and age-

ing dynamics. The model fidelity has been increased by extending the SPM to

include electrolyte dynamics (SPMe) [18] and thermal dynamics (SPMeT) [19].

The model-based charging of lithium-ion batteries has been addressed by

many authors over the years. Most of the literature focuses on the control of

a single lithium-ion cell. Within this context, different control approaches have

been considered, such as fuzzy logic [20, 21, 22, 23], empirical rules [24, 25, 26,

27], and optimization-based strategies [28, 29, 30, 31, 32, 19, 33, 34]. Model

Predictive Control (MPC) [35, 36] appears to be the most used optimization-

based methodology for charging of cells [37, 29, 31, 32, 38, 39, 33, 40, 41, 42, 43].

MPC is particularly appropriate for controlling multivariable nonlinear systems

while taking an objective function and constraints on both inputs and states into

account. In the context of lithium-ion cells, MPC aims to minimize the charging

time while satisfying temperature and voltage constraints. In particular, the

works in [37, 31, 43] have proposed MPC strategies based on ECMs, while [29,

33, 42, 41] have suggested the use of electrochemical models together with MPC

in order to achieve better performance. In order to alleviate the complexity of
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physics-based models, input-output descriptions have been used in combination

with MPC in [32] and [38]. In particular, [32] relied on a linear input-output

model, while a piecewise Auto Regressive Exogenous (ARX) input-output model

was proposed in [38]. Finally, in order to achieve a reasonable tradeoff between

computational time and accuracy in the prediction, the usage of Linear Time

Varying (LTV) models for MPC has been addressed [39, 40]. The works listed

above focused on the charging of a single lithium-ion cell.

Batteries composed of several cells are necessary in many applications, such

as hybrid electric vehicles. The optimal charging of battery packs has been less

investigated than the case of single cells. In particular, most of the available lit-

erature relies, as control models, on very simple lumped ECMs (see e.g. [44, 45]).

Few works tackle the optimal control of lithium-ion batteries by directly mod-

elling each cell individually. This level of detail is necessary in important tasks

such as the model-based State of Charge (SOC) balancing of series-connected

cells [46, 47, 48, 49, 50, 51]. Most of the research produced in this area relies on

linear ECMs for each cell (with the exception of [51] which is based on the SP-

MeT). The usage of such models in the battery optimal control context has the

advantage of a low computational cost, which allows for real-time implementa-

tion even in the case of a high number of cells. On the other side, simple linear

models often fail to grasp the real behaviour of the battery pack. As a conse-

quence, the resulting charging may be suboptimal and may not even satisfy the

safety constraints on all the different cells. The use of electrochemical models

within a control framework would be a possibility, but comes at the price of a

prohibitive computational cost. As a compromise, the use of linearized electro-

chemical models seems promising in order to achieve high performance with a

reasonable computational load.

In this work, we consider a battery pack composed by series-connected mod-

ules, each of which are constituted of parallel-connected cells modelled according

to the SPMeT. The resulting model consists of a set of nonlinear Differential

Algebraic Equations (DAEs), for which suitable linearization methods are ap-

plied. In the following, in order to provide high accuracy for the model used for
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the control, we rely on a sensitivity-based linearization method, which has been

described in detail in [52, 53] for a system of Ordinary Differential Equations

(ODE) and here extended to the case of a system of DAEs. Such an approach

differs from standard LTV techniques [54], since the sensitivities of the states

and outputs to input variations are continuously integrated together with the

model equations rather than evaluated only at discrete time steps.

The main contribution of this work is the application of a sensitivity-based

linear MPC to the management of large battery packs, taking into account safety

constraints (such as temperature and voltage limits) on all the different cells.

To the best of our knowledge, this is the first time that such an approach is used

in the context of the control of battery packs. As shown in the Results section, a

detailed analysis is conducted by comparing a standard nonlinear MPC and the

Constant-Current Constant-Voltage algorithm with the proposed sensitivity-

based MPC over an increasing number of series and parallel connected cells.

The sensitivity-based MPC has much lower computational cost than nonlinear

MPC while achieving comparable performance. Since the choice of the nominal

trajectory is fundamental in order to obtain an accurate linearization, we also

provide an adaptive method in order to update the nominal trajectory during the

charge. In addition, the need for an optimal management of the different cells is

made evident by highlighting the disadvantages of standard charging protocols,

such as the CC-CV. The value of the proposed methodology is demonstrated by

application to the optimal management of an electric motorbike battery pack

composed by 156 cells. In this application, the sensitivity-based MPC provides

optimal performance with a computational cost compatible with the sampling

time.

The paper is organized as follows. Section 2 recalls the equations of the model

used in the control algorithm, while Section 3 proposes the sensitivity-based

model predictive control algorithm. The adapting of this MPC formulation for

the context of lithium-ion batteries and the main results are provided in Section

4. Finally, Section 5 concludes the paper.
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2. Model

In this section, the main equations of the simplified electrochemical model

proposed in [51] are recalled. The latter consist of a reduction of the P2D [10]

model which is detailed but also suitable for control purposes. In particular,

starting from the SPMe [18], the Partial Differential Equation (PDE) which de-

scribes the diffusion of ions within the electrolyte is spatially discretized accord-

ing to the finite volume method [55]. Moreover, a polynomial approximation

of the ion concentration along the radial axis of each electrode is considered

in order to reduce the Fick’s laws into Ordinary Differential Equations (ODEs)

[56], as previously done in the context of SPMe by [57]. In addition, the thermal

dynamics are described by adapting the equations proposed in [19, 58], where

the heat generated by the cell is transferred to a proper cooling system. The

cell model is presented in Section 2.1, while the equations of the battery pack

model are given in Section 2.2.

2.1. Model of a Single Cell

In this subsection, the index j ∈ {p, s, n} refers to all the cell sections, while

the index i ∈ {p, n} is used in equations valid only for the electrodes. The

independent variables x ∈ R and r ∈ R are the axial and radial coordinates

respectively, and t ∈ R is the time. According to the approximation in [56],

the ion concentration along the radial axis r of each electrode is described by

a fourth-order polynomial function of r. This approach results in coefficients

that are functions of the solid average concentration c̄s,i(t) and the average

concentration flux q̄i(t). In the following, we introduce the dynamics of such

variables that are necessary for reconstructing the value of the ion concentration

along the radial axis. Consider the average stoichiometry in the electrodes

defined by

θ̄i(t) =
c̄s,i(t)

cmax
s,i

(1)

where cmax
s,i is the maximum solid concentration. Relying on the fact that the

moles of lithium in the solid phase are preserved [15], the average stoichiometry
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in the anode can be expressed in terms of the cathode by

θ̄n(t) = θ0%n +
θ̄p(t)− θ0%p
θ100%p − θ0%p

(θ100%n − θ0%n ) (2)

where θ0%i and θ100%i represent the value of the stoichiometries respectively

when the cell is fully discharged and completely charged. From [56], the tem-

poral evolution of the average stoichiometry in the positive electrode can be

approximated by

˙̄θp(t) =
3Iapp(t)

apRp,pLpFA
(3)

where Iapp(t) is the applied current input (defined as being negative during

charging by convention), Rp,i is the particle radius, Lj is the thickness of the

jth section, F is the Faraday constant, A is the contact area between solid and

electrolyte phase, and ai =
3ǫact

i

Rp,i
is the specific active surface area, with the

active material volume fraction ǫacti defined by

ǫactp = −
C

∆θpAFLpcmax
s,p

(4a)

ǫactn =
C

∆θnAFLncmax
s,n

(4b)

in which C is the cell capacity and ∆θi = θ100%i − θ0%i . In accordance with [56],

the volume-averaged concentration fluxes can be described by

˙̄qp(t) = −30
Ds,p(T (t))

R2
p,p

q̄p(t) +
45

2R2
p,pFALpap

Iapp(t) (5a)

˙̄qn(t) = −30
Ds,n(T (t))

R2
p,n

q̄n(t)−
45

2R2
p,nFALnan

Iapp(t) (5b)

where

Ds,i(T (t)) = D0
s,ie

−Ea,Ds,i

RT (t) (6)

is the solid diffusion coefficient for the ith section which depends on the cell

temperature T (t) according to the Arrenhius law, D0
s,i is a pre-exponential co-

efficient which is assumed to be constant, Ea,Ds,i
is the activation energy associ-

ated with the parameter Ds,i(T (t)), and R is the universal gas constant. Then,
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in accordance with [56], the surface stoichiometries in the positive and negative

electrodes are respectively given by the algebraic equations

θp(t) = θ̄p(t) +
8Rp,pq̄p(t)

35cmax
s,p

+
Rp,pIapp(t)

35Ds,p(T (t))FALpapcmax
s,p

(7a)

θn(t) = θ̄n(t) +
8Rp,nq̄n(t)

35cmax
s,n

−
Rp,nIapp(t)

35Ds,n(T (t))FALnancmax
s,n

(7b)

Finally, the state of charge SOC(t) is defined as

SOC(t) = 100
θ̄n(t)− θ0%n
θ100%n − θ0%n

(8)

In this work, the PDEs governing the diffusion of the electrolyte concentra-

tion ce,j(x, t) [18] are discretized according to the FV method, as previously done

in this context by the authors in [59], where the spatial domain is divided into P

non-overlapping volumes for each section. The kth volume, with k = 1, · · · , P ,

of the jth section is centered at the spatial coordinate xj,k and spans the interval

Ωj,k =
[

xj,k̄, xj,k

]

, whose width is ∆xj = Lj/P . Defining c
[k]
e,j(t) as the average

electrolyte concentration over the kth volume of jth section gives

ǫp
∂c

[k]
e,p(t)

∂t
=

[

D̃e(x, T (t))

∆xp

∂ce,p(x, t)

∂x

]∣

∣

∣

∣

∣

xp,k̄

xp,k

−
1− t+
FALp

Iapp(t) (9a)

ǫs
∂c

[k]
e,s(t)

∂t
=

[

D̃e(x, T (t))

∆xs

∂ce,s(x, t)

∂x

]∣

∣

∣

∣

∣

xs,k̄

xs,k

(9b)

ǫn
∂c

[k]
e,n(t)

∂t
=

[

D̃e(x, T (t))

∆xn

∂ce,n(x, t)

∂x

]
∣

∣

∣

∣

∣

xn,k̄

xn,k

+
1− t+
FALn

Iapp(t) (9c)

where t+ is the transference number, ǫj is the material porosity, and the other

terms are evaluated as explained in detail in [59]. In particular, the electrolyte

diffusion coefficients D̃e(x, T (t)) are computed from

D̃e(x, T (t)) =























De,1 if x ∈ {xp,P , xs,1}

De,2 if x ∈ {xs,P , xn,1}

Deff
e,j (T (t)) otherwise

(10)
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with

De,1 = H
(

Deff
e,p (T (t)), Deff

e,p (T (t)),∆xp,∆xs

)

(11a)

De,2 = H
(

Deff
e,s (T (t)), Deff

e,n (T (t)),∆xs,∆xn

)

(11b)

where H is the harmonic mean operator, defined as

H (ρ1, ρ2, λ1, λ2) =
ρ1ρ2(λ1 + λ2)

ρ1λ2 + ρ2λ1
(12)

and Deff
e,j (T (t)) = De(T (t))ǫ

pj

j with pj being the Bruggeman coefficient and

De(T (t)) being the diffusion coefficient within the electrolyte which depends on

the temperature according to the Arrenhius law as in (6).

The terminal voltage is given by

V (t) = −Iapp(t)Rsei + Ūp(t)− Ūn(t) + η̄p(t)− η̄n(t) + ∆Φe(t) (13)

where Rsei(t) is the SEI resistance, the Open Circuit Potentials (OCPs) in the

positive and negative electrodes are given by

Ūp(t) =18.45θ6p(t)− 40.7θ5p(t) + 20.94θ4p(t)

+ 8.07θ3p(t)− 7.837θ2p(t) + 0.02414θ1p(t) + 4.571
(14a)

Ūn(t) =
0.1261θn(t) + 0.00694

θ2n(t) + 0.6995θn(t) + 0.00405
(14b)

whose expressions in terms of surface stoichiometries are obtained by fitting the

experimental data collected in [60] and depend on the considered cell (in this

case, Kokam SLPB 75106100), and η̄p(t) and η̄n(t) are the overpotentials for

the positive and negative electrodese given by

η̄p(t) =
2RT (t)

F
sinh−1

(

−Iapp(t)

2ALpapī0,p(t)

)

(15a)

η̄n(t) =
2RT (t)

F
sinh−1

(

Iapp(t)

2ALnanī0,n(t)

)

(15b)

with the exchange current density defined as

ī0,i(t) = Fki(T (t))
√

c̄e,i(t)θi(t)(1 − θi(t)) (16)
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where ki(T (t)) is the temperature-dependent (according to the Arrenhius law)

rate reaction constant and c̄e,i(t) is the average electrolyte concentration in the

ith section, approximated by

c̄e,i(t) =
1

P

P
∑

k=1

c
[k]
e,i(t). (17)

Moreover, ∆Φe(t) is computed as

∆Φe(t) = Φdrop
e (t) +

2RT (t)

F
(1 − t+) loge

(

c
[1]
e,p

c
[P ]
e,n

)

(18)

where, assuming that the ionic current ie(x, t) has a trapezoidal shape over the

spatial domain [18], the electrolyte voltage drop Φdrop
e (t) can be approximated

by

Φdrop
e (t) ≃ −

Iapp(t)

2P
(φp(t) + 2φs(t) + φn(t)) (19)

in which

φp(t) = ∆xp

P
∑

k=1

2k − 1

κ(c
[k]
e,p(t), T (t))ǫ

pp
p

(20a)

φs(t) = ∆xs

P
∑

k=1

1

κ(c
[k]
e,s(t), T (t))ǫ

ps
s

(20b)

φn(t) = ∆xn

P
∑

k=1

2P − 2k + 1

κ(c
[k]
e,n(t), T (t))ǫ

pn
n

(20c)

where κ(c
[k]
e,j(t), T (t)) is the temperature-dependent electrolyte conductivity for

the kth volume of the jth section, which is usually expressed as an empirically

derived nonlinear function of the electrolyte concentration in that volume:

k(γ
[k]
j (t), T (t)) =

(

0.2667
(

γ
[k]
j (t)

)3

− 1.2983
(

γ
[k]
j (t)

)2

+ 1.7919γ
[k]
j (t) + 0.1726

)

e
−Ea,κ

RT(t)

(21)

where γ
[k]
j (t) = 10−3c

[k]
e,j(t). The expression in (21) is still referred to the case

of Kokam SLPB 75106100.

As mentioned above, this paper considers a lumped thermal model [19, 58]

in which the temperature dynamics are given by

CthṪ (t) = Q(t)−
T (t)− Tsink

Rth

(22)
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where Cth is the thermal capacity of the cell and Rth is the thermal resistance

between the cell and the coolant, whose temperature is here assumed to be

constant and equal to Tsink. The heat generation term Q(t) is due to the cell

polarization and is described by

Q(t) = |Iapp(t)| · |V (t)− (Ūp(t)− Ūn(t))|. (23)

In order to simplify the notation in the next sections, define the variables for

the average stoichiometry and concentration flux

θ(t) = θp(t) (24a)

q(t) = [qp(t), qn(t)]
⊤ (24b)

and express the vector of the electrolyte concentrations in the different finite

volumes as

ce(t) =[c[1]e,p(t), · · · , c
[P ]
e,p(t), c

[1]
e,s(t), · · · , c

[P ]
e,s (t), c

[1]
e,n(t), · · · , c

[P ]
e,n(t)]

⊤. (24c)

2.2. Model of a Battery Pack

This subsection considers the battery pack configuration in Figure 1, which

consists of N series-connected modules, each of which is constituted of M

parallel-connected cells. The total number of cells is given by Ncells = NM ,

with all cells modelled according to the equations in Section 2.1. The modelling

of a lithium-ion battery pack as a set of connected electrochemical models con-

stitutes a key point of this work with respect to the existing literature, in which

the battery is usually described with a very simple equivalent circuit model. The

use of a more accurate model is motivated by the fact that lithium-ion battery

packs are complex systems which require suitable control strategies in order to

guarantee the satisfaction of safety constraints on each single cell. However,

the usage of an accurate model in optimal control has the disadvantage of high

computational burden. This latter can be reduced by properly linearizing the

dynamics (see Section 3).
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In the following, the indexes i = 1, · · · , N and j = 1, · · · , M which refer

to the jth cell of the ith module. Moreover, the voltage, state of charge, tem-

perature, and applied current of the cells are indicated respectively by Vi,j(t),

SOCi,j(t), Ti,j(t), and Ii,j(t), while the voltage of the ith module is defined as

Vi(t). The scheme in Figure 1 consists also of a supply circuitry which allows

Figure 1: Simplified circuital scheme.

charging of the battery (a battery charger) and balancing the energy stored in

the different cells (current generators). In particular, the battery charger sup-

plies the current Ich(t) ≥ 0, which can be assumed constant (Ich(t) = Ich), while

theN generators Ib,i(t) ≥ 0, i = 1, 2, · · · , N allow draining of the current which

flows through the different modules. In the case of constant Ich, these latter

represent the system inputs and are fundamental in order to achieve an optimal

current control of the different cells. Such current generators can be realized in

practice in several ways. For instance, simple proportional-integral-derivative

(PID) controllers can be used to regulate the value of a variable resistor in par-
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allel to each module. As an alternative, a Pulse Width Modulation (PWM)

approach or a method based on the cell bypass through active elements [51]

can be adopted. In this work, the heat generation due to the bypassing process

is assumed to be negligible (see [61] for more details on the different supply

and balancing circuitry schemes). The battery pack is modelled as a system of

DAEs with Ncells algebraic variables (Ii,j(t), i = 1, · · · , N, j = 1, · · · , M) and

corresponding Ncells algebraic equations. Each module i, with i = 1, · · · , N , is

described by M algebraic equations:

Vi,1(t) = Vi,2(t) (25a)

Vi,2(t) = Vi,3(t) (25b)

... (25c)

Vi,M−1(t) = Vi,M (t) (25d)

Ich(t) = −
M
∑

j=1

Ii,j(t) + Ib,i (25e)

These equations correspond to the Kirchhoff’s current law at each module and

are written according to the conventions that the supply charger provides a

positive current in order to charge the battery pack, the battery cells are charged

by negative currents, and the bypassing system reduces the battery charging by

draining positive currents. The current generated by the battery charger is

assumed to be completely bypassed through the generators Ib,i when the ith

module completes its charging procedure (i.e. Ib,i(t) = Ich, t ≥ t̄i, where t̄i is

the time at which the ith module is completely charged). The heat exchange

between the cells is also assumed to be negligible.

3. Sensitivity-Based Model Predictive Control

This section proposes a sensitivity-based linear MPC (sMPC) for the control

of general nonlinear continuous-time systems described by semi-explicit DAEs

as in Section 3.1. The main advantage of this approach is the significant com-

putational time reduction with respect to nonlinear MPC (nMPC, see Section
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3.2), while having comparable performance.

The sMPC strategy, which is presented in Section 3.3, relies on the model

linearization around a nominal input trajectory, and is based on the computation

of the sensitivities of states, outputs, and algebraic variables with respect to

input perturbations. Such sensitivities are obtained by integrating additional

continuous-time differential equations together with the model in (26). Using

this approach, the resulting linearized model provides higher accuracy than

obtained with standard LTV approaches, in which the sensitivities are evaluated

only at discrete time steps.

Next, Section 3.4 describes how to use the sensitivity-based linearized model

in an MPC framework. In order to address model mismatches in a practical

implementation, the softening of the output constraints in sMPC and nMPC is

described in Section 3.5.

3.1. Nonlinear DAE system

Consider the continuous-time system of semi-explicit nonlinear DAEs de-

scribed by

ẋ(t) = f(x(t), u(t), z(t)) (26a)

0 = h(x(t), u(t), z(t)) (26b)

y(t) = g(x(t), u(t), z(t)) (26c)

where t ∈ R is the time, x(t) ∈ R
n is the states vector, u(t) ∈ R

m is the control

input, z(t) ∈ R
s is the vector of the algebraic variables, y(t) ∈ R

p is the output,

f : Rn×m×s → R
n and g : Rn×m×s → R

p are the state and output functions

respectively, and h : Rn×m×s → R
m specifies the set of algebraic constraints.

The system of DAEs in (26) is assumed to be index-1 [54]. Moreover, a digital

controller is assumed to apply a piecewise constant input at the discrete times

tk, k ∈ N with sample time Ts. Within this context, define the generic input

sequence applied in the time interval [tk, tk+H ], with H ∈ N, as

u[tk,tk+H ] =
[

u⊤(tk), u
⊤(tk+1), · · · , u

⊤(tk+H−1)
]⊤

(27)
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while the corresponding temporal evolution of states, algebraic variables, and

outputs is obtained by integrating the equations in (26) over [tk, tk+H ], with

initial condition x(tk) = xk, to give

x[tk,tk+H ] =
[

x⊤(tk), x
⊤(tk+1), · · · , x

⊤(tk+H)
]⊤

(28a)

z[tk,tk+H ] =
[

z⊤(tk), z
⊤(tk+1), · · · , z

⊤(tk+H)
]⊤

(28b)

y[tk,tk+H ] =
[

y⊤(tk), y
⊤(tk+1), · · · , y

⊤(tk+H)
]⊤

(28c)

3.2. Nonlinear MPC

This section summarizes the main features of nonlinear MPC, which is a

control technique suitable for multivariable nonlinear systems in the presence

of constraints. The formulation considers a continuous-time model as in (26)

and a digital controller, which keeps the input constant over each sampling

time. Nonlinear MPC requires the solution of a finite-horizon optimal control

problem at each time step tk0 , whose solution provides the optimal control

sequence u∗
[tk0 ,tk0+H ] over a prediction horizon of H steps, where

u∗
[tk0 ,tk0+H ] =

[

u∗⊤(tk0), u
∗⊤(tk0+1), · · · , u

∗⊤(tk0+H−1)
]⊤

. (29)

According to the receding horizon paradigm, only the first element u∗(tk0) is

applied to the system and the remaining future optimal moves discarded. The

optimization is then repeated at the next time step over a shifted prediction

window, with the newly available measurements [62].

The resulting optimization to be solved at each time tk0 is described below.

Finite Horizon Optimal Control Problem 1. Find the optimal input se-

quence u∗
[tk0 ,tk0+H ] that solves

u∗
[tk0 ,tk0+H ] = argmin

u[tk0
,tk0+H ]

J(tk0) (30)

for the cost function

J(tk0) =

k0+H
∑

k=k0

‖y(tk)− yref‖2Q +

k0+H−1
∑

k=k0

‖u(tk)− uref‖2R + Jreg(tk0) (31)
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in which yref ∈ R
p and uref ∈ R

m are the reference vectors for the output and for

the input, respectively, and the matrices Q ∈ R
p×p and R ∈ R

m×m are design

parameters which are weights in the MPC cost function, with Q ≥ 0 and R > 0.

The additional term Jreg(tk0 ) acts as a small regularization factor in order to

avoid abrupt variations and spikes in the input control law and it is given by

Jreg(tk0) =

k0+H−1
∑

k=k0

‖u(tk)− u(tk−1)‖
2
Rreg

(32)

where Rreg ∈ R
m×m. Note that y(tk) ∈ R

p is obtained by evaluating (26c) at

discrete time instants tk. The optimization is subject to the system dynamic in

(26) and the constraints

ulb ≤ u(tk) ≤ uub, k = k0, k0 + 1, · · · , k0 +H − 1 (33a)

ylb ≤ y(tk) ≤ yub, k = k0, k0 + 1, · · · , k0 +H (33b)

where ulb, uub ∈ R
m and ylb, yub ∈ R

p are the minimum and maximum allow-

able values of the inputs and outputs, respectively.

3.3. Sensitivity-Based Linearization Along a Nominal Trajectory

The main drawback of the optimal control formulation in Section 3.2 is

its high computational cost, which comes from the use of a nonlinear model

to predict the future system behaviour. This step involves the solution of a

nonlinear optimization at each time step whose complexity can be prohibitive for

certain online control applications. As an alternative, we propose a sensitivity-

based linearization of the system (26), which can be exploited to provide a

fast MPC solution. As in the previous sections, the discussion is carried on by

considering a digital controller which applies a piecewise constant input at the

discrete times tk.

Consider a nominal input signal u(t) and the nominal input sequence u[tk,tk+H ] =

[u⊤(tk), u
⊤(tk+1), · · · , u

⊤(tk+H−1)]
⊤ over the time window [tk, tk+H ]. The

corresponding nominal trajectories for states, algebraic variables, and outputs

are x[tk,tk+H ], z[tk,tk+H ], and y[tk,tk+H ] (see (28)). Define Sx(t, tk) = ∂x(t)
∂u(tk)

,
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Sz(t, tk) =
∂z(t)
∂u(tk)

, and Sy(t, tk) =
∂y(t)
∂u(tk)

which are the sensitivities of the states,

algebraic variables, and outputs to a variation in the input u(tk) with respect

to its nominal value u(tk) at the discrete time tk. In particular, the matrices

Sx(t, tk) ∈ R
n×m, Sz(t, tk) ∈ R

s×m, and Sy(t, tk) ∈ R
p×m are obtained by

solving, together with (26), the system of equations

Ṡx(t, tk) = F x(t)Sx(t, tk) + F z(t)Sz(t, tk) + Fu(t)∆tk(t) (34a)

0 = Hx(t)Sx(t, tk) +Hz(t)Sz(t, tk) +Hu(t)∆tk (t) (34b)

Sy(t, tk) = Gx(t)Sx(t, tk) +Gz(t)Sz(t, tk) +Gu(t)∆tk(t) (34c)

with initial condition Sx(tk, tk) = 0n×m – since we assume that (26) is a causal

system – and

F ν(t) = ∇νf(x(t), z(t), u(t)), ν = {x, z, u} (35a)

Hν(t) = ∇νh(x(t), z(t), u(t)), ν = {x, z, u} (35b)

Gν(t) = ∇νg(x(t), z(t), u(t)), ν = {x, z, u} (35c)

where ∇ν is the Jacobian operator with respect to ν and ∆tk(t) = H(t− tk)−

H(t− tk − Ts), with H(t− tk) being the unitary Heaviside step function

H(t− tk) =











0, t < tk

1, t ≥ tk

(36)

Now consider a modified input sequence ũ[tk,tk+H ] = [ũ(tk), ũ(tk+1), · · · , ũ(tk+H−1)]

which can be obtained from the nominal input sequence by

ũ[tk,tk+H ] = u[tk,tk+H ] + δu[tk,tk+H ] (37)

where δu[tk,tk+H ] = [δu⊤(tk), δu
⊤(tk+1), · · · , δu

⊤(tk+H−1)]
⊤ is the sequence

of the input variations over the time window [tk, tk+H ]. The sensitivity-based

approximation of the states, algebraic variables, and output trajectories which

correspond to the sequence ũ[tk,tk+H ] is given by [63, 52, 53]

x̂[tk,tk+H ] = x[tk,tk+H ] +Πx
[tk,tk+H ]δu[tk,tk+H ] (38a)

ẑ[tk,tk+H ] = z[tk,tk+H ] +Πz
[tk,tk+H ]δu[tk,tk+H ] (38b)

ŷ[tk,tk+H ] = y[tk,tk+H ] +Πy

[tk,tk+H ]δu[tk,tk+H ] (38c)
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where the matrices Πν
[tk,tk+H ], with ν = {x, z, y}, are defined by

Πν
[tk,tk+H ] =























Sν(tk, tk) 0 · · · 0

Sν(tk+1, tk) Sν(tk+1, tk+1) · · · 0

Sν(tk+2, tk) Sν(tk+2, tk+1) · · · 0

...
...

. . .
...

Sν(tk+(H−1), tk) Sν(tk+(H−1), tk+1) · · · Sν(tk+(H−1), tk+(H−1))























(39)

in which Sν , for ν = {x, z, y}, is obtained by integrating the continuous-time

system in (34) together with (26). This step constitutes the main difference

with respect to a standard LTV approach, for which the model sensitivities are

computed only at discrete time instants, resulting in a loss of accuracy.

3.4. Sensitivity-Based Linear MPC

This section presents a model predictive control approach for the system

(26) based on the linearized model (38). Using the latter, the optimization can

be formulated as a Quadratic Program (QP) which significantly reduces the

computational cost compared to nonlinear MPC, thus enabling the use of the

proposed strategy in on-line control applications. The objective function to be

minimized at each time step tk0 is

Jlin(tk0) =

k0+H
∑

k=k0

‖ŷ(tk)− yref‖2Q +

k0+H−1
∑

k=k0

‖δu(tk) + ū(tk)− uref‖2R+Jreg(tk0 )

(40)

and the resulting optimization is formulated below.

Finite Horizon Optimal Control Problem 2. Find the optimal sequence of

the input variations δu∗
[tk0 ,tk0+H ] that solves

δu∗
[tk0 ,tk0+H ] = argmin

δu[tk0
,tk0+H ]

Jlin(tk0) (41)
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for the cost function (40). The optimization is subject to the system dynamics

in (38) and the constraints

ulb ≤ ũ(tk) ≤ uub, k = k0, k0 + 1, · · · , k0 +H − 1 (42a)

ylb ≤ ŷ(tk) ≤ yub, k = k0, k0 + 1, · · · , k0 +H (42b)

The optimal control sequence is obtained as

u∗
[tk0 ,tk0+H ] = u[tk0 ,tk0+H ] + δu∗

[tk0 ,tk0+H ] (43)

The performance of the sensitivity-based linearization and the corresponding

MPC algorithm are significantly affected by the choice of the nominal input

sequence u[tk0 ,tk0+H ]. Here we adopt the following choice. Suppose that, at the

beginning, the nominal input sequence is not known. Then use the most likely

input sequence as the initial guess, since no further information is available.

Then, after each iteration of the MPC algorithm, the nominal input sequence

is updated as

u[tk0+1,tk0+H+1] = [u∗⊤
[tk0+1,tk0+H ], u

∗⊤
[tk0+H−1,tk0+H ]]

⊤ (44)

where u∗
[tk0 ,tk0+H ] is the optimal solution of the sMPC at the time tk0 . In case

of highly nonlinear systems, the initialization of the nominal input sequence has

to be done carefully to achieve a sufficiently accurate linearized model in the

first iteration.

3.5. Soft Constraints for Practical Implementation

The constraints on the outputs for both the nonlinear (33b) and linearized

(42b) systems can be softened in order to deal with, in a practical implemen-

tation, possible model mismatches. In particular, using a set of slack variables

ξ ∈ R
p, with ξ ≥ 0, the constraint in (33b) can be relaxed as

ylb ≤ y(tk) + ξ(tk), k = k0, k0 + 1, · · · , k0 +H (45a)

y(tk)− ξ(tk) ≤ yub, k = k0, k0 + 1, · · · , k0 +H (45b)
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and

ylb ≤ ŷ(tk) + ξ(tk), k = k0, k0 + 1, · · · , k0 +H (46a)

ŷ(tk)− ξ(tk) ≤ yub, k = k0, k0 + 1, · · · , k0 +H (46b)

can be used for the constraint in (42b).

The cost functions for sMPC and nMPC are reformulated accordingly as

J(tk0) =

k0+H
∑

k=k0

‖y(tk)− yref‖2Q +

k0+H−1
∑

k=k0

‖u(tk)− uref‖2R + Jreg(tk0) + Js(tk0)

(47a)

Jlin(tk0) =

k0+H
∑

k=k0

‖ŷ(tk)− yref‖2Q +

k0+H−1
∑

k=k0

‖δu(tk) + ū(tk)− uref‖2R + Jreg(tk0)

+ Js(tk0) (47b)

with

Js(tk0) =

k0+H−1
∑

k=k0

c⊤ξ(tk) (48)

where c ∈ R
p is a suitable vector of weights.

4. Results

This section evaluates the proposed methodology to the control of a lithium-

ion battery pack. Section 4.1 introduces the optimal control problem, while the

parameters and simulation settings are given in Section 4.2. The simulation

results are provided in Sections 4.3–4.4. Section 4.3 compares the proposed

sensitivity-based approach to nonlinear MPC, and a standard charging method,

namely the Constant Current-Constant Voltage (CC-CV), is considered as a

benchmark in Section 4.4. Then, Section 4.5 analyzes how the computational

times of sMPC and nMPC grow with increasing the number of cells. Finally,

the methodologies are tested on a challenging scenario of the battery pack of an

electric motorbike.
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4.1. Optimal Control of a Lithium-Ion Battery

In this section, the optimal control methods in Section 3 are adapted to

the optimal management of a lithium-ion battery, whose cells are arranged as

in Figure 1, with N series modules of M parallel-connected cells. The total

number of cells is given by Ncells = NM . The objective of the control algorithm

is to bring the state of charge of each cell as close as possible to 100% while

satisfying all the safety constraints. Each cell is modelled according to the

equations described in Section 2.1, while the model of the whole battery pack

is given in Section 2.2. The variables are defined by

u(tk) = [Ib,1(tk), Ib,2(tk), · · · , Ib,N (tk)]
⊤ (49a)

x(tk) = [x⊤
1,1(tk), x

⊤
1,2(tk), · · · , x

⊤
N,M (tk)]

⊤ (49b)

z(tk) = [I1,1(tk), I1,2(tk), · · · , IN,M (tk)]
⊤ (49c)

y(tk) = [y⊤1,1(tk), y
⊤
1,2(tk), · · · , y

⊤
N,M(tk)]

⊤ (49d)

where xi,j(tk) ∈ R
Nx and yi,j(tk) ∈ R

Ny represent respectively the states and

outputs of the jth cell of the ith module. The notation introduced in (24)

implies that

xi,j(k) =
[

θ̄i,j(k), q̄
⊤
i,j(k), c

e⊤
i,j(k), Ti,j(k)

]⊤

(50a)

yi,j(k) = [Vi,j(k), Ti,j(k), Ii,j(k), SOCi,j(k)]
⊤

(50b)

where θi,j(k), q̄i,j(k), and cei,j(k) refer to the stoichiometry, average concentra-

tion flux, and electrolyte concentration of the jth cell of the ith module. The

elements of the vector cei,j(k) are the values of the electrolyte concentration along

the spatial axis which is discretized according to the finite volume method. The

resulting model is a semi-explicit continuous time system of DAEs (see (26))

where n = NcellsNx, m = N , s = Ncells, and p = NcellsNy, with Ncells = NM

and in which Nx = 4 + 3P (for a P number of finite volumes) and Ny = 4 are

the number of states and outputs of each single cell, respectively. The weighting
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matrices Q ∈ R
p×p
≥0 and R ∈ R

m×m
>0 were specified to be diagonal

Q =

















q 0 · · · 0

0 q · · · 0
...

...
. . .

...

0 0 · · · q

















, R =

















r 0 · · · 0

0 r · · · 0
...

...
. . .

...

0 0 · · · r

















(51)

where r ∈ R>0 and q ∈ R
Ny×Ny

≥0 is defined as

q =

















qV 0 0 0

0 qT 0 0

0 0 qI 0

0 0 0 qSOC

















. (52)

The reference vector and the limits for the output vector, respectively, are given

by

yref = [y⊤r , y
⊤
r , · · · , y

⊤
r ]

⊤ (53a)

ylb = [y⊤min, y
⊤
min, · · · , y

⊤
min]

⊤ (53b)

yub = [y⊤max, y
⊤
max, · · · , y

⊤
max]

⊤ (53c)

with yr, ymin, ymax ∈ R
Ny defined by

ymin = [Vmin, Tmin, Imin, SOCmin]
⊤ (54a)

ymax = [Vmax, Tmax, Imax, SOCmax]
⊤ (54b)

yr = [Vr, Tr, Ir , SOCr ]
⊤ (54c)

where Imin and Imax are the maximum and the minimum values of current

that can flow through a single cell, Vmin and Vmax are the upper and lower

bounds for the voltage, and Tmin and Tmax, and SOCmin and SOCmax, are

the limits for the temperature and the state of charge respectively. Since the

limits on the current flowing through each cell are explicitly considered in the

optimization, lower and upper bounds on the input vector (ulb and uub) are not

required. Finally, the reference values for voltage, temperature, current, and

state of charge are denoted by Vr, Tr, Ir, and SOCr respectively.
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Remark 1. Although the internal states of each cell are not measurable in prac-

tice, all the relevant states are assumed available here. The use of observers goes

beyond the scope of this work whose objective is to highlight the suitability of the

sensitivity-based approach to real-time optimal control. For the design of ob-

servers for battery states, the interested reader can refer to e.g. [64].

4.2. Model Parameters and Simulations Settings

Here the virtual testbed considered in the simulations is described in de-

tail in order to allow the presented results to be reproducible by others. The

electrochemical parameters adopted for all the cells are those experimentally

measured in [60, 65] from a complete electrochemical characterization of a

commercial cell (the Kokam SLPB 75106100). The thermal capacity, ther-

mal resistance, and sink temperature are assumed equal to Cth = 4186 J/K,

Rth = 169.5K/W, and Tsink = 298.15K, and the initial value for the temper-

ature is set to T 0 = 298.15K for all cells. The initial electrolyte concentra-

tion and average concentration flux are assumed to start at equilibrium values

1000mol/m3 and zero respectively. The initial state of charge of the differ-

ent cells, as well as the capacity and the SEI resistance, are extracted from a

Gaussian distribution as

SOC0
i,j ∈ N (SOC0, σ2

SOC) (55a)

C0
i,j ∈ N (C0, σ2

C) (55b)

R0
sei,i,j ∈ N (R0

sei, σ
2
Rsei

) (55c)

with SOC0 = 50%, R0
sei = 15mΩ, and C0 = 7.5Ah (i.e., I1C = 7.5A), while

the standard deviations are σSOC = 10%, σRsei
= 0.75mΩ, and σC = 0.375Ah.

The optimization settings are reported in Table 1, with the voltage, temper-

ature, and current of each cell appearing in the constraint set but not weighted

in the cost function (qV = 0, qT = 0, and qI = 0). The corresponding reference

values Vr, Tr, and Ir are set equal to zero.

All the simulations were performed on a Windows 10 personal computer

with 16 Gbytes of RAM and a 2.5 GHz i7vPro processor. The control problems
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P H Ts SOCr Ich r

2 3 40 s 100% 1.5MI1C 1.78× 10−5

qV qT qI qSOC Vmin Vmax

0 0 0 10−2 2.7V 4.2V

Tmin Tmax Imin Imax SOCmin SOCmax

253.15K 318.15K −1.5I1C 0A 0% 100%

Table 1: Parameters of the optimal control algorithms.

were solved using CasADi [66], a symbolic framework for automatic differentia-

tion. This software offers a Matlab interface for the Interior Point Optimization

Method (IPOPT) [67, 68] used for solving the optimizations, and for the SUN-

DIALS suite [69] used for integrating the process dynamics. Moreover, CasADi

was used for the computation of the sensitivity matrices along the nominal tra-

jectory. In order to provide a fair comparison between sMPC and nMPC, both

of the underlying optimizations were solved using IPOPT.

4.3. Comparison Between sMPC and nMPC

This section considers a battery pack composed by N = 2 modules with M =

2 parallel connected cells for each module. The performance of the proposed

sensitivity-based MPC is compared with the nonlinear MPC as the benchmark

for the parameters of each cell reported in the previous section. The temporal

evolution of the states and outputs obtained by sMPC (dotted line) and nMPC

(dashed line) are very similar (see Figures 2a–4a), with nearly complete overlap.

For both MPC formulations, the state of charge for all of the cells reach the

desired target of 100% within 3500 s (Figure 2(a)). The constraints on the

voltage and temperature for all of the battery cells are satisfied for all time

(Figures 2(b) and 3(a)). The current flowing in the different cells are nearly
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State of Charge

(a) State of charge

Terminal Voltage

(b) Voltage

Figure 2: Temporal evolution of the state of charge and voltage for sMPC and nMPC. Only

the voltage of the two modules is shown in (b) since all the cells of a particular module present

the same voltage due to the parallel connection.

identical for the two MPC formulations (Figure 3(b)), and the input actions are

nearly identical for each module (Figure 4(a)), consisting of the drained currents

Ib,1 and Ib,2.

Since the main goal of this paper is to develop a control algorithm that

achieves high performance while having low enough on-line computational cost

being implementable in real time, the mean computational times needed by

the two methods to compute the optimal control sequence at each time step are

reported in Figure 4(b). While having very similar closed-loop performance, the

on-line computational cost of the sensitivity-based MPC is significantly lower

than for nMPC, motivating the use of sMPC in the context of real-time control of

battery packs. Also, the on-line computational time of nMPC is highly variable

while being nearly deterministic for sMPC, as its optimization is a quadratic

program whose computational cost for solution is weakly dependent on the

values of its parameters. Having low variability in its on-line computational

cost is another desirable feature of sMPC.

4.4. Standard CC-CV Method

To demonstrate the need for an optimal management of a lithium-ion battery

pack that is able to take into account input and output constraints, a standard
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Lumped Temperature

(a) Temperature

Applied Current

(b) Current

Figure 3: Temporal evolution of the temperature and current for sMPC and nMPC.

Drained Current

(a) Drained current

Computational Burden

(b) Computational time

Figure 4: Temporal evolution of the drained current for the two modules and the computa-

tional times for sMPC and nMPC.

charging method – namely the Constant Current-Constant Voltage (CC-CV) – is

applied to the same configuration considered in Section 4.3. The CC-CV method

is composed of two phases. In the first phase, a constant charging current Icc

is applied to the series connected modules. This phase ends separately for the

different modules, as soon as their voltage reaches a predefined threshold Vth

(that in this case is assumed to be equal to 4.15V, which corresponds to the

OCPs difference value at 100% of SOC). Note that this value can be lower

than the maximum allowed voltage specified by the cell data-sheet. The second
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phase consists of a separate constant voltage charging of the different modules

with a voltage generator of Vcv = Vth. The charging procedure is completed

when the maximum current flowing through the different modules achieves the

threshold Ith (which in this case is assumed to be equal to 0.1MI1C). In order

to implement such a procedure, the battery pack needs to be equipped with a

system of switches which allows to commute from the first phase to the second

phase of the CC-CV.

For the CC-CV charging protocols, the temporal evolution of the state of

charge, voltage, temperature, and currents applied to the different cells are

shown in Figures 5(a), 5(b), 6(a), and 6(b). Two scenarios were considered

which differ in the value of the current applied during the constant current phase.

The constant current of Icc = MI1C (dotted line) results in high temperature

constraint violation in most of the cells, with a charging time of 3960 s. On the

other hand, for the lower constant current (dashed line) of Icc = 0.85MI1C , the

temperature constraint is satisfied for each cell, but the charging time increases

significantly (4360 s). Moreover, the value of the constant current Icc which

guarantees the satisfaction of the temperature constraint must be found exper-

imentally and can change according to the external environment conditions as

well as with the battery ageing and degradation.

Table 2 compares the charging time, computational time, and maximum

temperature and voltage for the sMPC, nMPC, and two CC-CV charging pro-

tocols. The MPC algorithms have the same charging times and maximum

temperature and voltage, while sMPC required only about 6% of the on-line

computational time.

4.5. Scaling of the Computational Time for Increasing Number of Cells

The above simulations showed that the sMPC has much lower on-line com-

putational cost than nMPC for a battery pack of 4 cells. Figure 7 displays the

mean computational time for sMPC and nMPC for an increasing the number

of series and parallel connections. sMPC is about an order of magnitude faster

than nMPC, which is a significant savings in on-line computational cost when
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State of Charge

(a) State of charge

Terminal Voltage

(b) Voltage

Figure 5: Temporal evolution of the state of charge and voltage for CC-CV charging for two

values for the value of the constant current

Lumped Temperature

(a) Temperature

Applied Current

(b) Current

Figure 6: Temporal evolution of the temperature and applied current (the sum of the current

for the cells of each module produces the CC-CV profile) for CC-CV charging for two values

for the constant current.

dealing with large battery packs.

4.5.1. Optimal Control of an Electric Motorbike Battery Pack

This section demonstrates the applicability of the proposed sensitivity-based

MPC to the control of large battery packs, for which nMPC has high on-line

computational cost. In this case study, the task is to control the battery of

a fully electric motorbike, namely, the electric Vespa Piaggio with a stored
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sMPC nMPC
CC-CV CC-CV

(I1C) (0.85I1C)

Charging Time 3280 s 3280 s 3960 s 4360 s

Comp. Time 0.24 s 3.91 s – –

Max. Temp. 318.15K 318.15K 320.42K 317.55K

Max. Voltage 4.2V 4.2V 4.15V 4.15V

Table 2: Comparison of charging time, computational time and maximum temperature and

voltage reached for sMPC, nMPC, and CC-CV charging.
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Figure 7: Mean computational time for the two MPC formulations for up to 6 series and

6 parallel connections. The mean value was computed for hundreds of iterations to ensure

statistical significance.

energy of 86Ah and a nominal voltage of 48V (i.e., a configuration with 156

cells, arranged in 13 series-connected modules, each with 12 parallel-connected

cells, for the Kokam SLPB 75106100). The mean computational time required

for each iteration of nMPC was 250 s, which is incompatible with the desired

sampling time (Ts = 40 s). On the other hand, the mean computational time of

sMPC was 30 s, which is less than the sampling time.
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5. Conclusions

This work addresses the optimal charging of a battery pack composed of

several cells arranged in series and parallel connections. Each cell is described

through an electrochemical model that includes kinetics, mass transport, and

thermal effects in order to capture the internal physicochemical phenomena.

A nonlinear model predictive control (MPC) formulation is formulated that

achieves high performance while ensuring constraint satisfaction. An alternative

sensitivity-based MPC formulation is proposed that has very similar closed-loop

performance but greatly reduces the online computational cost, which makes op-

timal model-based control suitable for a real-time implementation on a battery

pack composed of dozens of cells. The effectiveness of the strategy is demon-

strated. The sensitivity-based MPC is successful in providing real-time optimal

charging for a fully electric motorbike composed by 156 cells.
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[65] M. Ecker, S. Käbitz, I. Laresgoiti, D. U. Sauer, Parameterization of a

physico-chemical model of a lithium-ion battery ii. model validation, Jour-

nal of The Electrochemical Society 162 (9) (2015) A1849–A1857.
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