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A B S T R A C T

Glycosylation is an essential modification to proteins that has positive effects, such as improving the half-life
of antibodies, and negative effects, such as promoting cancers. Despite the importance of glycosylation, data-
driven models to predict quantitative N-glycan distributions have been lacking. This article constructs linear
and neural network models to predict the distribution of glycans on N-glycosylation sites. The models are
trained on data containing normalized B4GALT1–B4GALT4 levels in Chinese Hamster Ovary cells. The ANN
models achieve a median prediction error of 1.59% on an independent test set, an error 9-fold smaller than
for previously published models using the same data, and a narrow error distribution. We also discuss issues
with other models in the literature and the advantages of this work’s model over other data-driven models.
We openly provide all of the software used, allowing other researchers to reproduce the work and reuse or
improve the code in future endeavors.
1. Introduction

Glycosylation is a form of co-translational and post-translational
modification that involves adding a glycan or glycans to proteins. When
a glycan is added to the nitrogen of an asparagine or arginine, this
process is called N-linked glycosylation. Glycosylation has many im-
portant functional and structural roles (Imperiali and O’Connor, 1999;
Patterson, 2005; Schjoldager et al., 2020). Improper glycosylation or
deglycosylation, on the other hand, is associated with multiple diseases
such as cancers (Stowell et al., 2015), infections (Bhat et al., 2019),
and congenital disorders (Jaeken, 2013). Many enzymes participate in
the glycosylation process, and B4GALT1–B4GALT4 have been shown to
be key contributors in multiple independent studies, such as Bydlinski
et al. (2018).

Due to its potential for diagnoses and treatments, glycosylation has
been of significant interest to the biomedical and pharmaceutical in-
dustry, physicians, and patients. For example, increases in fucosylation,
branching, and sialylation occur in many types of carcinoma (Almeida
and Kolarich, 2016). Disialoganglioside is expressed by almost all neu-
roblastomas, and anti-disialoganglioside monoclonal antibodies have
been successful against high-risk neuroblastoma in Phase I–III stud-
ies (Ho et al., 2016; Ahmed and Cheung, 2014). Another example
is poly-𝛼2,8-sialylation, which increases the half-lives of antibodies
without introducing tolerance problems (Van Landuyt et al., 2019).
On the other hand, the presence of glycans not produced by humans
can be detrimental to a therapeutic. N-glycolylneuraminic acid, which
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is in some CHO-cell-derived glycoproteins (Hokke et al., 1995), is
immunogenic to humans (Padler-Karavani et al., 2008).

Despite the importance of glycosylation for biotherapeutics and the
many advances made in the field, such as the genetic engineering
of CHO cells to increase the sialylation of glycoproteins (Bork et al.,
2007), some challenges remain. Proteins have multiple glycosylation
sites, and analyses need to take into account not only the glycan
compositions but also where these glycans are located (Almeida and
Kolarich, 2016). This structural diversity makes it difficult to explore
specific functions of glycosylation (Schjoldager et al., 2020). Clinical
laboratories struggle with analyzing patient glycosylation samples due
to the complex equipment needed, which has limited the progress of
personalized medicine (Almeida and Kolarich, 2016).

Many computational models have been developed to assist re-
searchers in better understanding and predicting glycosylation pat-
terns. Mechanistic models use physical knowledge, typically in the
form of differential equations, to make predictions, whereas data-
driven models directly leverage experimental data to make predictions.
Each kind of model has advantages and disadvantages, and this work
focuses on data-driven models. Some of these models, such as Deep-
NGlyPred (Pakhrin et al., 2021) or SPRINT-Gly (Taherzadeh et al.,
2019), are classifiers. In the context of glycosylation, classifier models
may predict whether an amino acid is N-glycosylated, or whether it
is O-GlcNAcylated, for example. Other models, such as by Moon et al.
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(2021) and Liang et al. (2020), perform regression, that is, the models
attempt to predict numerical values. In the context of glycosylation,
 regression model may predict the numerical glycan distribution at
 given glycosylation site. The numerical glycan distribution is, for a
nown glycosylation site X, what percentage of proteins have glycan
 attached to that site, what percentage of proteins have glycan B
ttached to that site, and so forth for every glycan to obtain the
omplete glycan distribution for a site, then so forth for every site to
btain the complete glycan distribution for all sites of a protein. In
articular, Liang et al. (2020) attempted to answer, using a different

modeling method, a similar problem to this work. While their model
and the models in this work cannot be directly compared because the
atasets and input types are different, advantages of this work’s models
re analyzed in the Discussion (Section 4).

In this work, we construct linear models and artificial neural net-
ork (ANN) regression models to predict glycan distributions in dif-

erent glycosylation sites of fusion Fc-proteins based on changes in
4GALT1–4 enzyme levels in Chinese Hamster Ovary cells. The model
onstruction procedures employ nested cross-validation and rigorous
nbiased prediction error estimation. This work’s ANN models have 9-
old lower median prediction error than previously reported models.
oreover, Shapley values are used to interpret the models’ predic-

ions (Shapley, 1951). Open-source software is provided so that other
researchers can reproduce the work or retrain the models as additional
glycosylation data become available.

2. Materials and methods

This section describes the datasets and methods for constructing
he data-driven models. Details on how to run the software to make

glycan distribution predictions or recreate the results in this article are
provided in Supplementary Information.

2.1. Datasets

The models in this article are constructed using an experimental
dataset that comprises distributions of glycans in nine different gly-
cosylation sites of fusion Fc-proteins in response to changes in the
enzyme levels of B4GALT1–B4GALT4 due to five types of knockouts
Supplemental Data of Bydlinski et al. (2018)). Data are preprocessed

using our own code, which includes standard Python packages (Harris
t al., 2020; Hunter, 2007; McKinney, 2010). The levels of B4GALT1–
4GALT4 are provided to the model as an 𝑁×4 numerical matrix.

This matrix is scaled by subtracting the mean of the training data and
hen dividing by the standard deviation of the training data. Thus,
he scaled training data (but not the scaled validation and test data)
ave mean = 0 and standard deviation = 1. 20% of the data for each
lycosylation site are separated for testing, with the remaining 80%
sed for cross-validation. The data are split into five groups according
o the knockouts that were performed.1 During each cross-validation

fold and testing, the validation/testing groups are selected such that
an entire knockout group was held out, and the other knockout groups
re used for training. This procedure avoids test set leakage by ensuring
he test set is sufficiently different from the training set.

Note that the glycans in Bydlinski et al. (2018)’s dataset use non-
standard names. This work converted these names into the Oxford
Notation. For more details, please view Section S4.

2.2. Linear data-driven models

Linear data-driven models (specifically, elastic net (EN), ridge re-
ression (RR), and partial least squares (PLS), which together are called

1 Group labels are available in the group_names.txt file on the GitHub
repository.
 P

2 
EN/RR/PLS) are constructed using a modified implementation of the
Smart Process Analytics software (Sun and Braatz, 2021)2 to serve
as a baseline for comparison. A list of hyperparameters tested for
each model is available in Section S3. For each position and glycan,
he best hyperparameters for the linear models are selected through
ross-validation on four of these groups, leading to one model per
ombination of position and glycan. The model and hyperparameters
ith the lowest cross-validation average loss (as determined by the

mean squared error loss function) are selected and the last group used
to test that model’s performance.

2.3. Artificial Neural Networks (ANNs)

Artificial neural network models (specifically, multilayer percep-
trons) are constructed for both datasets using PyTorch (Paszke et al.,
2019). We constructed models for 7 different layer configurations,
6 different learning rates (5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4),
 different activation functions (ReLU, SeLU, tanh, tanhshrink), and

plateau or cosine scheduling (Loshchilov and Hutter, 2017), as further
detailed in Section S3. The best hyperparameters for each glycan are
determined by a grid search, leading to one model per combination of
position and glycan. The combination with the lowest cross-validation
average loss (as determined by the mean squared error loss function) is
elected and, for each position and glycan combination, its performance

is reported for an independent test dataset as the ‘‘This work’s ANN’’
model. Lastly, the predictions of selected models are made interpretable
using Shapley values (Shapley, 1951) as implemented by Lundberg and
Lee (2017).

2.4. Shapley values

Originally created for game theory, Shapley values are a unique
set of values that represent the value (in economic terms, the surplus)
generated by a coalition of players (Shapley, 1951). Given a game with
𝑁 players, a coalition 𝑆 of players, and a value function for a coalition
𝑣(𝑆), the Shapley value for a player 𝑖, 𝜑𝑖(𝑣) is defined as (Shapley,
1951):

𝜑𝑖(𝑣) = 1
𝑁

∑

coalitions excluding 𝑖

marginal contribution of 𝑖 to the coalition
number of coalitions excluding 𝑖 of this siz

𝜑𝑖(𝑣) =
∑

coalitions including 𝑖

synergy of the coalition
members in the coalition

Definitions for 𝑆 and 𝑣 can vary significantly depending on the
ontext and application. In a machine learning context, 𝑖 represents
ach feature, 𝑆 is a subgroup of all the features present in the data
nd 𝑣 is the loss function used (Lundberg and Lee, 2017). Models are

trained with sets of missing features and compared to the model trained
ith all features, allowing the calculation of a Shapley value 𝜑𝑖 for

each feature 𝑖. To avoid need to train multiple versions of the model,
hapley values may also be estimated well via sampling (Lundberg and

Lee, 2017). Finally, once the Shapley values have been generated, a
prediction �̂� can be made with a simple linear model, vastly simplifying
the interpretation of a nonlinear model’s output.

�̂� = 𝜑0 +
𝑁
∑

𝑖=1
𝜑𝑖𝑥𝑖

2 The software version used in this article is available at github.com/
edroSeber/SmartProcessAnalytics.

https://github.com/PedroSeber/SmartProcessAnalytics
https://github.com/PedroSeber/SmartProcessAnalytics
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Table 1
Mean and median percent relative errors (PRE) and RMSEs for different N-glycosylation models. Models ‘‘ANN-2’’ and ‘‘ANN-3’’ are from Kotidis and Kontoravdi (2020); their PRE
data are obtained from Figs. 5 and 6 of Kotidis and Kontoravdi (2020). Models ‘‘EN/RR/PLS’’ and ‘‘ANNs’’ come from this work. ‘‘Train mean’’ is the mean of the training data
(Bydlinski et al. (2018)).

Statistic ANN-2
(From Kotidis
and Kontoravdi
(2020))

ANN-3
(From Kotidis
and Kontoravdi
(2020))

EN/RR/PLS
(Baseline)

ANNs
(This work)

Train mean
(From
Bydlinski et al.
(2018))

Mean PRE (±𝜎) 17.11 ± 19.45 15.51 ± 10.40 26.72 ± 20.49 2.45 ± 2.86 38.94 ± 17.68
Median PRE 15.67 13.83 26.17 1.59 43.43
RMSE (%) 4.08 4.81 8.90 0.72 13.91
Times Best Model 1 4 1 25 0
Fig. 1. Glycan distributions predicted by different models from test data. Experimental results (‘‘Exp’’) came from Bydlinski et al. (2018). Models ‘‘ANN-2’’ and ‘‘ANN-3’’ came
from Kotidis and Kontoravdi (2020); their prediction data are obtained directly from Figs. 5 and 6 of Kotidis and Kontoravdi (2020). Models ‘‘EN/RR/PLS’’ and ‘‘This work’s ANN’’
come from this work; the former are used as a baseline. ‘‘Train mean’’ is the mean of the training data (Bydlinski et al. (2018)). For each subplot, the bar orders and colors are
the same, and each 𝑥-axis position represents a different glycan.
3. Results

3.1. Properly trained ANN models display a 9-fold reduction in median
prediction error on these datasets

All of the data-driven models constructed in this study for prediction
of N-glycosylation are trained with hyperparameters selected by cross-
validation. This section compares this work’s models with the models
in Kotidis and Kontoravdi (2020) (denoted by ANN-2 and ANN-3),
which trained ANNs using the same data but selected the hyperparam-
eters based on test set performance, a procedure that leads to overly
optimistic model errors and issues with generalization (Kapoor and
Narayanan, 2022; Liao et al., 2021). It should be noted that Kotidis
and Kontoravdi (2020) makes many statements to the contrary; this is
further discussed in Section S5 in the Supplemental Information. Thus,
the real relative errors for the models from Kotidis and Kontoravdi
(2020) are higher than what is reported in this work or Kotidis and
Kontoravdi (2020). Moreover, the training procedure of Kotidis and
Kontoravdi (2020) had some restrictions, such as on the learning rate
and activation function, that reduced the potential prediction accuracy
of its models.

The predictions of the data-driven models are compared with exper-
imental data in the test sets in Fig. 1, and the corresponding percent
relative errors (PRE) are summarized in Table 1. All predictions, PRE,
3 
and root mean square error (RMSE) data for the ANN-2 and ANN-
3 models are obtained from Figs. 5 and 6 of Kotidis and Kontoravdi
(2020). The median prediction error for this work’s ANNs is 9-fold
lower than for the previously published models. The mean and median
prediction errors for ANN-2 and ANN-3 are higher than for this work’s
ANNs, in spite of being selected based on their performance on the
test set instead of on a validation set, indicating issues with the ANN
training in Kotidis and Kontoravdi (2020).

The median and mean prediction errors for the linear models are
higher than for any of the ANN models. On the other hand, the linear
models have the lowest prediction errors for one of the glycans, which
suggests that any nonlinearity in the true relationship for that glycan is
low enough that the bias of assuming linearity is small relative to the
increase in variance associated with having more degrees of freedom
in the training of the ANN models (Sun and Braatz, 2021).

The PRE for each model for each glycan is reported in Table 2. All
of the models have low prediction errors for some glycans (e.g., Fc-
Domain of Fc-DAO — FA2), but other glycans tend to have higher
prediction errors (e.g., Asn38 of EPO-Fc — FA4G1S1). These prediction
errors are not meaningfully correlated with the Train Mean prediction
error (all 𝑅2 < 0.10, except for the EN/RR/PLS models, which have
𝑅2 = 0.47). This work’s ANNs are the best model 25/29 times and
produce lower prediction errors than the training mean for all glycans.
In contrast, the predictions for ANN-2 and ANN-3 are worse than the
training mean for some glycans.
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Fig. 2. Violin plots showing the distribution of test set PREs for different models. Model labels are as in Fig. 1. The horizontal bars within the distributions are median PREs.
Table 2
Test set percent relative errors (PREs) on the main glycans for different N-glycosylation models. Models ‘‘ANN-2’’ and ‘‘ANN-3’’ came from Kotidis and Kontoravdi (2020); their
PRE data are obtained from Figs. 5 and 6 of Kotidis and Kontoravdi (2020). Models ‘‘EN/RR/PLS’’ and ‘‘ANNs’’ come from this work; the former are used as a baseline. For each
glycan, the ‘‘EN/RR/PLS’’ column reports the PRE for the model type with the best cross-validation score. ‘‘Train mean’’ is the PRE when using the mean of the training data
(Bydlinski et al. (2018)). For each glycan, the lowest PRE(s) among the models is in bold. ‘‘N/A’’ marks predictions that are not reported in Kotidis and Kontoravdi (2020).

Site Glycan ANN-2
(From Kotidis
and Kontoravdi
(2020))

ANN-3
(From Kotidis
and Kontoravdi
(2020))

EN/RR/PLS
(Baseline)

ANNs
(This work))

Train mean
(From
Bydlinski
et al.
(2018))

Asn24 of EPO-Fc FA2 19.95 33.25 35.87 4.75 55.40
Asn24 of EPO-Fc FA3 1.02 9.48 16.91 0.44 44.39
Asn24 of EPO-Fc FA4 12.88 1.64 26.93 5.63 47.89
Asn24 of EPO-Fc FA1 19.51 25.37 35.17 5.88 47.80

Asn38 of EPO-Fc FA2 3.00 18.39 29.64 0.56 43.43
Asn38 of EPO-Fc FA3 7.11 1.74 33.56 3.63 45.54
Asn38 of EPO-Fc FA4 19.36 13.10 52.87 1.79 60.82
Asn38 of EPO-Fc FA4G1S1 51.70 5.68 89.20 13.56 45.45

Asn83 of EPO-Fc FA2 20.11 25.00 42.61 2.44 59.92
Asn83 of EPO-Fc FA3 3.41 8.92 40.48 0.90 57.84
Asn83 of EPO-Fc FA4 5.59 14.55 57.73 2.30 65.07
Asn83 of EPO-Fc FA4G1S1 100.00 20.00 52.22 0.00 22.78

Asn110 of Fc-DAO M5 27.07 N/A 12.01 0.00 10.26
Asn110 of Fc-DAO M6 5.43 N/A 3.94 0.67 4.02
Asn110 of Fc-DAO M7 27.78 N/A 8.54 0.51 16.54

Asn168 of Fc-DAO FA2 24.53 27.79 36.41 0.00 56.19
Asn168 of Fc-DAO FA3 17.12 19.62 33.10 5.00 57.61
Asn168 of Fc-DAO FA4 23.15 28.64 42.36 3.67 63.86
Asn168 of Fc-DAO FA1 10.81 6.91 26.17 1.18 39.56

Asn538 of Fc-DAO A2 21.80 22.56 25.94 1.13 45.80
Asn538 of Fc-DAO FA2 6.80 5.65 10.99 3.81 36.82
Asn538 of Fc-DAO A1 1.59 1.59 12.64 1.59 27.65
Asn538 of Fc-DAO FA1 3.88 4.71 1.11 0.00 19.04

Asn745 of Fc-DAO A2 15.67 10.26 17.38 0.57 41.93
Asn745 of Fc-DAO FA2 6.32 7.48 10.02 1.62 36.12
Asn745 of Fc-DAO A1 17.21 32.56 11.35 5.56 21.28
Asn745 of Fc-DAO FA1 19.20 27.23 2.19 2.67 15.29

Fc-Domain of Fc-DAO FA2 2.73 N/A 3.03 1.00 19.12
Fc-Domain of EPO-Fc FA2 1.36 N/A 4.46 0.11 21.71
The distribution of prediction errors for this work’s ANNs are con-
centrated near low values (Fig. 2). At the other extreme, the distribu-
tion of prediction errors for ANN-2 has a wide spread with very high
prediction error (≥50%) for two glycans. The linear models also have
a long tail, although not to the same degree. ANN-3 has a lower range
of prediction errors, but it is still significantly higher than that of this
work’s ANNs (Fig. 2).

3.2. Nested validation highlights the robustness of this work’s models

This work uses the same test set as Kotidis and Kontoravdi (2020)
to allow a fair comparison between models. To ensure the models
constructed in this study are not biased by that choice of test set, nested
4 
validation was performed. In each round, a group within the complete
dataset is selected as the test set, and the rest is used for training and
cross-validation. These rounds repeat until all groups have been used as
the test set. In this work, five rounds of nested validation are performed,
(as per Section 2.1).

The difference is negligible between the PREs of the models selected
with and without nested validation (Fig. 3). The Jensen–Shannon dis-
tance between the EN/RR/PLS distribution is 0.124 and that between
the ANN distributions is 0.387. As such, the selection of test set did not
introduce any significant bias to the models, and the models are robust
to changes in the training and testing data.
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Fig. 3. Violin plots showing the distribution of test set PREs before and after nested validation. Model labels are as in Fig. 1. The horizontal bars within the distributions are
median PREs.
3.3. Shapley values for interpretation of the model predictions

As detailed in Section 2.4, Shapley values assign a linear coefficient
to each input of a model (in this work, the levels of B4GALT1–4). These
coefficients allow for interpretation of the effects of each enzyme on a
given position/glycan combination. As these coefficients can vary de-
pending on what enzymes are present or absent, the coefficients allow
the elucidation of interactions and dependencies among the enzymes.
Two examples are provided in Fig. 4, but these Shapley values may
be obtained for any glycosylation site and glycan in this work. In the
position Asn538 of Fc-DAO, the levels of A2 are always reduced in the
presence of any B4GALT. B4GALT3 by itself has a considerably negative
effect on the levels of A2, but this effect is considerably diminished in
the presence of B4GALT1, and B4GALT3 even increases the levels of A2
in the presence of B4GALT1 and B4GALT2 or 4. In the position Asn745
of Fc-DAO, B4GALT4 has a marginally positive effect on FA1, and this
effect becomes larger in the presence of B4GALT1 or 3, but smaller
in the presence of B4GALT2. Conversely, B4GALT2 has a marginally
negative effect on FA1, and that effect becomes more negative in the
presence of B4GALT4. These predictions are in accordance with what
was previously reported in previous studies (such as Bydlinski et al.
(2018), Lee et al. (2001), Yang et al. (2015) and McDonald et al.
(2014)), corroborating the quality of the models of this work and the
usefulness of Shapley values in providing interpretable results.

4. Discussion

This study constructs models from literature data on antibody
and fusion protein glycan distribution based on normalized CHO cell
B4GALT1–B4GALT4 levels. Two types of models are trained to predict
the glycan distribution based on user-input B4GALT levels. Linear mod-
els (EN/RR/PLS) provided a 1.7-fold reduction in median error relative
to the train mean on predictions of glycan distribution despite the linear
models’ simplicity. Artificial neural network models are constructed
that have significantly improved prediction performance compared to
published models. The median PRE of the new ANN models is 1.59%
(Table 1), with the error distribution concentrated near low values
(Fig. 2). This median PRE is 9-fold lower than for the other models.
A nested validation study shows that the prediction performance of the
linear and ANN models was insensitive to the split of the data into
training/validation and test sets (Section 3.2 and Fig. 3).

The models trained in this work are compared to the ANN models
of Kotidis and Kontoravdi (2020), which did not properly separate the
experimental data into training, validation, and test sets (Section S5).
This issue effectively ensured Kotidis and Kontoravdi (2020)’s models
are overfit, resulting in overly optimistic estimates of the prediction
errors. Kotidis and Kontoravdi (2020) manually set the ANN structures
and fixed the choice of some hyperparameters, namely, the learning
5 
rate and activation function. The models in Kotidis and Kontoravdi
(2020) also were not trained using learning rate scheduling. These
choices limit the potential prediction performance of the models in
Kotidis and Kontoravdi (2020), and explain why the PREs of their
models are high despite being overfitted to the test data.

As previously mentioned, Liang et al. (2020) attempted to predict
N-glycosylation distributions using a different architecture (a hidden
Markov model, HMM). While the PREs of this work and the (absolute)
RMSEs from Liang et al. (2020) cannot be compared directly because
the datasets and input types are different, it should be noted that the
model from Liang et al. (2020) attains an absolute RMSE equal to
1.91% and 1.26% on a mixed knockout set (Fig. 5 of Liang et al. (2020))
and equal to 5.85% and 4.89% on de novo predictions (Fig. 6 of Liang
et al. (2020)). This work’s ANNs have an absolute error of 0.50%, about
3.2-fold lower than that from the Liang et al. (2020) HMM on a mixed
knockout set and 10.7-fold lower than that from the same HMM on a
de novo prediction. Absolute errors are not ideal metrics because many
glycans are present at very low percentages (or even not present), so
absolute errors are biased downwards. The mean PRE of Liang et al.
(2020)’s model is equal to 115.2% and 64.5% on a mixed knockout
set and 59.0% and 34.9% on de novo predictions, 38.2- and 20.0-fold
(respectively) higher than this work’s ANNs’ mean PRE (2.35%). Using
only glycans with a distribution ≥3% to calculate the PREs (to avoid
minor perturbations having a disproportional effect on the PRE), the
mean PRE of Liang et al. (2020)’s model is equal to 40.4% and 43.4%
on a mixed knockout set and 36.9% and 45.8% on de novo predictions,
17.8- and 19.5-fold (respectively) higher than this work’s ANNs’ mean
PRE.

According to their protocol (Liang et al. (2023)), a user would need
17.1 h to train Liang et al. (2020)’s model on one sample using one
copy of MATLAB. This work’s ANNs, on the other hand, can be cross-
validated (using 5 folds) and trained in about 5 min. Moreover, their
protocol states that the prediction of a mixed knockout set took 15 min,
and a de novo prediction on another protein took about 30 h with a
single MATLAB license. This work’s ANNs can generate predictions in
about 2 s. The HMM model from Liang et al. (2020) can model only
wild-type levels or full enzyme knockouts, whereas this work’s ANNs
can handle any numerical values for the enzyme models, including par-
tial knockouts and upregulations. Finally, due to its HMM architecture,
the model from Liang et al. (2020) will return different outputs if ran
multiple times on the same input, whereas this work’s models always
return the same output when given the same input.

The software used in this work is publicly available, allowing other
researchers to reproduce this work and reuse or improve the code in
future studies. The software provides a simple way to install and run
the models to predict the glycan distribution of antibodies and fu-
sion proteins made in CHO cells given normalized B4GALT1–B4GALT4
levels.
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Fig. 4. Predicted Shapley values for Asn538 of Fc-DAO — A2 (left) and Asn745 of Fc-DAO — FA1 (right). B1 to B4 represent B4GALT1–4 respectively. The 𝑦-axis labels represent
what enzymes are present (e.g.: 1111 is the wild-type, 1101 indicates only B4GALT3 was knocked out, 0001 indicates only B4GALT4 is present). Coefficients not shown are equal
to 0 (as their respective enzymes have been knocked out in that sample).
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