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A new algorithm is proposed for the design of nonlinear dynamical systems with probabilistic uncertainties. The depend-
ence of the design objective and constraints on uncertainties is quantified by the polynomial chaos expansions (PCEs),
while the relationships between the design parameters and the design objective/constraints are parameterized by Legen-
dre polynomials. In two case studies, the polynomial chaos-based algorithm reduces the number of system evaluations
required by optimization by an order of magnitude. Quantifying the dependence on uncertain parameters via the PCEs
and including the quantification in design optimization simultaneously improved the distribution of the performance
index and the probability of constraint fulfillment. VC 2016 American Institute of Chemical Engineers AIChE J, 62:

3310–3318, 2016
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Introduction

Models for real systems have associated uncertainties,

which can influence the system performance and/or constraint

satisfaction.1,2 It is well established that ignoring uncertainties

during design optimization can produce designs that are highly

sensitive to uncertainties. The potential consequences of

ignoring uncertainties during design include large variability

in product quality3,4 and higher total costs.5

Such studies have motivated the development of numerical

algorithms that include uncertainties in optimal design prob-

lems. A popular strategy is to optimize designs based on a

worst-case objective, which ensures that each system within

an uncertainty set has the same or better objective than in

worst case.6 A design optimized for the worst-case uncertainty

can result in poorer product quality or higher costs for more

representative uncertainties than designs that do not consider

the effects of uncertainties or that weigh more equally the

effects of all uncertainties.7,8 Worst-case design can be very

conservative in practice, especially for systems in which the

worst-case uncertainty has a vanishingly low probability of

occurrence.
This article considers the optimal design of nonlinear dynam-

ical systems with parametric uncertainties described by proba-

bility distribution functions (aka “probabilistic uncertainties”).

For this type of uncertainty, the dominant strategy is to optimize

the distribution of the objective and to satisfy constraints within

specified probabilities. This strategy often requires estimation

of the expected values and/or the variances of the objective and

the constraints.3,9–12 The Monte Carlo method, which samples

the probabilistic distributions and propagates these samples

through the system models, is a common approach to estimate

the expected values and the variances13 but has a slow conver-

gence rate on the order of 1=
ffiffiffi
n
p

, where n is the number of sam-

ples. As a result, the Monte Carlo method requires a large

number of system simulations to accurately estimate the

expected values and variances and is computationally expen-

sive. More efficient sampling techniques, such as the Latin

hypercube sampling14 and the Hammersley sequence sam-

pling,15 have convergence rate on the order of 1=n.
Another way to take uncertainties into account during

design optimization is to employ Gaussian quadrature to esti-

mate the integrals for the expected values and the varian-

ces.3,16 These integrals are estimated each time that the

optimizer accesses a new set of design inputs (the term

“design inputs” is used instead of “design parameters” in the

remainder of this article to avoid potential confusion with

model parameters). Consequently, the number of system eval-

uations required by the optimal design calculations depends

on the details of the optimizer and the closeness of the initial

guess for the design inputs to the optimal solution.
Another method to account for uncertainties is via polyno-

mial chaos theory, which uses polynomial expansions to

approximate the dependence of system outputs on probabilis-

tic uncertainties.17 The polynomial expansions that achieve

the fastest convergence rate have been derived for a wide vari-

ety of distributions (see Table 1), meaning that these expan-

sions have the highest accuracy for expansions of the same

order, and require the smallest number of terms to achieve a

specified accuracy. With the optimal choices of polynomials

in the table, the convergence rate is exponential and estimation

of the means and variances is straightforward. Due to its low

computational cost, the application of polynomial chaos to
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chemical engineering and systems design problems has

become of interest in recent years.4,8,9,18–21

This article proposes a new polynomial chaos-based algo-

rithm for optimizing design inputs for systems with probabilis-

tic uncertainties. To make the number of required system

evaluations independent of the details of the optimizer and the

initial guesses, this algorithm parameterizes the dependence of

the optimization objective and constraints on design inputs

with Legendre polynomials. In addition, the impacts of uncer-

tainties on the objective and constraints are quantified by poly-

nomial chaos expansions (PCEs) and included in the

optimization. Computational efficiency of the design input

parameterization and the robustness of polynomial chaos-

based optimal designs are demonstrated in two case studies.

Problem Statement

Consider a nonlinear dynamical system described by

differential-algebraic equations:

d

dt
x5fðt; x;u;k; gÞ (1)

xðt50Þ5x0 (2)

05zðt; x; u; k; gÞ; (3)

for which t is time, x is the vector of system states, u 2 Rn31

is the vector of design inputs, k is the vector of certain param-

eters (e.g., heat capacities), g is the vector of parameters with

probabilistic uncertainties, f and z are algebraic functions, and

x0 is the initial condition. The design inputs could include con-

troller design parameters, initial conditions, and/or a parame-

terization of continuous-time trajectories such as temperature

profiles. Although not explicitly treated here, the methodology

described in this article can be directly extended to distributed

parameter systems. To simplify the notation, the dependency

on k is suppressed in all functions subsequently defined in this

article, but can be explicitly included without loss in

generality.
The design optimization objective g and constraint function

h 2 Rm31 are functions of the design inputs and uncertain

parameters,

gðu; gÞ; (4)

hðu; gÞ: (5)

For example, a typical optimization objective for a batch

design problem is

gðu; gÞ5
Z tf

t0

/½xðtÞ�d t1nðtfÞ;

where t0 is the initial time, tf is the final time, and / and n are

algebraic functions. Typical constraints are defined on the

states evaluated at specific points in time or on integrals of the

states over time, with some examples given in the case
studies.

With this nomenclature, the nominal optimal design prob-
lem is

min
u2U

gðu; gnominalÞ

s:t: U5½u1;lower; u1;upper�3 . . . 3½un;lower; un;upper�

hðu; gnominalÞ � 0:

(6)

The design inputs are assumed to have known finite bounds.
Typically such bounds can be specified using knowledge about
the phenomena (e.g., that the mixing speed in a bioreactor
must be less than some value to avoid cell damage) and/or
thermodynamic and/or kinetic arguments (e.g., that the heat
transfer system limits the temperature to be within some
range). Solutions to this optimization can result in a wide dis-
tribution of the objective and/or a high probability of con-
straint violation in the presence of probabilistic uncertainties
in g. A well-known formulation of the design problem that
reduces the effects of probabilistic uncertainties is

min
u2U

Eg½gðu; gÞ�1a0 Varg½gðu; gÞ�

s:t: U5½u1;lower; u1;upper�3 . . . 3½un;lower; un;upper�

Eg½h1ðu; gÞ�1a1 Varg½h1ðu; gÞ� � 0

Eg½h2ðu; gÞ�1a2 Varg½h2ðu; gÞ� � 0

�

Eg½hmðu; gÞ�1am Varg½hmðu; gÞ� � 0;

(7)

where Eg and Varg are the expected value and the variance
computed from integration with respect to g and the set of
scales faig control the tradeoffs between the expected values
and the variances.* This optimization requires inexpensive
and accurate estimates for

1. the functional dependence of gðu; gÞ and hiðu; gÞ on g

to quantify the effects of probabilistic uncertainties on the
expected values and the variances;

2. the functional dependence of Eg½gðu; gÞ�; Varg½gðu; gÞ�;
Eg½hiðu; gÞ�, and Varg½hiðu; gÞ� on the vector of design inputs
u.

Proposed Approach

The first step of the approach is to approximate the depend-
ence of the optimization objective and constraints on uncer-
tainties with polynomial expansions:17

gðu; gÞ �
XN0

j50

gjðuÞ/jðgÞ;

hiðu; gÞ �
XNi

j50

hi;jðuÞ/jðgÞ;

where the optimal polynomials /jðgÞ depend on the distribu-
tions of g and are given in Table 1, and the Ni are positive inte-
gers for all i. The polynomials in Table 1 have been proven to
be optimal in terms of the L2 norm and have exponential con-
vergence in the corresponding Hilbert functional space,17

which results in accurate approximations even with a

Table 1. Optimal Polynomial Expansions for Some

Probabilistic Distributions
17

Uncertainty distributions g Optimal polynomial /iðgÞ
Gaussian Hermite
Uniform Legendre
Gamma Laguerre
Beta Jacobi

*For a design objective written as a maximization, the second term in (7) is multiplied
by 21.
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relatively small number of terms. The polynomials are orthog-

onal and satisfy

h/iðgÞ;/jðgÞi5
Z

H

/iðgÞ/jðgÞd lðgÞ

5
h/2

i ðgÞi if i5j

0 otherwise;

8<
:

(8)

where H is the support for g and lðgÞ is the weight function

for /iðgÞ. As a result of (8),

gjðuÞ5
hgðu; gÞ;/jðgÞi
h/2

j ðgÞi
: (9)

Also, the expected value and the variance, which are com-

puted from integration with respect to uncertainties, can be

estimated once the expansion coefficients are computed:

Eg½gðu; gÞ�5
Z

H

gðu; gÞ d lðgÞ

�
Z

H

XN0

j50

gjðuÞ/jðgÞd lðgÞ

5
XN0

j50

gjðuÞ
Z

H

/jðgÞd lðgÞ

5
XN0

j50

gjðuÞh/jðgÞ; 1i

5g0ðuÞ h/0ðgÞ; 1i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1

5g0ðuÞ

(10)

Varg½gðu; gÞ�5Eg½g2ðu; gÞ�2E2
g½gðu; gÞ�

5

Z
u

g2ðu; gÞd lðgÞ2g2
0ðuÞ

�
XN0

j50

g2
j ðuÞh/2

j ðgÞi2g2
0ðuÞ

5
XN0

j51

g2
j ðuÞh/2

j ðgÞi:

(11)

The above approach is described in several papers on polyno-

mial chaos-based design.9 For this approach, estimation of the

expected values and the variances requires the computation of

PCE coefficients. For simple systems, PCE coefficients can be

computed via intrusive Galerkin projection, which takes the

inner product of (1)–(3) with each basis function to obtain a

system of equations for the expansion coefficients.17 For more

complex systems in which Galerkin projection cannot be

applied, non-intrusive methods are used such as tensor-

product quadrature, which estimates the integral for the

numerator of (9), and linear regression, which solves for the

complete set of expansion coefficients by evaluating the origi-

nal system for selected values for uncertainties.22

A drawback of using (10) and (11) in (7) is that the expan-

sion coefficients gjðuÞ and hi;jðuÞ would need to be evaluated

for every new u that the optimizer accesses. Since the evalua-

tion of the expansion coefficients requires system evaluations

(i.e., simulations of (1)–(3)), the computational cost of the

optimization is influenced by the choice of initial guesses and

the effectiveness of the optimizer for the particular optimiza-

tion. We propose to resolve this issue by approximating the

dependence of the objective and constraints on the design

inputs by their approximation by an expansion of Legendre

polynomials:

gðu; gÞ �
Xn0

j50

Xm0

k50

gjk/jðgÞPkðuÞ (12)

hiðu; gÞ �
Xni

j50

Xmi

k50

hijk/jðgÞPkðuÞ; (13)

where PkðuÞ is the Legendre polynomial in u of degree k,

and ni and mi are positive integers for all i. These equations

are referred to as design input parameterization in this

article.
In (12) and (13), the dependence of the expected values

and the variances on the design inputs can be cheaply

computed from the expansion coefficients gjk and hijk and

the relations

Eg½gðu; gÞ�5
Z

H

gðu; gÞd lðgÞ

�
Xn0

j50

Xm0

k50

gjkPkðuÞ
Z

H

/jðgÞd lðgÞ

�
Xn0

j50

Xm0

k50

gjkPkðuÞh/jðgÞi

(14)

Varg½gðu; gÞ�5Eg½g2ðu; gÞ�2E2
g½gðu; gÞ�

�
Z

H

Xn0

j50

Xm0

k50

gjk/jðgÞPkðuÞ
" # 2

d lðgÞ2
Xn0

j50

Xm0

k50

gjkPkðuÞh/jðgÞi
" #2

:

(15)

The novelty of the proposed representation of the design

inputs is the one-time evaluation of the expansion coefficients

gjk and hijk before (14) and (15) are sent to the optimizer. The

other novelty of the polynomial dependence of the expected

values and the variances on the design inputs in (14) and (15)

is the polynomial dependence of the optimization objective

and constraints. Therefore, the computational cost of the opti-

mization, which mainly depends on the number of system

evaluations, is fixed. In summary, the proposed approach for

designing systems with probabilistic uncertainties consists of

three steps:
1. compute the expansion coefficients gjk and hijk;
2. express the expected values and the variances of the

optimization objective and constraints as polynomial func-

tions of the design inputs using (14) and (15);
3. send these functions to the optimizer to find the optimal

design inputs.

Case Studies

This section applies the proposed approach to two chemical

reactor design problems. Tensor-product quadrature was used

to determine the PCE coefficients.22 All optimizations were

solved using fmincon of MATLAB
VR

.
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Optimal design of a batch chemical reactor
with series reactions

Consider the chemical reactions in series,

A�!r1 B�!r2 C;

in a batch reactor where

r15k10 exp 2
E1

RT

� �
CA;

r25k20 exp 2
E2

RT

� �
CB;

R is the gas constant, T is the reaction temperature, Ei are acti-
vation energies, ki0 are prefactors, and the reaction parameters
are listed in Table 2. The design objective is to find the reac-
tion temperature T that maximizes the concentration of the
desired intermediate product B, which is produced from spe-
cies A but consumed by the chemical reaction that converts
species B to species C. The nominal optimization of reac-
tion temperature, which does not consider the dependence of
CBðtf ; k10; k20;TÞ on the uncertainties in the prefactors k10 and
k20, is

max
300 K�T�400 K

CBðtf ; k10;nominal; k20;nominal;TÞ:

The nominal optimal temperature T is 324.69 K, which pro-
duces a maximum CBðtf ; k10;nominal; k20;nominal; TÞ of 199.06 M.

The uniformly distributed uncertainties in the prefactors k10

and k20 in Table 2 result in a distribution in the intermediate
concentration CBðtf ; k10; k20;TÞ. The optimal design problem
that takes the probabilistic uncertainties into account is

max
300 K�T�400 K

fEk10;k20
½CBðtf ; k10; k20; TÞ�2aVark10;k20

½CBðtf ; k10; k20; TÞ�g;

(16)

where a quantifies the tradeoff between the maximization of
the expected value and the reduction of the variance.

The dependence of the final intermediate concentration
CBðtf ; k10; k20;TÞ on the uncertain prefactors k10 and k20 is
quantified via PCEs, and the dependence on T is parameterized
by Legendre polynomials:

CBðtf ; k10; k20; TÞ �
XN

n50

CBnðtfÞ/nðk10; k20; TÞ

5
XN

n50

CBnðtfÞ/nðk010; k
0
20; T

0Þ;

where

k0105
k102k10;m

k10;d
� Uð21; 1Þ

k10;m5
k10;upper bound1k10;lower bound

2

k10;d5
k10;upper bound2k10;lower bound

2

k0205
k202k20;m

k20;d
� Uð21; 1Þ

k20;m5
k20;upper bound1k20;lower bound

2

k20;d5
k20;upper bound2k20;lower bound

2

T05
T2Tm

Td

� Uð21; 1Þ

Tm5
Tupper bound1Tlower bound

2

Td5
Tupper bound2Tlower bound

2

N is the total number of basis functions used in the expansion,
and /nðk010; k

0
20; T

0Þ is the nth basis function, which is the prod-
uct of the Legendre polynomials in k010; k020, and T0.

The evaluation of the expansion coefficients CBnðtfÞ uses
(8):

hCBðtf ; k10; k20;TÞ;/nðk010; k
0
20;T

0Þi5CBnðtfÞh/2
nðk010; k

0
20;T

0Þi

CBnðtfÞ5
hCBðtf ; k10; k20;TÞ;/nðk010; k

0
20;T

0Þi
h/2

nðk010; k
0
20; T

0Þi
;

where the numerator isZ 1

21

Z 1

21

Z 1

21

CBðtf ; k10; k20; TÞ/nðk010; k
0
20;T

0Þ

wðk010; k
0
20;T

0Þd k010d k020d T0;

(17)

and the denominator isZ 1

21

Z 1

21

Z 1

21

/2
nðk010; k

0
20;T

0Þwðk010; k
0
20;T

0Þd k010d k020d T0; (18)

where

w k010; k
0
20; T

0� �
5

1

2

� � 3

5
1

8
: (19)

Table 2. Parameters for the Batch Reactor Case Study

k10 (s21) Uniformly distributed between 100
and 1000; nominal value at 550

E1=R (K) 2400
k20 (s21) Uniformly distributed between 100

and 1000; nominal value at 550
E2=R (K) 4800
Reaction time tf (s) 20
Reaction temperature T (K) Between 300 and 400
Initial CA (M) 200
Initial CB (M) 0
Initial CC (M) 0

Table 3. The Highest Degrees of the Legendre Polynomials

in k010; k020, and T0 and the Number of the Gauss-Legendre

Quadrature Points Used to Approximate the Integral in (17)

for the Batch Reactor Case Study

Highest degree of the Legendre polyno-
mials in k010 and k020

5

I and J 6
Highest degree of the Legendre polyno-

mials in T0
2

K 3
Number of system evaluations for com-

puting PCE coefficients for a new T
without design input parameterization

62536

Number of system evaluations for com-
puting PCE coefficients with design
input parameterization

62335108
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Equation 18 is the inner product of the square of the nth

basis function, and therefore depends on only the distributions

of the uncertain parameters. Conversely, the integral in (17)

can be approximated by Gaussian-Legendre quadrature, which

evaluates CBðtf ; k10; k20;TÞ for different values of k10, k20, and

T:

ð17Þ �
XI

i51

XJ

j51

XK

k51

CBðtf ; �k10;i; �k20;j; �TkÞ/nð�k10;i; �k20;j; �TkÞ

wð�k10;iÞwð�k20;jÞwð �TkÞ;

where

�k10;i5the ith root of PI; the Legendre polynomial of degree I

wð�k10;iÞ5
1

12�k
2

10;i

	 

P0I

�k10;i

� �� �2
P0I

�k10;i

� �
5the derivative of PI evaluated at �k10;i

�k20;j5the jth root of PJ; the Legendre polynomial of degree J

wð�k20;jÞ5
1

12�k
2

20;j

	 

P0J

�k20;j

� �� �2
P0J

�k20j

� �
5the derivative of PJ evaluated at �k20;j

�Tk5the kth root of PK; the Legendre polynomial of degree K

wð �TkÞ5
1

12 �T
2
k

	 

P0K �Tkð Þ½ �2

P0K �Tkð Þ5the derivative of PK evaluated at �Tk

CBðtf ; �k10;i; �k20;j; �TkÞ5CBðtfÞ evaluated at �k10;i; �k20;j; and �Tk

/nð�k10;i; �k20;j; �TkÞ5/n evaluated at �k10;i; �k20;j; and �Tk

and I, J, K are positive integers. Table 3 lists the highest

degrees of the Legendre polynomials in k010; k020, and T0 and

the values for I, J, K. For a PCE of order p, the minimum order

of Gaussian quadrature to obtain accurate computation of all

of the PCE coefficients is p 1 1.22 As additional points would

require more computational cost, the minimum order of

Gaussian quadrature of p 1 1 was used in both case studies.

Figure 1 shows that choosing the highest degree of the Legen-

dre polynomial in T0 as two produced low approximation

error. Once the expansion coefficients CBnðtfÞ are evaluated,

Ek10;k20
½CBðtf ; k10; k20; TÞ�; Vark10;k20

½CBðtf ; k10; k20; TÞ�, and

therefore the objective in (16) are approximated by polyno-

mial functions in T0.
A pareto-optimality plot is a commonly used approach for

the selection of values for parameters that trade off multiple

objectives. Figure 2 shows the pareto-optimality plot of the

expected values and the variances of the intermediate concen-

tration CBðtf ; k10; k20; TÞ at the optimal temperature for differ-

ent values for a in the optimal design problem. The reaction

temperature of 359.71 K corresponds to a value of a of 0.25,

which is located approximately at the knee of the curve. The

35.02 K difference between the optimal temperature for

the nominal values of the prefactor k10 and k20 and that from

the polynomial chaos-based optimization results in drastically

different distributions of CBðtf ; k10; k20; TÞ (see Figure 3 and

Table 4). Specifically, the distribution of CBðtf ; k10; k20;TÞ for

the polynomial chaos-based optimal temperature has a higher

average and a much smaller standard deviation than for the

optimal temperature for the nominal values of k10 and k20.
This difference demonstrates the importance of including the
effects of parametric uncertainties in optimal design problems.

The effect of design input parameterization on computa-
tional cost was also examined. When a PCE without design
input parameterization,

CBðtf ; k10; k20; TÞ �
XM

n50

CBnðtf ; TÞ/nðk10; k20Þ;

Figure 1. The convergence plot for the batch reactor
case study: the highest degree of the Legen-
dre polynomials in T0 was based on the con-
vergence of the optimal temperature for
a50:25.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 2. The pareto-optimality plot for the batch reac-
tor case study that shows how Ek10;k20

½CBðtf;
k10; k20;TÞ� changes with Vark10;k20

½CBðtf;
k10; k20;TÞ�.
A value of a of 0.25 is located at the knee of the curve.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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was used to approximate the dependence of the intermediate

concentration CBðtf ; k10; k20; TÞ on the uncertain parameters,

the expansion coefficients CBnðtf ;TÞ were evaluated for

every new temperature the optimizer accessed. With the com-

puted expansion coefficients, Ek10;k20
½CBðtf ; k10; k20;TÞ� and

Vark10;k20
½CBðtf ; k10; k20; TÞ� were computed from

Ek10;k20
½CBðtf ; k10; k20;TÞ� �


XM

n50

CBnðtf ;TÞ/nðk10; k20Þ; 1
�

5CB0ðtf ; TÞ;

Vark10;k20
½CBðtf ; k10; k20;TÞ�5Ek10;k20

½C2
Bðtf ; k10; k20; TÞ�

2 Ek10;k20
½CBðtf ; k10; k20;TÞ�

� �2

�

XM

n50

CBnðtf ;TÞ/nðk10; k20Þ;
XM

n50

CBnðtf ;TÞ/nðk10; k20Þ
�

2C2
B0ðtf ; TÞ

5
XM

n50

C2
Bnðtf ;TÞh/2

nðk10; k20Þi2C2
B0ðtf ; TÞ

5
XM

n51

C2
Bnðtf ;TÞh/2

nðk10; k20Þi:

When fmincon of MATLAB
VR

was used to find the reaction

temperature that maximizes Ek10;k20
½CBðtf ; k10; k20;TÞ�20:25

Vark10;k20
½CBðtf ; k10; k20; TÞ�, the number of system evaluations

without design input parameterization was 576, whereas that

with design input parameterization was 108. The design input

parameterization reduced computational cost by about a factor

of 5.

Optimal design of a tubular reactor with a five-species

reaction network

Molar balances for the five species in the reaction network

in Figure 5 carried out in a microscale automated continuous-

flow tubular reactor are23

d C1

d t
52k1C1C22k2C1C2

d C2

d t
52k1C1C22k2C1C22k3C2C32k4C2C4

d C3

d t
5k1C1C22k3C2C3

d C4

d t
5k2C1C22k4C2C4

d C5

d t
5k3C2C31k4C2C4;where

ki5Aiexp 2
EAi

RT

� �
;

t is the distance down the reactor multiplied by its cross-

sectional area and divided by the volumetric flow rate of the

feed stream, and the reaction parameters are listed in Table 5.

The nominal reactor design problem is to determine the resi-

dence time that maximizes the concentration of the intermedi-

ate compound 4 while limiting reagent to be at most 1% of its

feed concentration:

max
0:5 min�tres�20 min

C4ðlog 10 A1;nominal; log 10 A4;nominal; tresÞ
C10

s:t:
C1ðlog 10 A1;nominal; log 10 A4;nominal; tresÞ

C10

� 1%:

The solution is the optimal residence time for the tubular
reactor, which is 0.921 min.

The uncertainties in log 10 A1 and log 10 A4 lead to distri-
butions of C1ðlog 10 A1; log 10 A4; tresÞ and C4ðlog 10 A1;
log 10 A4; tresÞ, which are taken into account in the reactor
design problem as

max
0:5 min�tres�20 min

�
Elog 10 A1;log 10 A4

C4ðlog 10 A1; log 10 A4; tresÞ
C10

� �

2aVarlog 10 A1;log 10 A4

C4ðlog 10 A1; log 10 A4; tresÞ
C10

� ��

s:t:Elog 10 A1;log10 A4

C1ðlog 10 A1; log 10 A4; tresÞ
C10

� �
� 1%:

Table 6 lists the highest degrees of the Legendre polynomials
used for approximating the dependence of the concentrations
C1 and C4 on log 10 A1; log 10 A4, and tres and the number of
Gauss-Legendre quadrature points used to compute the expan-
sion coefficients.

The pareto-optimality curve for the expected values and the
variances of the intermediate concentration C4ðlog 10 A1; log 10

Figure 3. Comparison of the distributions of the inter-
mediate concentration CBðtf; k10;k20;TÞ at the
nominal and polynomial chaos-based optimal
temperatures for the batch reactor case
study constructed from 104 Monte Carlo sim-
ulation samples.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table 4. Averages and Standard Deviations of 10
4

Samples

for the Nominal and the Polynomial Chaos-Based Optimal

Temperatures for the Batch Reactor Case Study

Optimization
Temperature

(K)
Average

(M)

Standard
deviation

(M)

Nominal 324.69 194.12 11.03
PCE 359.96 196.17 2.51
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A4; tresÞ at optimal residence times for different values of a is

shown in Figure 5. A value of a of 115 was selected as a rea-

sonable tradeoff between the expected value and the variance,

which has the corresponding optimal residence time of 8.320

min. Figures 6 and 7 show that the polynomial chaos-based

optimal residence time has 100% constraint satisfaction for C1

C10

without significantly reducing the maximum intermediate con-

centration C4

C10
, whereas there is approximately 18% chance of

constraint violation for the optimal residence time for the

nominal values of log 10 A1 and log 10 A4.
The effect of design input parametrization on computational

cost was also examined. The number of system evaluations

without parameterization of tres was 2100, and was 125 with

parameterization of tres, representing a reduction of more than

one order of magnitude in computational cost.
In general, the relative computational cost of using design-

input parameterization vs. not using design-input parameter-

ization depends on the order of the PCE with respect to the

design input. The optimization approach without design-input

parameterization using the Legendre polynomials will require

fewer evaluations if a very high order of the PCE with respect

to the design input is needed to accurately approximate the

relationship between the design input and the robust optimiza-

tion objective.
Both case studies had uniformly distributed uncertain

parameters. Replacing the uniform distributions with other

types of distributions would involve replacing the Legendre

polynomials for the uncertain parameters with other polyno-

mials as shown in Table 1. As in the case studies that had uni-

formly distributed uncertain parameters, the computational

cost would be a function of the order of the PCEs.

Conclusions

This article proposes a polynomial chaos-based approach

for the design of nonlinear dynamical systems with probabilis-

tic uncertainties and bounds on the design inputs. The two

characteristics of this design approach are
1. the dependence of the optimization objective and con-

straints on design inputs is parameterized with Legendre pol-

ynomials, and
2. the effects of the uncertainties on the objective and con-

straints are quantified by PCEs.
The designs of batch and continuous-flow chemical reactors

were optimized with this method in the presence of uniformly

distributed uncertain parameters.
For a batch reactor with series reactions, the reaction tem-

perature was optimized to maximize the concentration of a

desired intermediate species in the presence of two uncertain

kinetic parameters. Compared to the optimal reaction tempera-

ture from the nominal optimization, the polynomial chaos-

based optimal temperature produced a distribution of the

Table 5. Parameters for the Tubular Reactor Case Study
23

C10 (M) 0.150
C20 (M) 0.375
T (K) 373.15
tres (min) Between 0.5 and 20
R (J/mol�K) 8.314
log 10 A1; Ai (M21s21) uniformly distributed within ½3:0; 3:8�;

nominal value at 3.4
EA1 (kJ/mol) 27
log 10 A2 3.5
EA2 (kJ/mol) 32.1
log 10 A3 4.9
EA3 (kJ/mol) 60.0
log 10 A4 Uniformly distributed within ½2:6; 3:4�;

nominal value at 3.0
EA4 (kJ/mol) 45

Table 6. The Highest Degrees of the Legendre Polynomials in log 10 A1; log 10 A4, and tres and the Number of the Gauss-

Legendre Quadrature Points Used to Approximate the Expansion Coefficients for the Tubular Reactor Case Study

Highest degree of the Legendre polynomials in log 10 A1 and log 10 A4 4
Number of quadrature points for each uncertain parameter 5
Highest degree of the Legendre polynomials in tres 4
Number of quadrature points for tres 5
Number of system evaluations for computing PCE coefficients for a new tres without design input parameterization 52525
Number of system evaluations for computing PCE coefficients with design input parameterization 52355125

Figure 5. The pareto-optimality plot for the tubular
reactor case study showing the tradeoff
between Elog 10 A1 ;log 10 A4

C4ðlog 10 A1;½ log 10 A4;
tresÞ� and Varlog 10 A1 ;log 10 A4

C4ðlog 10 A1;½ log 10 A4;
tresÞ� for different values of a.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 4. Chemical reaction network for the tubular
reactor.23
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desired species concentration with both a higher average and

smaller standard deviation. In addition, parameterizing the

dependence of the desired species concentration on the reac-

tion temperature with the Legendre polynomials reduced the

number of system evaluations required by optimization by a

factor of 5.
For a continuous-flow tubular chemical reactor with five

species, the residence time was optimized to maximize the

concentration of a desired intermediate species in the presence

of two uncertain kinetic parameters. This reactor design prob-

lem is also subject to a constraint that the remaining limiting

reagent should be no greater than 1% of its starting amount.

With similar distributions of the desired intermediate species

concentrations from the nominal and the polynomial chaos-

based optimal residence times, the polynomial chaos-based

optimal residence time resulted in no constraint violations,

whereas the nominal optimal residence time resulted in 18%

constraint violation. Furthermore, design input parameteriza-

tion reduced the number of system evaluations required by

optimization by a factor of 17.
The design input parameterization significantly reduced the

number of system evaluations required by optimization in

both case studies. Also, including the effects of uncertainties

in the optimal design problems via PCEs produced design

inputs that simultaneously improved distribution of the optimi-

zation objective and increased the probability of constraint

satisfaction.
PCEs are most effective when the objective and constraints

are smooth functions of the uncertain parameters, which

would be expected to occur in most chemical process design

problems. When the objective and constraints are not smooth

functions of the uncertain parameters, then accurate approxi-

mation via PCEs will require a larger number of terms in the

expansions and more system evaluations to compute the

expansion coefficients, and efficient sampling methods can be

less computationally expensive.24 PCEs are also most effec-

tive when each objective or constraint is sensitive to a rela-

tively small number of design inputs and uncertain

parameters, e.g., less than ten. Properties of interest such as

concentrations and yields for most chemical reaction networks

and reaction-transport networks depend strongly on only a

small number of key parameters, which are associated with

rate-limiting steps.25 A parameter sensitivity analysis can be

conducted to determine which parameters in the design objec-

tive and each constraint to include in PCEs, while ignoring the

parameters that have sufficiently low effects on the design

objective and constraints. For process design problems that

have larger numbers of sensitive uncertain parameters and/or

design degrees of freedom, Smolyak sparse grids can be used

to reduce the number of function evaluations required for PCE

coefficient computation.22

Since the objective and constraints of the PCE-based opti-

mization are represented by polynomials, the resulting optimi-

zations are polynomial programs. Although this manuscript

used local optimization, the polynomial dependencies mean

that the optimization can be solved using any local or global

optimization algorithms developed for the solution of polyno-

mial programs.26,27
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Figure 6. Comparison of the probability distribution
functions of the intermediate concentration
C4ðlog 10 A1; log 10 A4; tresÞ from the nominal
and the polynomial chaos-based optimal
residence times for the tubular reactor case
study, constructed from 104 Monte Carlo
simulation samples.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 7. Comparison of the probability distribution func-
tions of C1ðlog 10 A1; log 10 A4; tresÞ=C10 from the
nominal and the polynomial chaos-based opti-
mal residence times for the tubular reactor
case study, constructed from 104 Monte Carlo
simulation samples.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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