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companies increasingly receptive to engaging in

big data projects. Their expectations are that, with
massive data and distributed computing, they will be able
to answer all of their questions — from questions related to
plant operations to those on market demand. With answers
in hand, companies hope to pave new and innovative paths
toward process improvements and economic growth.

An article in Wired magazine, “The End of Theory: The
Data Deluge Makes the Scientific Method Obsolete” (1),
describes a new era in which abundant data and mathematics
will replace theory. Massive data is making the hypothesize-
model-test approach to science obsolete, the article states.

In the past, scientists had to rely on sample testing and
statistical analysis to understand a process. Today, computer
scientists have access to the entire population and therefore
do not need statistical tools or theoretical models. Why is
theory needed if the entire “real thing” is now within reach?

Although big data is at the center of many success
stories, unexpected failures can occur when a blind
trust is placed in the sheer amount of data available —
highlighting the importance of theory and fundamental
understanding.

A classic example of such failures is actually quite dated.
In 1936, renowned magazine Literary Digest conducted an
extensive survey before the presidential election between
Franklin D. Roosevelt and Alfred Landon, who was then
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The big data movement is creating opportunities
for the chemical process industries to improve
their operations. Challenges, however, lie ahead.

governor of Kansas. The magazine sent out 10 million post-
cards — considered a massive amount of data at that time
— to gain insight into the voting tendencies of the populace.
The Digest collected data from 2.4 million voters, and after
triple-checking and verifiying the data, forecast a Landon
victory over Roosevelt by a margin of 57% to 43%. The
final result, however, was a landslide victory by Roosevelt
of 61% versus Landon’s 37% (the remaining votes were

for a third candidate). Based on a much smaller sample of
approximately 3,000 interviews, George Gallup correctly
predicted a clear victory for Roosevelt.

Literary Digest learned the hard way that, when it
comes to data, size is not the only thing that matters.
Statistical theory shows that sample size affects sample
error, and the error was indeed much lower in the Digest
poll. But sample bias must also be considered — and this is
especially critical in election polls. (The Digest sample was
taken from lists of automobile registrations and telephone
directories, creating a strong selection bias toward middle-
and upper-class voters.)

Another example that demonstrates the danger of
putting excessive confidence in the analysis of big data
sets regards the mathematical models for predicting loan
defaults developed by Lehman Brothers. Based on a very
large database of historical data on past defaults, Lehman
Brothers developed, and tested for several years, models
for forecasting the probability of companies defaulting on
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their loans. Yet those models built over such an extensive
database were not able to predict the largest bankruptcy in
history — Lehman Brothers’ own.

These cases illustrate two common flaws that under-
mine big data analysis:

« the sample, no matter how big, may not accurately
reflect the actual target population or process

« the population/process evolves in time (i.e., it is
nonstationary) and data collected over the years may not
accurately reflect the current situation to which analytics
are applied.

These two cases and other well-known blunders show that
domain knowledge is, of course, needed to handle real prob-
lems even when massive data are available. Industrial big data
can benefit from past experiences, but challenges lie ahead.

Like any new, promising field, big data must be viewed
in terms of its capabilities as well as its limitations. Some of
these limitations are merely challenges that can be addressed
— enabling companies to make the most out of new oppor-
tunities created by data, technology, and analytics (Figure 1).

This article outlines ten critical challenges regarding big
data in industrial contexts that need to be addressed, and
suggests some emerging research paths related to them. The
challenges are discussed in terms of the four Vs that define the
context of big data: volume, variety, veracity, and velocity.

Volume challenges

Big data is, first of all, about han-
dling massive amounts of data.

However, in industrial processes,
CORERReRe 4.5y thing to realize is that not
GOERRRREE ) data are created equal. Several

challenges arise from this point.

Meaningful data. Most industrial big data projects rely
on happenstance data, i.e., data passively collected from
processes operating under normal operating conditions most
of the time. Thus, a large amount of data is indeed available,
but those data span a relatively narrow range of operating
conditions encountered during regular production situations.

Data sets collected under those circumstances may be
suitable for process monitoring and fault detection activi-
ties (2), which rely on a good description of the normal
operating conditions (NOC) as a reference to detect any
assignable or significant deviation from such behavior.
However, their value is limited for predictive activities, and
even more so for control and optimization tasks. Prediction
can only be carried out under the same conditions found in
the data used to construct the models. As a corollary, only
when all the NOC correlations linking the input variables
are respected can the model be used for prediction.

For process control and optimization activities, the

$

process description must capture the actual influence of
each manipulated input variable on the process outputs. Its
construction requires experimentation — i.e., the active
collection of process data via a design of experiments
(DOE) program for process optimization or via system
identification (SI) experiments for process control.

Future research is needed to determine ways to use
DOE in the context of big data to complement the infor-
mation already available and increase the data’s value for
predictive, control, and optimization activities. This will
likely require methods to selectively remove data with
very little informative value. The presence of such data
is not only unnecessary for developing models, but also
detrimental, as their presence induces a bias in the models
toward highly sampled regions of the operational space.
The modern theory of optimal DOE may provide a suitable
framework to begin addressing this challenge.

Information-poor data sets. Despite the sheer volume
of industrial data, the relevant or interesting information
may happen on only a few, dispersed occasions. Examples
include batches with abnormally excellent quality or runs
that experience several types of process upsets.

Current data mining and knowledge discovery tools
(3, 4) can handle very large volumes of data that are rich
in information. Such tools include methodologies such as
partial least-squares regression, least-absolute-shrinkage
and selection operator (LASSO) regression, and ensemble
methods (e.g., random forests and gradient boosting),
among others. However, by design, those methods are not
suited to analyze information-poor data sets, in which the
interesting information is rare and scattered. And, tradi-
tional data visualization tools — which are recommended
for any data analysis activity, especially to identify poten-
tially interesting outlying data points — may not always be

Big Data

Technology Analytics

A Figure 1. The big data movement stems from the availabillty of data,
high-power computer technology, and analytics to handle data character-
ized by the four Vs — volume, variety, veracity, and velocity.
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effective when applied to big data. For example, creating a
classical plot from big data might produce what looks like
a black cloud of data points that is not useful.

An engineer who is not able to rely on visualization
might be tempted to perform some sort of massive statisti-
cal testing to pinpoint abnormal situations or to extract
potentially interesting correlations, only to find a very large
number of such situations (or correlations). That is a con-
sequence of the extreme power of the tests, induced by the
massive number of observations used. The significant events
detected may not (and most of the time will not) have any
practical relevance because of their small impact.

The situation can be even worse when an engineer
cleans the data using an algorithm that automatically
removes outlying observations from data sets prior to
analysis. Such algorithms often incorporate standard rules
of an empirical nature that eliminate the data embedded
with the rare gems of information.

Future research should focus on the development of
analytical methods applicable to information-poor data,
including visualization tools that can condense large
amounts of data while being sensitive to abnormal observa-
tions, and sound ways of detecting outlying (but interest-
ing) observations (and variable associations), namely by
incorporating the available domain knowledge.

Variety challenges

Big data is also characterized by
its complexity. The complexity
of industrial data can arise from
different sources, and is usually
® 0 related to the variety of objects
to be analyzed. Different chal-

lenges arise depending on the origin of the complexity.

Multiple data structures. In addition to the usual scalar
quantities (temperature, pressure, and flow measurements),
data collected in modern industrial settings also include
other data structures arranged as higher-order tensors, such
as one-way arrays (e.g., spectra, chromatograms, nuclear
magnetic resonance [NMR] spectra, particle-size distri-
bution curves), two-way arrays (e.g., data obtained from
analytical techniques such as gas chromatography with
mass spectrometry [GC-MS] and high-performance liquid
chromatography with diode array detection [HPLC-DAD)]),
and three-way and higher-order arrays (e.g., hyperspectral
images, color videos, hyphenated instruments). These data
structures are examples of profiles (5), abstractly defined as
any data array, indexed by time and/or space, that charac-
terize a product or process.

Future research should focus on developing analyti-
cal platforms that can effectively incorporate and fuse all
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of these heterogeneous sources of information found in
industrial processes, for instance, through the development
of more flexible multiblock methodologies. Such method-
ologies incorporate the natural block-wise structure of data,
where each block may carry information about distinct
aspects of the problem and present a characteristic struc-
ture and dimensionality.

Heterogeneous data. Variety does not originate only
from the presence of different data structures to be handled
simultaneously. Another source of variety is the presence
of data in the same data set that were collected when the
process underwent meaningful changes, including in its
structure (e.g., new equipment was added, procedures were
changed). By not taking such changes into account during
the analysis of the entire data set, you may fall into the trap
of mixing apples with oranges — an issue that also raises
concerns of data quality, which is discussed in the veracity
section of this article. Overlooking heterogeneity in time is
detrimental for analytical tasks such as process monitoring
and quality prediction.

A future research path to address this challenge is
developing methods to detect and handle these issues, as
well as to deal with the time-varying nature of processes,
namely through evolutionary and adaptive schemes (6).
Such schemes can adapt to complex and/or changing
conditions by continuously seeking the optimal operational
settings or by periodically retuning the models (through
re-estimation or recursive updating approaches).

Multiple data-management systems. Data are also col-
lected from a variety of sources across the company’s value
chain, from raw materials, plant operations, and quality
laboratories, to the commercial marketplace. Each stage
usually has its own data-management system, and each
records data in a different way.

Future efforts should be directed toward the develop-
ment of integrated platforms that link all of the different
sources of data in the value chain. Market data, in par-
ticular, have not been included in conventional models
used in the chemical process industries (CPI). Data-driven
methods — which incorporate the time-delayed structure
of the processes and use different types of data aggregation
— should be developed to make this integration effective.

A priori knowledge. Some knowledge about the main
sources of variety affecting a massive data set is usually
available. However, making use of it in conventional indus-
trial analytics is not straightforward. Big data methods tend to
be of a black box type, lacking the flexibility to incorporate
a priori knowledge about the processes under analysis.

Incorporating information about the structure of the pro-
cesses in data-driven analysis is an important research path
for the future, especially in the fields of fault diagnosis and
predictive modeling (7-9). Fault diagnosis requires informa-
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tion about the causal structure of the systems, which con-
ventional data-driven monitoring methods cannot provide.
Predictive modeling also requires this type of knowledge, in
particular for process control and optimization applications.
Bayesian approaches (10, /1) and data transformation based
on network inference, together with hybrid gray-box model-
ing frameworks, are potential ways to introduce a priori
knowledge into data-driven modeling.

Veracity challenges

0O we l‘. A major concern in the analysis
* of massive data sets has to do

. " -~
. " S 0@  withthe quality of data, ic.
) (@ - their veracity. As previously
Y =
o' ~n " mentioned, quantity does not

imply quality. On the contrary,

quantity creates more opportunities for problems to occur.
To make matters worse, the detection of bad observations in
massive data sets through visualization techniques is more

hallenging and ic-cleaning algorithms cannot be
relied on either. Data quality also depends on the way the
data are collected (bias issues may emerge that are very
difficult to detect), on whether the information is updated
or no longer makes sense (due to time-varying changes in
the system), and on the signal-to-noise ratio (measurement
uncertainty), among other factors.

Uncertainty data. In addition to the collected data, infor-
mation associated with uncertainty is also available. Measure-
ment uncertainty is defined as a parameter associated with the
result of a measurement that characterizes the dispersion of
the values that could reasonably be attributed to the quantity
to be measured (/2). Combining uncertainty data with the raw
measurements can improve data analysis, empirical modeling,
and subsequent decision-making (13, 14).

Specification of measurement uncertainty in big data con-
texts and developing methods that take advantage of know-
ledge about uncertainty should be explored in more depth.

Unstructured variability. Process improvement activi-
ties require a careful assessment of the multiple sources
of variability of the process, which are typically modeled
using suitable mathematical equations (ranging from first-
principles models to purely data-driven approaches). The
analysis should involve both the deterministic backbone of
the process behavior, as well as the unstructured aspects of
the process arising from stochastic sources of variability,
including disturbances, sample randomness, measurement
noise, operators’ variation, and machine drifting. Jumping
into the analysis of massive data sets while overlooking the
main sources of unstructured variability is ill-advised, and
is contrary to a reliable statistical engineering approach to
addressing process improvement activities.

The sources of variability are actually the core of many
improvement activities, in particular those aimed at reducing
process variation and increasing product quality and consis-
tency. Big data cannot replace the need to understand how
data are acquired and the underlying mechanisms that gener-
ate variability, and statistical engineering principles should
be brought to the analysis of big data sets in the future (15).

Velocity challenges
In big data scenarios, large

5 ,v quantities of data are collected
~ * at high speed. This creates sev-

- L eral challenges i i
v ) ges in the imple-
X "" C g

mentation of online collection
techniques and in defining the
appropriate granularity to adopt for data analysis.

Data with a high time resolution. The high speed at
which data are collected in modern chemical plants produces
information with very fine time granularity, i.e., the data have,
by default, a high time resolution (on the order of minutes, or
even seconds). This default is a conditioning factor for all the
subsequent stages of data analysis, as the usual practice is to
avoid throwing out potentially valuable data. Consequently,
the analysis is prone to producing over-parameterized models.

It is important to select the most effective resolution
(16) for your particular data analysis. A default resolution
selected by a third party with no knowledge of your specific
data will probably not be appropriate.

Future research should develop sound ways for select-
ing the proper resolution, including the possibility of using
multiple time resolutions (/7) that take into account the
variables’ dynamic and noise features.

Adaptive fault detection and diagnosis. The high speed
of data collection provides the potential for fast detec-
tion and diagnosis of faults, failures, and other abnormal
conditions. Many effective methods for fault detection and
identification of associated variables are available, includ-
ing techniques that account for dynamics (/18-21).

A limitation of the standard data-based fault diagnosis
methods is that they rely on historical data that were col-
lected, analyzed, and labeled during past abnormal conditions
(22, 23). One way around this requirement is to incorporate
causal information from the process flowsheet (24).

Drawing on ideas from the machine learning commu-
nity (25), a more effective solution could be to treat fault
diagnosis as an online learning problem. Adaptive learn-
ing methods could generate fault diagnosis systems that
become increasingly effective over time, with the objective
of moving toward prognostics (i.e., the early prediction
of future operational problems) instead of learning about
abnormal conditions after a catastrophic incident.

Article continues on next page
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Final thoughts

Big data creates new possibilities to drive operational
and business performance to higher levels. However,
gaining access to such potential is far from trivial. New
strategies, processes, mindsets, and skills that are not yet in
place are necessary. In addition, challenges emerge when
big data problems are considered in industrial contexts.

This article has ized ten such challenges to be
addressed in the future — to make this journey an insight-
ful learning experience and a successful business opportu-
nity for companies. We also believe the dominating ideas
and premises of big data need to evolve and mature.

As we have discussed, big data by itself will not answer
all of your questions. Processes evolve over time, under quite
restrictive operating conditions, and data just reflect this real-
ity. We cannot expect data to tell us more than the information
contained in the data. But big data and domain knowledge can
be used synergistically to move forward and answer impor-
tant questions, to design better experiments, or to determine
additional sensors needed to address those questions.

Big data offers new opportunities for managing our oper-
ations, improving processes at all levels, and even adapting
the companies’ business models. So the important question
is: Can we afford not to enter the big data era?
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