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Abstract

Motivation: This work addresses two common issues in building classification models for

biological or medical studies: learning a sparse model, where only a subset of a large number of

possible predictors is used, and training in the presence of missing data. This work focuses on

supervised generative binary classification models, specifically linear discriminant analysis (LDA).

The parameters are determined using an expectation maximization algorithm to both address

missing data and introduce priors to promote sparsity. The proposed algorithm, expectation-

maximization sparse discriminant analysis (EM-SDA), produces a sparse LDA model for datasets

with and without missing data.

Results: EM-SDA is tested via simulations and case studies. In the simulations, EM-SDA is compared

with nearest shrunken centroids (NSCs) and sparse discriminant analysis (SDA) with k-nearest neigh-

bors for imputation for varying mechanism and amount of missing data. In three case studies using

published biomedical data, the results are compared with NSC and SDA models with four different

types of imputation, all of which are common approaches in the field. EM-SDA is more accurate and

sparse than competing methods both with and without missing data in most of the experiments.

Furthermore, the EM-SDA results are mostly consistent between the missing and full cases.

Biological relevance of the resulting models, as quantified via a literature search, is also presented.

Availability and implementation: A Matlab implementation published under GNU GPL v.3 license

is available at http://web.mit.edu/braatzgroup/links.html.

Contact: braatz@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent ‘-omics’ revolution in the biomedical sciences, fueled by

the decreasing cost of high-throughput technologies and an

increased desire for large numbers of measurements for valuable

clinical samples, has led to the prevalence of wide datasets—i.e.

datasets with many more measurements per sample than samples.

These datasets can be generated by technologies such as microarrays

and RNA-Seq, ChIP-Seq and proteomic and metabolomic tech-

niques (e.g. mass spectrometry, multiplexed molecular assays). Such

methods are gaining widespread popularity due to their potential to

unearth new molecular targets for diagnosis and treatment, and due

to the possibility of discovering combinations of molecular features

that contribute to a disease state.

However, having many more measurements than samples leads

to ill-conditioned datasets and can introduce statistical inference

challenges. Two common problems arise when attempting to build

models from wide datasets: the dataset is not full rank, which limits

the applicable numerical approaches, and a high-dimensional model
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may be difficult to interpret. Both of these issues have led to interest

in learning sparse models, where the number of predictors in the

final model is a subset of the training dataset.

Because of the prevalence of this problem, there are many tech-

niques for learning a sparse model. In this work, we focus on classi-

fication models, which are of particular interest in the biomedical

field due to the goal of stratifying classes of patients (e.g. healthy

versus not healthy) or treatment conditions (e.g. treated versus un-

treated). One way to learn a sparse classification model is via the

nearest shrunken centroids (NSCs) approach (Tibshirani et al.,

2002). This method finds a subset of predictors by penalizing, or

‘shrinking’, the class centroids. This technique was shown by Wang

and Zhu (2007) to be equivalent to applying an ‘1 penalty to the

class means. This approach is easy to implement and has a nice

visual explanation. One limitation is that the method is required to

assume a diagonal structure for the covariance matrix to avoid ill-

conditioning. Another approach is sparse discriminant analysis

(SDA) (Clemmensen et al., 2011). This technique simultaneously

performs model fitting and feature selection, finding the k discrimin-

ant vectors bk by solving

minimizebk ;hk
jjYhk �Xbkjj2 þ cbkXbk þ kjjbkjj1

subject to
1

n
h>k Y>Yhk ¼ 1

h>k Y>Yhl ¼ 0; 8l < k

where Y is an n � K matrix of indicator variables of the class, X is

an n � p data matrix, X is a positive-definite matrix, and k and c are

non-negative tuning parameters. This minimization is then solved

iteratively.

A limitation of both of these approaches is their ability to handle

missing data. Missing data are common in biological and social

data. For example, technical issues may invalidate some results of an

assay, a person may drop out of a longitudinal study, a hospital may

only run some diagnostic tests given the time and availability of

medical equipment, or respondents may skip certain questions in a

social survey (Garc�ıa-Laencina et al., 2010). In the UC Irvine

Machine Learning Repository, over 20% of the datasets have miss-

ing values. Simple techniques to handle missing data involve com-

plete case analysis, where samples with missing data are ignored, or

mean imputation, where the missing data are filled in using the

observed data mean. These techniques waste data and/or introduce

bias.

To address these limitations, the literature contains a significant

amount of work on data imputation, particularly for microarray

datasets. Troyanskaya et al. (2001) did one of the first studies and

found that k-nearest neighbors (KNNs) significantly improved on

complete case analysis and mean imputation. More complex tech-

niques have been presented by Bo et al. (2004), Kim and Park

(2007), Kim et al. (2004), Oba et al. (2003), Ouyang et al. (2004),

Sehgal et al. (2005) and Wang et al. (2006). Brock et al. (2008)

surveyed these results to help practitioners decide which methods

to use. The work presented here is fundamentally different than any

of these techniques because it performs missing data imputation and

model building simultaneously. This simultaneous approach allows

for consistent assumptions in the imputation and model-building

phases, and decreases the number of algorithm decisions the analyst

must make. The work of Blanchet and Vignes (2009) also considers

simultaneous model building and handling of missing data, but does

not support a sparse model, which is a key feature of the proposed

methodology. To tackle the two issues simultaneously, an expectation-

maximization (EM) procedure is proposed.

The EM framework is a way to handle instances of missing data

by iteratively updating the expected complete data log-likelihood

and the maximum likelihood estimate of the model parameters

(Dempster et al., 1977). Although EM is a local optimization tech-

nique, the likelihood can only improve at each step and the method

has been applied to many problems. The challenge of using EM is to

choose an appropriate model for the data. In this work, we build on

probabilistic principal component analysis (PPCA), a technique that

uses EM to find the principal subspace, by adding sparsity-inducing

priors. This method allows the learning of a subset of predictors,

even in the presence of missing data. The resulting classifier is a lin-

ear discriminant analysis (LDA) model.

The proposed expectation-maximization sparse discriminant

analysis (EM-SDA) algorithm addresses the intersection of these

ideas to be able to tackle high-dimensional datasets that may have

missing elements. The proposal is foremost meant to be able to han-

dle expected characteristics of biological datasets, which include

correlation amongst the measurements (protein, genes, etc.) and

missing elements. The model assumes a symmetric distribution,

which can typically be approximated via an appropriate scaling.

Scaling becomes more difficult in the presence of missing data so

this model is most well-suited to high-throughput assays where

many measurements are performed using the same instrument and

therefore the data have similar scaling. Critical care or clinical trial

datasets may be more challenging to work with because of the var-

iety of scales; however, if past information and/or intuition of scal-

ing are available, this method would also be appropriate. As is often

important in biological settings, the resulting predictions are proba-

bilities, which are useful when more than a yes or no answer is pre-

ferred. Because the model is generative, it is also able to make

predictions on new samples that also have missing elements by per-

forming imputation.

Section 2 introduces the proposed methodology, including pro-

cedures for cases with and without missing data. Section 3 presents

simulation and case studies using synthetic and real datasets. Section

4 contains discussion and conclusions.

2 Approach

2.1 Background
PCA is a widely used technique for dimensionality reduction. PCA con-

structs a linear projection that maximizes the variance in a lower dimen-

sional space (Hotelling, 1933) and is also the optimal rank a

approximation of a matrix X 2 R
n�p for a < p based on the least-

squares criterion (Pearson, 1901). An alternative view of PCA as a genera-

tive latent variable model (Roweis, 1998; Tipping and Bishop, 1999) is

xi ¼Wti þ lþ �i (1)

where xi is the p-dimensional observations, ti is the a-dimensional

latent variables, W 2 R
p�a is the factor loadings, l is a constant

whose maximum likelihood estimator is the mean of the data, and �i
is the error. The corresponding distributional assumptions are

ti � N 0; Iað Þ

�i � N 0;r2Ip

� �
xijti � N Wti þ l; r2Ip

� �
xi � N l;WW> þ r2Ip

� �
where Ik is the k � k identity matrix. The model parameters

h ¼ W;l; r2
� �

are found using an EM approach (Dempster et al.,

1977), which is computationally more expensive than solving the
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PCA problem directly using the singular value decomposition but

has the benefit of being able to handle missing data (Ilin and Raiko,

2010; Marlin, 2008; Yu et al., 2012). Generally, EM is only guaran-

teed to converge to a local maximum of the likelihood (Dempster

et al., 1977); however, Tipping and Bishop (1999) show EM must

converge to a global maximum for the PPCA problem.

2.2 Motivation
Let xi 2 R

p be a vector of measurements for observations

i ¼ 1; . . . ; n. Let yi 2 f0; 1g be the class label of sample i, which is

observed. The classification problem is to perform supervised train-

ing to learn a model to predict the class of a new sample. To solve

this problem, a LDA model is used. Because the number of samples,

n, may be less than the dimension of the sample, p, the model is

required to be sparse. Often when LDA is applied to datasets of this

type, one of two simplifying assumptions is made: the covariance

matrix has a diagonal structure, as in NSC, or a regularization pen-

alty of the form kIp is added, as in SDA. The use of EM allows for a

structured covariance approximation (Marlin, 2008). Under the

generative latent variable model described by Equation (1), the mar-

ginal covariance is WW> þ r2Ip. Specifying this covariance requires

estimating paþ 1� a a� 1ð Þ=2 parameters: pa parameters for W

where a� p and 1 parameter for r2. The a a� 1ð Þ=2 term is because

W is scaled to have orthogonal columns, each with unit length,

which restricts the degrees of freedom (Bishop, 2007). An estimation

of the covariance matrix in the full data space requires the estima-

tion of p pþ 1ð Þ=2 parameters, therefore using the latent variable

model greatly decreases the number of parameters that need to be

estimated. A relaxation of the diagonal matrix constraint is desirable

because the data are often known to be correlated but with too few

measurements to reliably estimate the full covariance. An example is

gene microarray data in which genes that participate in a pathway

are expected to be correlated (Witten and Tibshirani, 2011).

The LDA model makes distributional assumptions about the

data, specifically

Y � Binomial pð Þ

XjY ¼ c � N lc;Rð Þ;

which is specified fully by the prior probability p, class means lc,

and the shared covariance R. Here, the uninformative prior of p
¼ 0:5 is used but the model could be extended to incorporate prior

class information. The method described here learns the class means

and covariance to build the classifier. The dataset is modeled in a la-

tent space using PPCA (Roweis, 1998; Tipping and Bishop, 1999)

and a sparsity-induced prior is used for the means (Figueiredo,

2003; Park and Casella, 2008).

2.3 Problem formulation
The data are assumed to be modeled as

xc
i ¼Wti þ lc þ �i (2)

where xc
i ; l

c; � 2 R
p; ti 2 R

a; W 2 R
p�a, i represents the experiment

index, and c represents the class of the observation. This PPCA formula-

tion is typical with the small change that lc ¼ lþ Dc where l is the total

mean and Dc is the class-specific deviation. Therefore the distributions of

x are

xijti; yi ¼ c � N Wti þ lþ Dc;r2Ip

� �
xijyi ¼ c � N lþ Dc;WW> þ r2Ip

� �

The class superscripts are dropped for convenience but the analysis

assumes that all observations have class-specific means and shared

covariance. A prior is set for D as

DjT � N 0;Tð Þ

sj � Gamma 1;
c2

2

� �
where T ¼ diag sj

� �
, which is chosen because (Figueiredo, 2003;

Murphy, 2012)

p Djjc
� �

¼
ð1

0

N Dj; 0; sj

� �
Ga sj; 1;

c2

2

� �
dsj

¼ c
2

exp �cjDjj
� �

¼ Laplace Dj; 0;
1

c

� � (3)

and the Laplace distribution is known to lead to sparse solutions

(Murphy, 2012).

2.4 Expectation maximization
In EM, the algorithm alternates between calculating the expected

complete-data log-likelihood and the maximum likelihood estimate of

the parameters. For this problem, the parameters are h ¼ W; l;D;r2
� �

and the missing data are ti; s½ � (in Section 2.6, this set is augmented to

include missing observations from the dataset). The observed data are

xi and the hyperparameter for the prior on s, c. The derivation of the al-

gorithm is provided in the Supplementary Information.

To implement the result, the E-step requires the calculation of

the expectations:

htii ¼ r2Ia þW>W
� ��1

W> xi � l� Dð Þ (4a)

htit
>
i i ¼ r2 r2Ia þW>W

� ��1 þ htiihtii> (4b)

�
1

sj

	
¼ c
jDjj

(4c)

And the M-step requires the update equations:

lnew ¼ 1

n

Xn

i¼1

xi � D�Whtii (5a)

Dnew ¼ T r2Ip þ T
� ��1 1

n

Xn

i¼1

xi � l�Whtii (5b)

Wnew ¼
Xn

i¼1

xi � l� Dð Þhtii>
" # Xn

i¼1

htit
>
i i

" #�1

(5c)

r2 new ¼ 1

dn

Xn

i¼1

trace
h
xix
>
i � 2 lþ Dð Þx>i þWhtit

>
i iW>

þ2 lþ D� xið Þhtii>W> þ lþ Dð Þ lþ Dð Þ>
i (5d)

where

T ¼ diag jDjj=c
� �

: (6)

The algorithm alternates between the E- and M-steps until a con-

vergence criterion is satisfied based on the change in the negative

log-likelihood (NLL) of the observed data. The change in NLL is the

typical convergence criterion, but is rather expensive to calculate,

which may motivate another criterion such as the change in the par-

ameters or a fixed number of steps. Additionally, because the NLL

decreases at each step, the NLL could be calculated intermittently to
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reduce computational cost without risk of moving away from the

optimum. Once the algorithm converges, the learned parameters are

used to train the classifier.

Cross-validation should be used to select the value of the latent

dimension, a, and the parameter governing sparsity, c. Additional

details on the convergence and the selection of the tuning parameters

can be found in the Supplementary Information.

2.5 Classification model
LDA models are specified by two parameters, w 2 R

k and the scalar

b, where k is the dimension of the vector of means whose class-

specific deviations are non-zero,

w ¼ bR�1
l1 � l2ð Þ; (7)

bR is the marginal covariance of the discriminating variables which

can be read from the full covariance matrix, and

b ¼ �1

2
l>1 bR�1

l1 þ
1

2
l>2 bR�1

l2 (8)

Predictions are then made from

by ¼ w>xi þ b: (9)

A value of by > 0 indicates class 1, otherwise class 2 is indicated. Its

value can be converted back into a probability measure

P yi ¼ 1jX ¼ xið Þ ¼ 1

1þ exp �w>xi � bð Þ ¼
1

1þ exp �byð Þ (10)

To decrease the bias of the estimator, the EM procedure can be

used for model selection, and the final model is trained without a

penalty term. Whether or not this step is possible depends on data

availability.

2.6 Extension to missing data
Missing data are typically described by three categories: missing

completely at random, missing at random and not missing at ran-

dom (Rubin, 1976). Each of these categories has a precise definition;

however, robust tests do not exist to determine which mechanism is

applicable to a particular scenario and instead auxiliary problem in-

formation is used to inform which model applies. Our analysis

focuses on the types of missingness that we have observed in practice

for high-throughput biological assays.

First, randomly missing measurements throughout the dataset,

perhaps due to inappropriate sample handling or image corruption,

are considered. No pattern to the missingness is assumed for this

case (Fig. 1a). Second, missing measurements that are subject to a

pattern are considered. Patterned missingness may represent local

scratches or, as is sometimes the case in clinical settings, that some

patients provided smaller samples, i.e. less volume of blood, and a

rank-ordered list of assays are performed until there is no sample re-

maining (Fig. 1b). Finally censoring is considered, where values that

meet a certain threshold are missing. An example could be species

concentrations that are below a limit of detection (Fig. 1c). If censor-

ing is a known issue, other imputation techniques, such as those that

generate low or high values based on prior information, may be

more appropriate as the validity of the inference is no longer guaran-

teed (Little and Rubin, 2002). However, the example remains rele-

vant as the analyst may not realize that censoring is occurring.

To account for the introduction of missing data, let xi 2 R
p be a

vector of measurements for observations i ¼ 1; . . . ; n which may

have elements that are missing. Any observation xi can be permuted

such that xi ¼ xo
i ; xm

i

� �
. The superscript notation denotes the elem-

ents of the ith observation which are missing (m) and observed (o).

These elements are a function of the observation, i.e. m ¼ m ið Þ,
however this explicit dependence is dropped for simplicity.

The joint distribution is augmented to include these missing

elements, and the derivation of the joint distribution is described in

the Supplementary Information. The complete data log-likelihood

does not change in this scenario but the E- and M-steps change be-

cause of the new distribution with which the expectation is taken

with respect to:

htii ¼ r2Ia þWo>Wo
� ��1

Wo> xo
i � lo � Do

� �
(11a)

htit
>
i i ¼ r2 r2Ia þWo>Wo

� ��1 þ htiihtii> (11b)

�
1

sj

	
¼ c
jDjj

(11c)

hxm
i i ¼Wmhtii þ lm þ Dm (11d)

hxm
i xm>

i i ¼ r2 Im þWm r2Ia þWo>Wo
� ��1

Wm>

 �

þhxm
i ihxm

i i
>

(11e)

hxm
i t>i i ¼ r2Wm r2Ia þWo>Wo

� ��1 þ hxm
i ihtii> (11f)

In the M-step, the parameters are updated by

lnew ¼ 1

n

Xn

i¼1

hxii �Whtii � D (12a)

Dnew ¼ T r2Ip þT
� ��1 1

n

Xn

i¼1

hxii �Whtii � l (12b)

Wnew ¼
Xn

i¼1

hxit
>
i i � lþ Dð Þhtii>

" # Xn

i¼1

htit
>
i i

" #�1

(12c)

r2 new ¼ 1

dn

Xn

i¼1

trace

�
hxix

>
i i � 2hxit

>
i iW> � 2 lþ Dð Þhxii>

þ2 lþ Dð Þhtii>W> þWhtit
>
i iW> þ lþ Dð Þ lþ Dð Þ>



(12d)

Note that hxii is a concatenation of the expectations for the miss-

ing elements and the observed values. Building the final model fol-

lows the same approach as in the full data case. Re-estimation of the

parameters may or may not be reasonable in this case, depending on

how much data are missing. In the event of missing data in the test

case, the generative model can be used to impute the relevant

elements.

3 Case study

3.1 Simulation
EM-SDA is first tested by application to synthetic data. In all cases,

the dataset has 100 ‘experiments’ and 2000 ‘measurements’ where

half of the experiments are assigned to class 1 and the other half are

assigned to class 0. Details concerning how the datasets were gener-

ated can be found in the Supplementary Information.

In the first application, the true model has a 2D decision bound-

ary, so that it can be visualized easily. No missing data is added and
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two cases are considered: separable and overlapping classes. The re-

sults of learning the decision boundary using EM-SDA and 5-fold

cross validation are shown in Figure 2. In both cases, EM-SDA cor-

rectly identifies the two discriminating variables from the 2000

measurements. For the separable case, NSC is unable to differentiate

between a 1D and 2D model, whereas EM-SDA always correctly

chooses the 2D model. SDA is less successful in finding the true dis-

criminating variables. In the separable case, the model has three

variables, one true and two spurious, and in the overlap case, the

model has nine variables, two true and seven spurious. EM-SDA is

better able to handle these cases where the measurements are

correlated.

The second part of the simulation study focuses on the missing-

ness mechanism (random, patterned and censored) and level (i.e.

percent of data missing). Five datasets were generated and 20 dis-

criminating variables were randomly chosen. Overlap was specified

such that the true LDA model would achieve at least 95% accuracy

but never 100%, i.e. the data are not separable. Missingness is intro-

duced using random, patterned and censored assumptions into each

of the cases at 5 and 15%. Cases without missing data are also

tested. To train the model, 70 of the experiments are used with a 5-

fold cross-validation strategy. The remaining 30 experiments are

used as held-out test set. In all instances, test error refers to the

model error as applied to samples not used during the training

phase.

Table 1 compares the results to the NSC and SDA approaches

combined with KNNs imputation. The area under the receiver oper-

ator curve (AUC) for the test data, the number of true discriminant

variables, and the number of false discriminant variables selected by

the model were chosen as the appropriate evaluation metrics. The

best scores possible are 1, 20 and 0, respectively. In nearly all cases,

the NSC method had the lowest AUC, the lowest number of true di-

mensions, and the fewest false dimensions. EM-SDA and SDA had

similar AUC results, with EM-SDA having significantly better per-

formance for censored data with high proportion of missing data.

EM-SDA also found fewer spurious predictors than SDA in most

cases.

3.2 Applications
To assess performance on real data, EM-SDA is applied to three

publicly available biomedical datasets. The first, Golub et al.

(1999), is a landmark study classifying two types of leukemia, acute

myeloid leukemia and acute lymphoblastic leukemia using

microarray-based gene expression data. The dataset has 72 samples,

which are pre-assigned as train and test, and 7129 measurements

per sample. The second dataset, Ramilo et al. (2007), also utilizes

gene expression microarrays, but for a different application: classify-

ing patients with acute infections of different pathogens, specifically

Escherichia coli infection and Staphylococcus aureus infection. The

dataset contains 59 samples, each with 211 measurements. Finally,

a third dataset, Higuera et al. (2015) was chosen because it uses a

different technology and reports missing data, unlike the first two.

This dataset classifies rescued and failed learning in trisomic mice

based on protein expression levels from reverse phase protein arrays.

The dataset has 240 samples each with 77 protein measurements.

Further details and data processing steps for all three datasets can be

found in the Supplementary Information.

For the gene microarray datasets, missing data were artificially

introduced. Troyanskaya et al. (2001) cite many possible reasons for

missing data in microarrays such as insufficient resolution, image cor-

ruption, or scratches and dust on the slide. All of the presented miss-

ingness mechanisms could be applicable to microarray datasets, and

therefore all three were tested. The protein expression dataset has

missing data due to technical artifacts (Higuera et al., 2015). 2.4% of

the data is missing; however, of the 77 protein measurements, only 9

have missing data and therefore the dataset follows the patterned as-

sumption and only the patterned mechanism was tested.

To fit the models, both the latent dimension and the value of the

regularization parameter c must be chosen. A 5-fold cross-validation

strategy was used to determine the values for these hyper-

parameters. The values were chosen by considering the NLL of the

validation set, the dimension of the final model, and the prediction
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Fig. 1. Examples of the various types of missingness patterns considered from one of the simulation datasets with 5% missing data
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Fig. 2. The results of the 2D simulation. The true, learned and de-biased deci-

sion boundaries are the solid, dotted and dashed lines, respectively. In both

cases, the correct two discriminating variables are discovered by EM-SDA

(Color version of this figure is available at Bioinformatics online.)
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error. Here, a strong preference is given towards sparsity. The

Supplemental Information provides additional details on the cross

validation procedure.

To compare with EM-SDA, both imputation and classification al-

gorithms must be chosen. As in the simulation study, NSC and SDA

were selected as the classification algorithms. Using the results of

Brock et al. (2008) which surveys the imputation literature for micro-

array data, the imputation benchmarking algorithms were chosen as

KNN, Bayesian PCA (BPCA) (Oba et al., 2003) and local least

squares (LLS) (Kim et al., 2004). Mean imputation is also included as

a baseline technique. For the majority of cases considered, complete

case analysis is not reasonable and is not presented here.

The model is then applied to the test data. The results for the full

datasets are shown in Figure 3 and compared with the originally

proposed model and the NSC and SDA approaches in Table 2.

For both leukemia and infection, EM-SDA improved the classifi-

cation accuracy on the test data while using a smaller subset of

genes.

The results for the missing data are shown in Tables 3–5. EM-

SDA provided about a factor of 10 and a factor of 2 reduction in the

sum of training and testing errors for patterned missingness for

Table 1. Results for a simulation study in which EM-SDA is compared with NSC and SDA

EM-SDA NSC SDA

0% 5% 15% 0% 5% 15% 0% 5% 15%

Test AUC

Full 0.95 (0.04) 0.80 (0.23) 0.97 (0.01)

Random 0.94 (0.07) 0.92 (0.08) 0.79 (0.20) 0.79 (0.23) 0.96 (0.03) 0.98 (0.01)

Patterned 0.94 (0.05) 0.97 (0.09) 0.77 (0.22) 0.77 (0.17) 0.95 (0.03) 0.95 (0.04)

Censored 0.97 (0.05) 0.91 (0.08) 0.79 (0.24) 0.77 (0.27) 0.95 (0.04) 0.73 (0.30)

Number of true dimensions found

Full 6.8 (1.64) 6.0 (1.58) 5.4 (3.78)

Random 6.4 (1.52) 5.8 (1.30) 4.6 (1.52) 4.6 (2.61) 5.2 (4.49) 5.4 (1.95)

Patterned 6.8 (1.10) 6.0 (2.55) 5.4 (2.88) 4.6 (1.82) 5.6 (2.70) 5.2 (3.96)

Censored 5.8 (1.64) 5.0 (1.73) 3.6 (2.30) 4.2 (2.49) 5.4 (2.79) 2.4 (0.89)

Number of false dimensions found

Full 2.6 (3.78) 1.6 (2.07) 4.2 (3.03)

Random 2.2 (2.59) 2.8 (1.79) 0.8 (1.10) 2.8 (5.72) 2.0 (3.03) 6.0 (5.15)

Patterned 2.2 (3.35) 3.6 (2.88) 2.0 (2.35) 0.6 (0.89) 2.6 (1.82) 2.4 (3.36)

Censored 4.2 (4.49) 4.2 (4.76) 0.4 (0.55) 5.8 (6.26) 6.0 (5.79) 9.6 (8.96)

Note: In all analyses, the SDA results are generated by running the public code, available at http://www.imm.dtu.dk/projects/spasm/ (Sjöstrand et al., 2012)

and the NSC results are generated by running the public R package PAMR (Tibshirani et al., 2002). For the missing data cases, the benchmark algorithms are

combined with KNN imputation. The table contains the average for the five trials and standard deviation, in parenthesis.
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Fig. 3. The EM-SDA model predictions for the full dataset cases. The dotted line shows the decision boundary at 50%. In the leukemia problem, there is one mis-

classified point in each of the training and testing datasets. In the infection problem, there are zero and five misclassified points in the training and testing data-

sets, respectively

Table 2. Results for the non-missing (full) cases for the leukemia

and infection problems

Application Method Train

error

Test

error

Number

of genes

Leukemia Golub et al. (1999) 3/38 4/34 50

NSC 1/38 2/34 21

SDA 0/38 2/34 5

EM-SDA 1/38 1/34 4

Infection Ramilo et al. (2007) 1/20 6/39 30

NSC 1/20 6/39 26

SDA 0/20 11/39 9

EM-SDA 0/20 5/39 7

Note: The results of Golub et al. (1999), Ramilo et al. (2007) and

Tibshirani et al. (2002) are directly from their publications.
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trisomic mice, compared with NSC and SDA, respectively (Table 3).

EM-SDA also outperformed the other methods for patterned missingness

for leukemia (Table 4). For the other missingness patterns, EM-SDA per-

formed similarly to the best of the other methods, often with fewer

genes. In the censored case, some methods such as LLS fail to generate

reasonable imputations and cannot be used in the modeling phase.

In addition to prediction accuracy, consistency and biological

relevance are important to consider. Consistency is defined as the

amount of gene overlap between the missing and non-missing cases

for a given method. Figure 4 shows the genes that are selected and a

relevance metric for the leukemia classification in EM-SDA, SDA

with BPCA and NSC with BPCA. Generally, SDA has the most trou-

ble with consistency, although the results are improved when a more

advanced imputation technique (BPCA) is used. NSC and EM-SDA

have similar success for consistency in the random and patterned

cases. For the censored case, the problem is much more challenging.

NSC and KNN perform well for the leukemia dataset but fails for

the infection dataset. In both censored cases, EM-SDA does well in

terms of classification error but does not recover the same set of

genes. EM-SDA identifies two genes of high biological relevance—

CXCR4 and MPO—for nearly all levels and types of missingness

that were missed by SDA and only identified by NSC in one case.

EM-SDA also had the highest average score for biological relevance,

but did not find the gene with highest individual score of all identi-

fied genes, CD33. Similar figures for the infection and trisomic mice

problems are available in the Supplementary Information as well as

a detailed description of the score calculation.

4 Discussion

The goal of this study was to develop and evaluate a new method

for simultaneous imputation and classification of high-dimensional,

Table 3. Results for the trisomic mice classification with patterned missingness (Higuera et al., 2015)

Patterned 2.4% Patterned 10%

Method Train error Test error Number of proteins Train error Test error Number of proteins

NSC 35/120 31/120 15 31/120 31/120 8

SDA 5/120 4/120 9 11/120 8/120 9

EM-SDA 2/120 3/120 14 6/120 5/120 12

Note: The 2.4% case is the original dataset and the 10% case demonstrates the effect of additional missing data. NSC and SDA each use KNN as the imput-

ation technique.

Table 4. Results for the four missing data cases as compared with benchmark approaches for sparse classification for the leukemia classifi-

cation problem (Golub et al., 1999)

Random 1.5% Random 15% Patterned 18% Censored 20%

Method Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

NSC MI 2/38 3/34 7 1/38 3/34 6 2/38 2/34 4 2/38 6/34 9

NSC KNN 1/38 3/34 7 1/38 3/34 5 2/38 2/34 4 3/38 5/34 9

NSC LLS 2/38 2/34 7 4/38 3/34 6 1/38 2/34 5 11/38 14/34 11

NSC BPCA 1/38 2/34 8 1/38 1/34 8 2/38 5/34 5 1/38 6/34 11

SDA MI 0/38 2/34 7 0/38 4/34 7 0/38 2/34 4 19/38 21/34 5

SDA KNN 0/38 2/34 5 0/38 2/34 9 0/38 8/34 5 19/38 14/34 8

SDA LLS 0/38 2/34 7 2/38 2/34 2 2/38 2/34 2 11/38 14/34 9

SDA BPCA 0/38 2/34 6 0/38 2/34 3 0/38 7/34 4 1/38 9/34 3

EM-SDA 0/38 2/34 7 2/38 4/34 5 1/38 1/34 4 4/34 6/34 4

Table 5. Results for the four missing data cases as compared with benchmark approaches for sparse classification for the infection classifi-

cation problem (Ramilo et al., 2007)

Random 1.5% Random 15% Patterned 15% Censored 11%

Method Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

Train

error

Test

error

Number

of genes

NSC MI 2/20 14/39 2 1/20 9/39 5 1/20 7/39 25 1/20 10/39 13

NSC KNN 2/20 13/39 2 1/20 11/39 3 2/20 15/39 1 1/20 21/39 1

NSC LLS 2/20 12/39 3 1/20 10/39 7 1/20 7/39 24 10/20 18/39 3

NSC BPCA 2/20 15/39 1 1/20 8/39 9 1/20 10/39 15 1/20 8/39 34

SDA MI 0/20 12/39 12 1/20 10/39 12 0/20 14/39 17 0/20 11/39 13

SDA KNN 1/20 14/39 5 1/20 12/39 13 0/20 12/39 15 1/20 13/39 9

SDA LLS 0/20 11/39 12 0/20 9/39 13 2/20 16/39 6 — — —

SDA BPCA 1/20 11/39 12 0/20 13/39 5 0/20 13/39 12 0/20 21/39 11

EM-SDA 1/20 7/39 5 2/20 8/39 4 0/20 8/39 5 1/20 10/39 5
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correlated data where some measurements may be missing. To

achieve these goals, an expectation maximization framework was

adopted. The resulting methodology, EM-SDA, was tested using

both synthetic and real data for varying levels and mechanisms of

missing data. EM-SDA demonstrated low classification error for

sparse models in all settings and was shown to be particularly suc-

cessful when the missingness is patterned.

When compared with the other methods, one advantage of EM-

SDA is its ability to handle missing data. Another advantage seen in

the case study is that EM-SDA found nearly the same models as if

data were not missing. Its use of the structured covariance approxi-

mation avoids the non-physical assumption that different measure-

ments are independent. Because the model is generative, it can also

be used when test cases have missing elements by imputing the max-

imum likelihood estimate. A limitation of EM-SDA is its computa-

tional cost. For the case where no data are missing, the

computational cost per iteration is O np2
� �

and the memory storage

is O na2
� �

. When data are missing, the computational cost per iter-

ation is O n ~m2a
� �

and the memory storage is O np2
� �

where ~m is the

maximum number of elements that are missing for any sample. The

increase in memory for the missing data case is due to the need to

store the expected value of the outer product of the missing data.

Expectation maximization is known to be slow to converge. A pos-

sible way to speed up convergence would be to use adaptive overre-

laxed EM (AEM) (Salakhutdinov and Roweis, 2003). As the

fraction of missing data increases, EM is known to take smaller

steps, in which case AEM can lead to large speedups (Salakhutdinov

and Roweis, 2003).

EM-SDA has been demonstrated to be successful for all of the

types of missingness studied. EM-SDA is particularly recommended

when the missingness is patterned or if missingness is likely to occur

in test samples. EM-SDA is well suited to wide, correlated biological

datasets, such as microarray data, RNA-Seq data, patient metadata

and proteomic data. As more of these datasets are generated and

subjected to rigorous statistical analyses, new models that can both

systematically handle missing data and yield simple, interpretable

and accurate results will become increasingly valuable.
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