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a b s t r a c t 

Process monitoring systems are necessary for ensuring the long-term reliability of the operation of in- 

dustrial systems. This article provides some perspectives on progress in the design of process monitoring 

systems over the last twenty years. Methods for each step of the process monitoring loop are summa- 

rized. The challenges in the field and opportunities for future research are discussed. When looking into 

the future, it is argued that advances are likely to come from combining different methods to exploit the 

strengths of various techniques while minimizing their weaknesses. 
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1. Introduction 

Process monitoring is an important component in the long-term

reliable operation of any automated controlled system. To distin-

guish between different types of disruptions on operations, this ar-

ticle adopts the definitions of Isermann and Ballé (1997) . A dis-

turbance is an unknown and uncontrolled input acting on a sys-

tem. A fault is an unpermitted deviation of at least one char-

acteristic property or parameter of the system from the accept-

able/usual/standard operating conditions. A failure is a permanent

interruption of a system’s ability to perform a required function

under specified operating conditions. Traditional control systems

are designed to return the system to normal operations in the

presence of disturbances but not in the presence of faults or fail-

ures. Fault-tolerant control (FTC) systems refer to control systems

that have been designed to explicitly account for some class of

specified faults in the closed-loop system. FTC systems must act

in the time between a fault and a system failure. 

In chemical systems, a fault is an extreme event such as cat-

alyst deactivation, valve blockage or compressor failure. Due to

the increasing complexity of facilities, faults are inevitable and

occur more often. Monitoring is complicated by recycle streams

that cause bidirectional interactions as well as by control systems

which can mask the effect of faults. Additionally faults will com-

monly occur together, known as multiple faults (see Fig. 1 ). How-

ever, even a relatively simple modern facility, in terms of its op-
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rations, will have a large sensor network which can be used for

rocess monitoring (see Fig. 2 ). The key of fault detection and di-

gnosis (FDD) is how to use these sensors effectively to minimize

he impact of faults. 

Many process monitoring systems are implemented in the form

f a loop that consists of fault detection, fault isolation, fault iden-

ification, and process recovery (see Fig. 3 ). Sometimes the com-

ined steps of fault isolation and identification are referred to

s fault diagnosis. The steps are to progressively determine: (1)

hether a fault occurred, (2) the location and time of the fault,

3) the magnitude the fault, and (4) how to reverse the effects of

he fault ( Gertler, 1998 ). 

Process monitoring has been a growing field for nearly a half

entury. Relevant works on process monitoring in the 1970s in-

lude the application by Mehra and Peschon (1971) of systems and

tatistical decision theory to dynamic systems, the review paper by

illsky (1976) on publications up to the mid 1970s, and the text-

ook by Himmelblau (1978) . Over the years, much of the literature

as been focused on particular applications including to aerospace,

hemical, nuclear, and automotive systems ( Hwang, Kim, Kim, &

eah, 2010 ). The growing complexity and degree of integration in

hese systems has increased the possibility that faults occurring lo-

ally somewhere in a system can have their effects propagate to

ther parts of the system, and has made the consequences of de-

igning a poor process monitoring system greater, therefore mak-

ng the design of process monitoring systems more challenging.

s such, many reviews have been published over the last twenty

ears, e.g. ( Alcala & Qin, 2011; Frank & Ding, 1997; Hwang et al.,

010; Isermann, 2005; Isermann & Ballé, 1997; Qin, 2003; Rus-

ell, Chiang, & Braatz, 20 0 0a; Venkatasubramanian, Rengaswamy,

 Kavuri, 2003a; Venkatasubramanian, Rengaswamy, Kavuri, & Yin,

003b; Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003c;

in, Ding, Haghani, Hao, & Zhang, 2012 ). 
d. All rights reserved. 
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Fig. 1. The four classes of multiple faults ( Chiang et al., 2015 ). 
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Fig. 3. Process monitoring loop ( Isermann & Ballé, 1997; Russell et al., 20 0 0a ). 
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This article does not review the entire process monitoring field

hich, according to the Web of Science in March 2015, has had

ver 34,0 0 0 publications since the 1970s. This article provides

ome perspectives on the current state of process monitoring sys-

ems as well as current challenges and promising future directions

or the field. 

. Process monitoring – background 

Modern process monitoring systems are designed based on a

odel of some form that is developed using process data. The

odel allows process operators to make informed decisions about

hether or not there is a fault. Different fault detection methods

rovide information of different quality and quantity to the fault

iagnosis steps. In this section, each step in the process monitor-

ng loop is presented. 

.1. Fault detection 

The design of a fault detection system generally begins with the

evelopment of a model that characterizes the normal operating

ignature of a process. Faults are then typically defined as a devi-

tion from this normal operation above a threshold. As such, the
ig. 2. The process diagram for the Tennessee Eastman (TE) benchmark problem ( Dow

eous gas-liquid exothermic reactions. The process has 12 valves for manipulation and 

nterpretation of the references to color in this figure legend, the reader is referred to the
esign of a fault detection system can be described as consisting

f two steps: building a process model and choosing metrics to

est for faults. Active fault detection and identification is an excep-

ion to this pattern and is discussed later in the section on process

onitoring. 

Many types of process models have been employed in fault

etection. Principal component analysis (PCA) is one of the most

ommonly applied fault detection methods for industrial systems.

CA is a linear dimensionality reduction technique that produces

ower dimensional representations of the original data that maxi-

ize the retained variance ( Hotelling, 1933; Jolliffe, 2002 ). In the

bsence of noise and disturbances, data from normal operating

onditions operate in a much lower dimensional manifold due

o physical, chemical, and biological constraints such as Euler’s

aws of motion, stoichiometry in chemical and/or metabolic reac-

ion networks, and mass, energy, molar species, and fluid momen-

um balances. In the presence of noise and disturbances, the data

rom normal operating conditions will approximately lie within a

ower dimensional manifold, and data-based dimensionality reduc-

ion techniques such as PCA attempt to construct the manifold

urely from data. 

Variance is a useful metric for fault detection, since it is of-

en reasonable to assume that an outlier as compared to histor-

cal operation would indicate a fault. PCA calculates a set of or-

hogonal vectors, called loading vectors , ordered by the amount of

ariance explained in each loading vector direction using a sin-

ular value decomposition. This set of vectors is then truncated,

etaining the columns corresponding to the largest singular val-

es. New observations can then be projected into lower dimen-

ional space using the reduced set of loading vectors. The aim of

his dimensionality decrease is to keep systematic variations while

emoving random variations ( Wise, Ricker, Veltkamp, & Kowalski,

990 ). The technique can be extended to nonlinear systems by us-
ns and Vogel, 1993 ). The process is a reactor/separator/recycle with two simulta- 

41 measurements for monitoring and control. The sensors are circled in red. (For 

 web version of this article.) 
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Fig. 4. A scatter plot of experimental data projected onto the leading two loading vectors for a cell culture, with an ellipse designed to contain at least 95% of normal 

operating data. Reprinted with permission from Kirdar et al. (2007) . 
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ing kernel functions within the PCA formulation ( Choi, Lee, Lee,

Park, & Lee, 2005 ). PCA has been applied in a variety of fields in-

cluding (bio)pharmaceutical manufacturing ( Gunther, Conner, & Se-

borg, 2007; Kirdar, Conner, Baclaski, & Rathore, 2007; Kourti, 2006;

Undey, Ertunç, & Çinar, 2003 ), the chemicals industry ( Nomikos &

MacGregor, 2014; Zhu & Braatz, 2014 ), and semiconductor manu-

facturing ( Cherry & Qin, 2006 ). Fig. 4 shows an example of data

plotted in terms of its principal components for a cell culture pro-

cess. 

Partial least squares (PLS, aka projection to latent structures)

is another linear dimensionality reduction technique ( Wold, Ruhe,

Wold, & Dunn III, 1984 ) widely applied for fault detection in indus-

trial systems. PLS maximizes the covariance between the input and

output data in the reduced space ( Geladi & Kowalski, 1986 ). Unlike

PCA, PLS does not have a closed-form solution but instead uses

an iterative algorithm such as NIPAL S ( Wold, 1975 ). PL S is widely

applied in the chemicals, petrochemicals, and refining industries

( Russell et al., 20 0 0a; Zhou, Li, & Qin, 2010 ) and in pharmaceuti-

cal and biologic drug manufacturing ( Kirdar et al., 2007; Severson

et al., 2015b ). The low cost of entry of chemometrics (PCA, PLS)

methods and the lack of dynamic models for most plant opera-

tions are the main reasons for their dominance in these industries.

Both their current heavy usage and the ever-increasing quantity of

real-time data ( Reis, Braatz, & Chiang, 2016 ) suggests that chemo-

metrics methods will continue to dominate those industries for the

foreseeable future. 

An alternative to fault detection methods that rely on dimen-

sionality reduction are methods based on state-space models. The

most commonly used model is the discrete-time linear stochastic

state-space model 

x k +1 = F x k + G u k + w k (1)

y k = H x k + A u k + B w k + e k (2)

where k is the sampling index; x , u , and y are the sys-

tem states, inputs, and outputs, respectively; and w and e de-

note the sensor and process noise of the system ( Larimore,

1983; Simoglou, Martin, & Morris, 2002 ). Such models are typ-

ically constructed from subspace identification techniques, such

as canonical variate analysis (CVA) ( Larimore, 1990 ), multivari-

able output-error state-space (MOESP) ( Verhaegen, 1993a; 1993b;

1994; Verhaegen & Dewilde, 1992a; 1992b ), and numerical al-

gorithm subspace-based state-space system identification (N4SID)

( Van Overshcee & De Moor, 1994 ). The subspace identification
echniques most applied to industrial systems is CVA, which was

ioneered by Akaike (1976) and promoted and further developed

y Larimore (1990) . The objective of CVA is to identify a linear

ombination of past inputs and outputs that are most predictive

f future outputs. CVA relies on minimizing the prediction er-

or using a singular value decomposition of the covariance ma-

rix for past inputs and outputs. CVA has been reported to pro-

uce near maximum-likelihood solutions ( Juricek, Seborg, & Lari-

ore, 2001 ). Another type of identification technique uses fuzzy

ule-based models. In this approach, fuzzy clustering techniques

re used to partition the data into linear subsets ( Tomohiro and

ugeno, 1985 ). This approach was originally proposed for modeling

nd control and then extended to fault diagnosis ( Simani, 2013 ). 

Another class of fault detection models relies on graphical mod-

ls, which are typically directed and often lumped into the broader

lass of knowledge-based methods. These methods employ some

orm of expert knowledge in their construction. A decision tree is

 type of graphical model developed via inductive learning that

ims to map measured data to classes of operating conditions.

hese models are able to describe normal and abnormal opera-

ions during complicated startup, shutdown, and changeover pro-

edures (such systems are often called mixed continuous-discrete

ystems or hybrid systems ). Feature selection and extraction are im-

ortant considerations for the success of decision trees and are fa-

ilitated by process understanding. A benefit of this approach is

hat a well-developed graphical model has an easily interpreted

hysical meaning (e.g., see Fig. 5 ), and that the same model can be

sed in fault identification and isolation ( Bakshi & Stephanopou-

os, 1994 ). 

Several other types of graphical models have also been applied

n the field, with representative examples being causal maps, Petri

ets, bond graphs, and neural networks. A causal map is a directed

raph where the nodes represent process variables and the di-

ected edges represent cause-and-effect relationships ( Chiang, Rus-

ell, & Braatz, 2001 ). A model of this type has a clear physi-

al interpretation, and can be constructed from a piping and in-

trumentation diagram or process flow diagram embedded in the

istributed control system. A Petri net is a graphical model that

s suitable for modeling transitions/events that may occur in the

peration of the system and is most well-suited to graphs that

ave parallel or concurrent events ( Murata, 1989 ). The graph con-

ists of transitions, places, and arcs in which nodes can be tran-

itions or places (marked with different symbols, typically bars

nd circles) and arcs connect nodes of different type only. Petri
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Fig. 5. An example of a decision tree as applied to a process for maintaining octane 

number of a gasoline product adapted from Bakshi and Stephanopoulos (1994) . 
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Fig. 6. Classic contribution chart (top) and 2D contribution map (bottom). The con- 

tributions are for a fault in a simulated chemical manufacturing facility ( Zhu & 

Braatz, 2014 ). 
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ets were first introduced by Petri (1962) and conferences and

everal tutorials helped popularize the technique ( Murata, 1989 ).

iswanadham (1988) was one of the first researchers to apply Petri

ets to fault detection applications, which was followed by a large

umber of studies (e.g., see Boubour, Jard, Aghasaryan, Fabre, and

enveniste, 1997; Cabasino, Giua, and Seatzu, 2010; Srivinvasan

nd Jafari, 1993 and citations therein). Rather than focus on tran-

itions, a bond graph is a graphical representation of a physical dy-

amical system that represents its energy flows Borutzky (2009) .

ond graphs were first introduced by Paynter (1961) , and exam-

les of the application of bond graphs to fault detection include

eebstra, Mosterman, Biswas, and Breedveld (2001) ; Low, Wang,

rogeti, and Luo (2010) . A neural network is a graphical model

hat is characterized by input, output and hidden nodes. When

pplied to fault diagnosis problems, often the input nodes rep-

esent the measurement space, the hidden nodes represent the

eature space, and the output nodes represent the decision space

 Venkatasubramanian et al., 2003 a). Examples of the application of

eural networks can be found in Korbicz, Ko ́sielny, Kowalczuk, and

holewa (2004) ; Mrugalski (2013 , 2014) . 

Once the model has been determined, a metric for detecting

aults is required. In PCA, PLS, and related models, faults are usu-

lly detected using the T 2 statistic, which is the Euclidean norm

f the deviation of an observation vector from its mean in the re-

uced space, scaled by its variance. A fault is detected when the

 

2 value exceeds a specified threshold. Alternatively, the Q statistic

also known as standard prediction error or SPE), which measures

he total sum of variations in the residual space, can also be used

o identify faults. In extensive simulations, the Q statistic has been

bserved to be usually more effective at detecting faults than the

 

2 statistic ( Chiang et al., 2001 ). The explanation for this observa-

ion is that most faults push the process operations outside of the

ormal linear relationships between variables rather than magnify

he extent of operation within the normal linear relationships be-

ween variables. Some researchers have used a weighted combina-

ion of Q and T 2 statistic ( Yue & Qin, 2001 ). 

For knowledge-based models, faults are detected if the mea-

ured variables result in a prediction of a fault, based on the

odel. 

If a state-space model is used, fault detection typically occurs

ia a similar residual generation, which compares model predic-

ions and measurements (often referred to as output estimation ap-

roaches). Alternatively, the difference between nominal and esti-

ated parameters has been used to detect faults (often referred

o as parameter estimation approaches). In the particular case of

VA, a series of different statistics have been proposed for fault
etection Chiang and Braatz (2003) ; Juricek, Seborg, and Lari-

ore (2004) . In state-space models, fault detection and diagnosis

re closely coupled, as discussed below. 

.2. Fault isolation 

Once the fault has been detected, the next step is to determine

he location of the fault. One fault isolation method widely used in

ndustrial systems is the contribution chart. Contribution charts are

ypically used in concert with dimensionality reduction techniques,

uch as PCA and PLS. The contribution chart projects the data back

nto the higher dimensional observation space, which can be used

y an operator to identify which process variables are deviating

rom their historical values. This approach exploits correlations be-

ween variables to reduce the effects of process and sensor noise

n identifying which observation variables are most likely associ-

ted with the fault. 

As an example, a contribution chart of the TE process is shown

n Fig. 6 , both in the form of a classic contribution chart at one

ime instance and in the form of a 2D contribution map with the

ontributions in each column as a function of time in the form

f a color map. The 2D contribution map, introduced by Zhu and

raatz (2014) , allows the operator to visualize the dynamic propa-

ation of the effects of a fault on the observation variables through

he facility. The 2D plot shows which deviations are suppressed by
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the various control systems and which deviations are persistent.

The variables which have deviations can be compared to the pro-

cess flow diagram or piping and instrumentation diagram to better

track down the location of the root cause of the fault. The ability

to visualize the data so that the fault can be located is a crucial

element for the success of a method. Methods that allow for easy

interpretation of the data are much more valuable in industrial ap-

plication. 

An alternative to the classic contributions chart, referred

to as reconstruction-based contribution chart , has been proposed

( Alcala and Qin, 2008 ). This method finds the contribution of each

monitored variable to the fault detection metric, for example T 2 .

An example is given where the reconstruction-based contribution

chart provides an accurate fault isolation while the classic contri-

bution chart cannot. 

2.3. Fault identification 

Fault identification can be very challenging if fault detection

and isolation have been carried out using PCA or PLS, as the qual-

ity of information that can be extracted from models constructed

from normal operating data is limited. If the training data has been

characterized from past experience into normal operating condi-

tions and specific faulty conditions, then Fisher discriminant anal-

ysis (FDA) is a dimensionality reduction method that can be used

for fault identification. 

FDA maximizes the separation (aka scatter) among different

classes while minimizing the scatter within each class ( Duda &

Hart, 1973 ). The formulation of the problem is 

ˆ v = arg min 

v � =0 

v � S b v 
v � S w 

v 
(3)

where 

S b = 

p ∑ 

j=1 

n j ( x j − x )( x j − x ) � , (4)

S w 

= 

p ∑ 

j=1 

∑ 

x i ∈X j 
( x i − x j )( x i − x j ) 

� , (5)

x ∈ R 

m , x is the total mean vector, x j is the mean vector for class

j, n j is the number of observations in class j , and p is the number

of classes, and sufficient data have been collected that the matrix

S w 

is nonsingular. For FDA to be well-defined, at least two sets of

characterized data are required (e.g., normal operating conditions

and data collected during one fault). 

FDA models can be more specific about which fault is occur-

ring, if they have been trained using multiple fault classes and that

set is comprehensive. Often the amount of faulty data is limited in

practice and each fault will require its own investigation once the

fault isolation step using the contribution chart is complete. 

Another data-based fault diagnosis technique that attempts to

reduce the dimensionality of the problem is support vector ma-

chines (SVMs). SVM methods find a separating hyperplane which is

specified by a number of support vectors (samples). These support

vectors typically represent a small subset of the complete dataset

used for analysis. The separating hyperplane is oriented in such a

way as to maximize the distance, called the margin , between the

plane and the nearest point of each class ( Bishop, 2007 ). SVMs can

be formulated using a kernel, which is amenable to feature se-

lection. This technique has gained increased interest in the past

15 years due to efficient optimization formulations ( Platt, 1998 ).

Since then, SVMs have been tested in mechanical engineering

applications ( Baccarini, Rocha E Silva, De Menezes, & Caminhas,

2011; Widodo & Yang, 2007 ) and semiconductor manufacturing

( Mahadevan & Shah, 2009 ). Like FDA, SVMs are typically trained
ith labeled target data and therefore require data that have been

ollected during past faults and, for best results, specific faults

ust be associated with each data set. Both FDA and SVMs are in-

ffective for fault diagnosis if data have not been collected during

ast fault states. 

Most fault diagnosis methods based on state-space models as-

ume that the fault is either additive or multiplicative ( Chen & Pat-

on, 1999; Ko ́scielny & Łab ̧e da-Grudziak, 2013 ). An additive fault is

ssumed to be well represented in terms of a vector added to the

ault-free state-space equations, whereas a multiplicative fault is

ssumed to be well represented by a deviation in a parameter in

he state-space matrices; for this reason, multiplicative faults are

lso commonly referred to as parametric faults . 

Multiplicative faults can be diagnosed by determining which

nline parameter estimates have the largest deviations from nom-

nal values. This method is sufficiently general to be applicable to

onlinear dynamical systems. A weakness of this method is that

t requires that the data are sufficiently rich in information to be

ble to accurately estimate parameters online. Fault diagnosis oc-

urs via the link between the parameters and the physical system.

f the model parameters are not tied to physical parameters, di-

gnosis abilities are limited. In particular, deviations in the ele-

ents of state-space models constructed from subspace identifi-

ation methods are not tied to any physical parameters, so this ap-

roach provides little value for such models. 

Observer-based methods are most commonly used for diagnos-

ng additive faults. In observer-based methods, the residuals be-

ween estimated and measured outputs are used for detection and

iagnosis. As an example, consider the full-order state estimator 

ˆ  k +1 = A ̂ x k + B u k + H( y k − ˆ y k ) (6)

ˆ  k = C ̂  x k (7)

here ˆ x is the predicted state, ˆ y is the predicted output, y is the

easured output, and the observer gain H is chosen to satisfy de-

ign criteria such as stability, fault sensitivity, and robustness. For

 linear process with additive faults, the residuals are 

x k +1 = (A − HC)�x k + (B f − HD f ) f k 
+(B d − HD d ) d k 

(8)

 k = �y k = C�x k + D f f k + D d d k (9)

here �x k is the state estimation error. The residuals are a func-

ion of both the faults and disturbances. In large-scale systems,

isturbances can be significant, which motivates the use of trans-

ormed output errors as the residual, 

 k = W �y k . (10)

here the matrix W is designed such that the residuals are insen-

itive to disturbances but sensitive to faults. One common method

or designing both matrices H and W is the unknown input ob-

erver (UIO) method. This method attempts to design the observers

uch that the effects of disturbances approach zero asymptotically

 Simani, Fantuzzi, & Patton, 2003 ). The isolation and identification

teps then occur via a structured residual set, where structured im-

lies that each residual is designed to be sensitive to only one par-

icular fault ( Chen & Patton, 1999 ). 

The above approach generalizes directly to nonlinear dynami-

al systems and to models with explicit uncertainty descriptions—

he latter known as robust observer-based fault diagnosis methods

 Gertler, 1998 ). A challenge in applying the latter methods to in-

ustrial systems is that the requirement of having accurate models

f the nominal system, the faults, the disturbances, process noise,

nd the structure of the model uncertainties. 
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Fig. 7. Architecture of an active FTC, adapted from Jiang and Yu (2012) . 
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.4. Process recovery 

The end goal of all process monitoring is process recovery,

here the process is returned to its normal operation. Most FDD

ethods will require manual intervention once a fault has been

iagnosed. Fault-tolerant control (FTC) refers to a control system

hat automatically performs process recovery, that is, without real-

ime human intervention ( Patton, 1997 ; Witczak, 2014 ; Zhang and

iang, 2008 ). 

The objective of FTC can be interpreted as treating faults as if

hey are disturbances, to return the system to acceptable operation

ither via retuning or restructuring the control system ( MacGregor

 Cinar, 2012 ). FTC can generally be divided into two methodolo-

ies: passive and active. In passive FTC, the process monitoring sys-

em observes the process data and decides if a fault has occurred,

sing methods as described in Section 2 , with the fault classes

nown a priori . The control system is designed with redundancies

o that it is not necessary to reparameterize or restructure the con-

roller during faulty operation. If there is more than one system

ault possible, this approach often leads to a conservative controller

esign with slow closed-loop performance ( Jiang & Yu, 2012 ). 

In active FTC, depending on what conditions are detected, the

ontroller is reconfigured for that scenario (see Fig. 7 ). A major

hallenge of active FTC is the coordination of the process moni-

oring and control systems ( Raimondo, Marseglia, Braatz, & Scott,

013b ). Furthermore, most FTC design methods assume that faults

re detected and isolated correctly and instantaneously, to allow

or computational tractability ( Raimondo et al., 2013b ). 

Some recent algorithms combine active FDD with active FTC.

ctive FDD uses a test signal, called an auxiliary input , to gen-

rate data that enables more effective determination of whether

 fault has occurred or, if a fault has been detected, which fault

as occurred. This approach addresses one of the major issues of

assive FDD, which can have difficulties identifying faulty condi-

ions because the process can mask faults, particularly if the pro-

ess is under control ( Nikoukhah, 1998 ). One method of active

DD is set based, which aims to find the separating inputs which

uarantee fault diagnosis ( Nikoukhah, 1998; Raimondo, Braatz, &

cott, 2013a; Scott, Findeisen, Braatz, & Raimondo, 2013a; 2014 ).

his technique has been combined with model predictive control

o guarantee diagnosability given input and state constraints for

inear systems ( Raimondo et al., 2013 b). These methods are formu-

ated for discrete-time models. Unlike the generalization of many

esults from discrete-time models to continuous-time models, the

eneralization of these results to continuous-time models would

e challenging. 

.5. Comparisons of classical methods 

Each process monitoring method has advantages and disadvan-

ages. The data-based dimensionality reduction techniques of PCA

nd PLS are easy to implement for fault detection and isolation but

f limited value for fault identification. Graphical models have the

bility to incorporate expert knowledge, which is a positive if such
nformation is available, but also require expert knowledge in their

onstruction, which is a negative if such information is not avail-

ble. State-space models require a lot of investment to develop and

aintain for an industrial system, but have the potential for in-

luding very precise information on faults and disturbances in fault

iagnosis procedures. The research area of process monitoring is

till very active as researchers aim to tackle some of the drawbacks

f various methods. 

. Challenges and opportunities 

In the past twenty years, the quantity of data that can be col-

ected and processed for industrial processes has greatly increased.

he development of new tools such as smart and wireless sen-

ors, the Internet of Things, smart devices, and smart manufactur-

ng has allowed the amount of available data to grow exponen-

ially ( Qin, 2014 ). Although FDD methods are often categorized as

odel-, data-, or knowledge-based, all FDD models require process

ata for validation and successfully utilizing this data is a key chal-

enge and opportunity for the continued improvement of process

onitoring. This section presents challenges in the field that could

e addressed using this new data and methods tailored to such

ata. 

Increasingly, these new datasets are referred to as Big Data .

ig Data is characterized by four characteristics referred to as the

 V’s: velocity, volume, variety, and veracity ( IBM, 2016 ). So that

ur discussion of challenges and opportunities fit into this frame-

ork, we will refer back to these characteristics throughout the

ection. 

Although this section focuses on methods, it is useful to first

omment about data infrastructure. Because the very large size

f the data (volume), and the quick rate at which data are col-

ected (velocity), new data systems are required. Data-centric ar-

hitectures and distributed storage and processors need to be used

or the value of Big Data to be realized ( Qin, 2014 ). In other

ords, the data are useless if the data cannot be accessed and

rocessed reliably with reasonable computational cost. Waiting a

onger time to access the data and compute a useful result from

he data is not always an option, as the time available for mak-

ng decisions based on the data is constrained by the time in

hich such decisions would be useful. This consideration is es-

ecially important in process monitoring, as faults need to be

etected and diagnosed quickly enough that damage to the sys-

em is limited. A technology for improving access to Big Data is

adoop ( O’Malley et al., 2016 ), which is a distributed file sys-

em and distributed computing framework specifically designed to

andle Big Data. All modules in Haddop are designed to auto-

atically handle any computer hardware failures, such as crashes

f processors within computer clusters, with minimal disruption

n the calculations applied to the data. More recently, Spark, an

pen-source processing engine developed at UC Berkeley, has been

aining popularity as an additional tool for Big Data analytics

 databricks, 2016 ). 
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Fig. 8. An in-line stereomicroscope image for the monitoring system of a crys- 

tallization process in which particles are in liquid slugs that flow down a tube 

( Jiang et al., 2014 ). Many such images are collected each second in real-time video. 

This type of data highlights the high-order structures occurring in modern datasets. 
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3.1. Utilizing new data sources 

Beyond needing to handle a “black-box” of data as described

above, new methods are required to handle new features (vari-

ety) of Big Data datasets. One of these features is high-dimensional

data. In high-dimensional data, it is often the case that there

are many more measurements per sample than samples, which

can lead to ill-conditioning. Methods such as PCA address ill-

conditioning by projecting the data into a lower dimensional space.

However, with the increase in the new of measurements, there

may be motivation to select a subset and not a subspace. A sub-

set may allow for a decrease in the number of sensors which can

be desirable to decrease maintenance and data storage costs. To

find subsets, several avenues exist such as subset selection via op-

timization, penalty methods, and greedy methods. One approach

is to use mutual information as the selection criteria for a greedy

approach ( Verron, Tiplica, & Kobi, 2008 ). A drawback of the greedy

approach is the lack of optimality guarantees. Mutual information

is also not necessarily the best metric. Research is needed in this

area to better understand tradeoffs between the number of sensors

and the accuracy of the model. This issue is inherently intertwined

with design of experiments for new process development. Exper-

iments should be planned with process monitoring in mind such

that the most valuable data can be extracted for the lowest cost

while still considering standard operations. The issue of the con-

nection of data-based monitoring and process design has not yet

been solved. 

Another feature of Big Data is the presence of higher-order ten-

sors associated with new types of measurements such as real-

time spectroscopic imaging or video. Instead of vectors or matrices,

a single “measurement” can consist of third-, fourth-, or higher-

order tensors. An example would be an inline imaging system used

to characterize the shape properties of crystals in fluid flow (see

Fig. 8 ), in which a single measurement at a time instance is a

second-order tensor (aka matrix), with the two dimensions being

space along horizontal and vertical axes, with each pixel being a

grey-scale value between 0 and 255. Typically such data are col-

lected at many frames per second at time scales much faster than

the process time scales, with few particles per image. To obtain

statistically reliable measurement, each measurement is treated as

a video collected from seconds to minutes, which consists of many

individual images (aka frames). This measurement constitutes a

third-order tensor with the third dimension being the time axis

over a short period of time. For color imaging systems, the or-

der of the tensor increases by one, with the additional dimension

being the color axis for red, green, and blue. The data are stored

as a number between 0 and 255 for red, green, and blue at each

pixel, for a two-dimensional array of pixels that make up an im-
ge. When the measurement is video over a short time period, a

ingle measurement is a fourth-order tensor (that is, two physi-

al dimensions, color, and time). Stacking the data into vectors and

hen applying PCA and PLS methods is suboptimal in practice, and

uch methods ignore the inherent correlations and internal struc-

ure that such datasets possess, such as that neighboring images

n a video have dominant signals being shifted slightly in space

s particles move. The quality of model predictions based on such

ata would be improved if higher order correlations and internal

tructure were explicitly exploited by the methods. 

A related feature of Big Data is heterogeneity. New data sources

re increasingly heterogeneous in terms of types and time scale.

or instance, some data in the bioprocess industry are collected

nline, such as dissolved oxygen in a bioreactor as a function of

ime, while other data are collected offline, such as cell density

 Charaniya, Hu, & Karypis, 2008 ). Both sets of data provide valu-

ble information about the status of the bioreactor, and new meth-

ds are needed for efficient integration. Some level of integration

an be obtained via similarity scores and kernel transformations

 Charaniya et al., 2008 ), but a lot of research is needed to generate

ptimal methods. Methods developed to apply to Big Data need to

e able to handle rare-event data well. In fault detection, because

he goal is often to find an anomaly, careful attention must also

e given to data cleaning. Data cleaning is a process of removing

aulty data while still retaining unexpected values. If an analysis

oes not take care in handling data cleaning, the behavior of inter-

st can be overlooked. 

.2. Semi-supervised and online learning 

Another challenge deals with using all available data. Here,

pecifically, the interest lies in using unlabeled data that is read-

ly available from operations. Particularly in industrial applications,

t is not reasonable, for safety or financial concerns, to purposely

enerate faulty data for training process monitoring algorithms.

herefore, datasets to be used for process monitoring are inher-

ntly unbalanced and methods attempt to characterize nominal

perations without access to faults. In a best-case scenario, a small

ubset of the data is labeled as associated with some fault, but

ost data are not. In this setting, a state-space model using ei-

her parameter or prediction residuals may be successful, but such

odels are expensive to develop and maintain for complex indus-

rial systems. Data-based methods such as PCA may be successful,

ut have limited capability for fault identification. Therefore semi-

upervised and online learning methods should be a focus of fu-

ure research. 

Unsupervised learning refers to model building without knowl-

dge of the true value of the output. Clustering and den-

ity estimation are common examples of unsupervised learning

 Bishop, 2007 ). The opposite approach is supervised learning,

here the targets are known. Supervising learning is ideal, but

ypically unreasonable in fault detection applications for the afore-

entioned reasons. Semi-supervised learning is in-between, where

ome but not all targets are known. In online learning, some-

imes also referred to as sequential learning , the model is contin-

ally updated as additional data become available ( Bishop, 2007 ;

urphy, 2012 ). These methods are more suited to the constraints

f the fault detection problem. Some work in these areas is al-

eady being done. In Jin and Shi (2001) , the set of features that

haracterize faults are calculated online as new data are stream-

ng. The approach requires limited to no prior fault information.

in and Shi (2001) apply the approach to the monitoring of stamp-

ng tonnage signal analysis and are able to detect faults related

o shut height, which is a common process variable in these op-

rations. Another example is Zhao, Ball, Mosesian, de Palma, and

ehman (2015) , who also develop a technique that adapts over
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Fig. 9. Visualization of a fault propagation using the Tennessee Eastman benchmark problem ( Chiang and Braatz, 2003 ). 

Fig. 10. Reachable output sets of nominal and faulty models using the hybrid stochastic-deterministic approach implemented with the input ˜ u 1 , which guarantees separation 

in five steps and approximately maximizes the probability of diagnosis in three steps ( Marseglia et al., 2014 ). 
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ime. In their work, a small set of labeled data to train the

odel, i.e. semi-supervised. Ge and Song (2011) also use a semi-

upervised approach, although for the goal of process modeling

nd not fault detection. 

Semi-supervised, unsupervised, and online learning methods

re gaining increased focus in the machine learning literature.

he fault detection and diagnosis community would benefit from

everaging results from the machine learning community, by tai-

oring the methods to the specific needs of FDD problems. Some

xamples of methodologies for utilizing unlabeled data are sup-

ort vector machines (SVM) ( Schölkopf, Platt, Smola, & Williamson,

0 01; Xu & Schuurmans, 20 05 ) and Parzen density estimates

 Parzen, 1962 ). Many advances have been made more recently in

eep learning ( LeCun, Bengio, and Hinton, 2015 ) and the leverag-

ng of such advances in FDD would be interesting. 
.3. Addressing process uncertainty 

Another challenge is most closely related to data veracity.

eliable process monitoring can often be limited due to pro-

ess uncertainties, which inhibit interpretation of process data

 Campbell & Nikoukhah, 2004 ). Much of the past work has fo-

used on deterministic bounded uncertainties, while some newer

ork has shifted that focus towards formulations that utilize prob-

bility distributions to characterize the uncertainties. For exam-

le, Zhong, Ding, Lam, and Wang (2003) consider uncertainty in

he inputs and parameters of linear systems and propose reduc-

ng the robust fault detection problem to a standard H ∞ 

model-

atching problem. The central concept of the work is to find a

obust fault detection filter. As an example of handling proba-

ilistic uncertainties, Mesbah, Streif, Findeisen, and Braatz (2014)
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proposed one such system that treats probabilistic uncertainties in

the parameters and initial conditions of a nonlinear system, and

utilizes polynomial chaos theory for uncertainty propagation. The

input design is then performed using a constrained nonlinear opti-

mization. Readers interested in robust process monitoring methods

are encouraged to read the papers cited in the above publications. 

4. Hybrid methods 

The next generation of process monitoring systems need to

meet a variety of needs including reliability, ability to handle un-

certainty, and ability to utilize large quantities of data. An im-

portant technique for handling these demands is the use of hy-

brid methods that capture the strengths of different methods while

minimizing their weaknesses. This section highlights some exam-

ples of hybrid models. 

One example is the approached used by Chiang and

Braatz (2003) as applied to the Tennessee Eastman benchmark

problem. Their technique aimed to improve upon PCR/PLS which

ignores information on process connectivity by instead using a

causal map and a modified distance metric. A causal map is easily

developed in many chemical applications using existing process

flow or piping and instrumentation diagrams. This causal map is a

type of graph that can then be combined with information theory

and multivariate statistics to measure changes in the distributions

of variables and in relationships between distributions of causally

related variables. Furthermore, because the directed graph is di-

rectly related to the process, fault propagation could be visualized

in real time (see Fig. 9 for an example of this visualization). 

Another example of a hybrid method is the CVA-FDA method

proposed by Jiang, Zhu, Huang, Paulson, and Braatz (2015c) . This

method was implemented to tackle the challenge of fault identifi-

cation and diagnosis in the presence of data overlap. This work was

also applied to the Tennessee Eastman benchmark. Initially FDA

was applied to the problem but it was determined that the data

had too much serial correlation for FDA to provide good separation.

Therefore, drawing from the state-space literature, the authors first

applied CVA then FDA to handle the serial correlations and then

perform fault diagnosis and identification. Using this technique de-

creased the misclassification rate by approximately 40% compared

to using FDA alone ( Jiang et al., 2015c ). 

A third example of the power of hybrid methods relates to

active FDD. Active FDD methods are largely either stochastic or

set-based. Stochastic methods provide convenient descriptions but

do not provide guarantees, whereas set-based methods compute

hard bounds but are often based on worst-case uncertainty. Hy-

brid methods were proposed by Scott, Marseglia, Magni, Braatz,

and Raimondo (2013b) and Marseglia, Scott, Magni, Braatz, and

Raimondo (2014) to compromise between these two methodolo-

gies by using model uncertainties described by pdfs of finite sup-

port but also guaranteed correct diagnosis at a given time, N ,

while maximizing the probability of correct diagnosis at some ear-

lier time (see Fig. 10 ). These approaches provide better flexibility

compared to using purely stochastic or purely deterministic ap-

proaches. 

Many other examples of hybrid approaches are described in

the literature, e.g. Chiang and Braatz (2003) ; Chiang, Jiang, Zhu,

Huang, and Braatz (2015) ; Chiang, Russell, and Braatz (20 0 0) ;

Jiang, Huang, Zhu, Yang, and Braatz (2015a) ; Jiang, Zhu, Huang, and

Braatz (2015b) ; Maki, Jiang, and Hagino (2001) ; Russell, Chiang,

and Braatz (20 0 0b) . The process monitoring field has been increas-

ingly focused on complex and high-value processes over the past

40 years. Hybrid systems show the most promise for being able to

handle the fault scenarios that arise in such systems. 
. Conclusions and future directions 

This article provides an overview of process monitoring meth-

ds and introduces the major challenges facing the next generation

f techniques. The article advocates for the use of hybrid methods

o address these challenges in modern and complex facilities and

rovides some examples of how hybrid methods have been suc-

essful in past studies. The process monitoring field would bene-

t from increased sharing of data for the comparative evaluation

f process monitoring systems. The machine learning community

as benefited greatly from the availability of public data sources,

or example, the Wall Street Journal corpus used for speech recog-

ition and natural language processing ( Paul & Baker, 1992 ), the

ASCAL challenge for image recognition ( Everingham, Van Gool,

illiams, & Zisserman, 2005 ), and the MNIST dataset for digit

ecognition ( LeCun, Cortes, & Burges, 1998 ). The FDD community

s also heavily dependent on data. Robust and implementable mod-

ls need real process data for training and testing. The Tennessee

astman chemical manufacturing facility meets this need in many

ays ( Chiang et al., 2001 ). However, the community would ben-

fit from additional data, particularly real data or from a different

anufacturing setting such as pharmaceutical manufacturing or oil

ell data. Progress in process monitoring systems would benefit

rom the availability of public datasets for comparative studies to

ocus on the most promising directions in algorithm development. 
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