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1 | INTRODUCTION

In recent years, messenger RNA (mRNA)-based vaccines and
immunotherapies have shown clinical efficacy for COVID-19,
seasonal influenza, Epstein-Barr virus, HIV, and some forms of
cancer (Barbier et al., 2022). In addition, mRNA is a promising method
of delivering therapeutic proteins, with several mRNA therapies in
the process of early-stage clinical trials (Rohner et al., 2022).
Producing mRNA vaccines at the scale needed for quickly immunizing
populations, however, remains a challenge (Kis et al., 2021). Also,
while mRNA therapies are targeted toward small population groups,
50-1000 times greater dosages are required than for mRNA
vaccines, which adds to manufacturing costs (Barbier et al., 2022).
Due to the broad reach of the mRNA platform, even modest
advances in efficiency and quality control of mRNA production would

have a significant impact on the availability of a wide variety of
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The in vitro transcription (IVT) reaction used in the production of messenger RNA
vaccines and therapies remains poorly quantitatively understood. Mechanistic modeling
of IVT could inform reaction design, scale-up, and control. In this work, we develop a
mechanistic model of IVT to include nucleation and growth of magnesium pyro-
phosphate crystals and subsequent agglomeration of crystals and DNA. To help
generalize this model to different constructs, a novel quantitative description is included
for the rate of transcription as a function of target sequence length, DNA concentration,
and T7 RNA polymerase concentration. The model explains previously unexplained
trends in IVT data and quantitatively predicts the effect of adding the pyrophosphatase
enzyme to the reaction system. The model is validated on additional literature data

showing an ability to predict transcription rates as a function of RNA sequence length.

cell-free synthesis, in vitro transcription, mechanistic modeling, mRNA production,

therapies. Consumption of reagents for the in vitro transcription (IVT)
reaction used for RNA synthesis is a key source of cost of goods
(Rosa et al., 2021). Mechanistic modeling of this biomanufacturing
process can be useful to organize existing data, understand the
dynamics of key processes, and design novel reaction schemes and
reactors (Destro & Barolo, 2022; Hong et al., 2018).

The quantitative effect of pyrophosphatase (PPiase), an enzyme
that degrades the pyrophosphate (PPi) byproduct of IVT and is
heuristically included in most IVT schemes, remains unclear. While
the mechanism of action and rate that PPiase catalyzes the
degradation of PPi is well studied, its effect on the IVT system is
poorly understood, and it remains unclear why PPi needs to be
removed from the IVT system. Owing to this lack of mechanistic
understanding, there remains disagreement as to whether PPiase is
even useful for increasing IVT yields at all. Previous researchers have

reported PPiase to both be one of the most important components in
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their reaction schemes (Akama et al., 2012; Rosa et al., 2022), or to
have no effect on yields (Kanwal et al., 2018; Samnuan et al., 2022).
One phenomenon of interest to mechanistic modeling of IVT is the
crystallization of the PPi byproduct in the form of magnesium
pyrophosphate (Mg,PPi). This process has been associated with
decreased yields, but no mechanistic model has been published that
can describe major trends in these data (Akama et al., 2012; Young
et al,, 1997).

In parallel to research on the manufacturing of RNA, recent
efforts in the design of biological nanostructures for potential
therapeutic and diagnostic uses have incidentally increased under-
standing of IVT. It has become well understood that Mg,PPi
crystallization in the presence of DNA forms Mg,PPi-DNA compo-
sites that remove DNA from solution (Kim et al.,, 2019, 2017). In
addition, Mg,PPi-RNA composites have been observed and studied
in conditions where crystallization of Mg,PPi occurs in the presence
of RNA (Baker et al., 2018; Shopsowitz et al., 2014). These DNA and
RNA nanostructures have primarily been investigated with the goal
of identifying synthesis-structure relationships for the engineering of
delivery or diagnostic platforms. However, the knowledge that
Mg, PPi solid formation has this effect on both an essential reagent
and the product of the reaction has profound implications for the
engineering of IVT. This phenomenon has never been quantitatively
modeled as part of a larger system for understanding the kinetics
of IVT.

An additional unmet challenge in the mechanistic modeling of
IVT is to develop generalizable models for arbitrary target RNA
sequences. While predicting complex phenomena such as RNA
secondary structure remains a grand challenge, incorporating simple
characteristics like sequence length is a straightforward first step in
developing generally applicable and easily translatable IVT models.
Most previous work in applying mechanistic models to IVT data has
ignored the effect of sequence length in both model development
and data collection (Akama et al., 2012; van de Berg et al., 2021;
Young et al., 1997), and the most complete past work in incorporat-
ing sequence length into mechanistic models of IVT was restricted by
the limited data and fundamental understanding of the transcription
process available at the time (Arnold et al., 2001).

In this work, a mechanistic model is developed for IVT that
incorporates new quantitative descriptions of the crystallization of
magnesium pyrophosphate, the sequestration of DNA due to
crystal formation, and the degradation of PPi by PPiase. To
generalize this model across multiple target RNA sequences of
different lengths, our transcription rate law incorporates descrip-
tions of both initiation and elongation steps. This mechanistic
model is fit to a literature data set that is unique in the published
literature in measuring the dynamics of PPi concentration (Akama
et al., 2012). The inclusion of these new phenomena into the model
enables it to capture important trends in this data set. In addition,
the model quantitatively predicts the effect of adding PPiase to the
IVT system. Our model for the IVT rate accurately predicts the
effect of sequence length on the IVT rate measured for an

independent set of experiments (Rosa et al., 2022).

2 | REVIEW OF PAST MODELS OF IVT
REACTIONS

The primary process of IVT is the polymerization of RNA from four
nucleoside triphosphate (NTP) monomers, which has the overall
stoichiometry:

Na(ATP) + Ny(UTP) + Nc(CTP) + Ng(GTP)
= +(Nai = 1)PPi + (N — 1)H,

where

Nai = Na + Ny + Nc + Ng (2)

and Na, Ny, Nc, and Ng are the numbers of adenosine triphosphate,
uridine triphosphate, cytidine triphosphate, guanosine triphosphate
(ATP, UTP, CTP, and GTP) monomers incorporated into each RNA
sequence. The reaction forms PPi and proton (H) byproducts. A typical
IVT scheme requires a linearized template DNA of the target sequence,
NTPs, T7 RNA polymerase (T7 RNAP), and a magnesium salt in an
aqueous buffered reaction at 37°C and a pH around 7.5-8 (Beckert &
Masquida, 2011). In addition, many IVT reaction schemes include PPiase,
surfactants, spermadine, and dithiothreitol. However, past mechanistic
models of IVT have only focused on modeling the concentrations and
effects of NTPs, T7 RNAP, and Mg, and there is little to no public data
describing the effect on IVT by the latter set of components.

In addition to the transcription reaction, past mechanistic models
for IVT have included a number of secondary processes based on
experimental observations and first principles. First, a network of
equilibrium reactions between free species concentrations and
complexes such as MgNTPs are described using a series of algebraic
relations (Kern & Davis, 1997). In addition, past mechanistic models
have included additional kinetic phenomena, including Mg,PPi
crystallization, RNA degradation, and T7 RNAP degradation (Akama
et al., 2012; van de Berg et al., 2021; Young et al., 1997). While the
latter two of these phenomena were introduced to help conform IVT
models to individual data sets and are not directly observed in the
context of IVT, Mg,PPi crystallization is a confirmed phenomenon
that is easily reproduced owing to the visibility of solid formation.

Past mechanistic models have focused on isolated operating
regimes and design spaces of the IVT reaction due to the diversity of
goals involved. The first mechanistic model for describing trajectories
of solution concentrations in the IVT reaction was primarily focused
on empirically modeling experimental data (Young et al., 1997). This
work uniquely focused on modeling the presence of aborts, which are
short transcription sequences that do not match the desired full
sequence. A later work (Arnold et al., 2001) developed a mechanistic
model of IVT with the goal of deriving rate expressions from the first
principles of the known biochemistry of IVT. This work is unique in
quantitatively including initiation, elongation, and termination of the
RNA polymerization process into an IVT mechanistic model, and in
including quantitative descriptions of the effect of DNA concentra-
tion on IVT rate. Another study (Akama et al., 2012) developed a
mechanistic model to describe IVT in tandem with Mg,PPi
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crystallization. A recent study (van de Berg et al., 2021) built on two
past models (Akama et al., 2012; Young et al., 1997) to fit a data set
collected for a range of operating conditions.

The most comprehensive published data set on Mg,PPi
crystallization in IVT is by Akama et al. (2012), which is referred to
as the Akama data set in this work. This data set includes the temporal
evolution of both RNA and PPi concentrations, which is unique
among published data sets. Despite the high quality and relevance of
the Akama data set, no publications (not even Akama et al.) have fit
these temporal reaction trajectories to a mechanistic model using the
statistical techniques of parameter estimation. Our mechanistic
model, which is described in Section 3, is fit to the Akama data set.

3 | MATERIALS AND METHODS
3.1 | Mechanistic model formulation

Our mechanistic model uses a set of differential equations:

% = ~Veequestrations )
d[ljjl;lA] v (@)

% = (Nai = 1)Var = Vsolid = VoPiase, (5)
d[U('jI'tP]tot —_— 7

d[r\gf]tot - Vi (10)

d[l;ltuc] Vi (11)

% = 2Vppiases (12)

which track the temporal evolution of 10 state variables representing
the total concentration of species in the reaction: DNA, RNA, PPi,
ATP, UTP, CTP, GTP, Mg, phosphate (Pi), and Mg,PPi nuclei
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FIGURE 1 Major species in the IVT reaction model. The
elongation of mRNA chains produces pyrophosphate (PPi)
byproducts. This byproduct can complex with magnesium to form
solid crystals, which sequester DNA, inhibiting transcription. The
pyrophosphatase enzyme inhibits the formation of crystals by
decreasing the free concentration of PPi. IVT, in vitro transcription;
mMmRNA, messenger RNA.

(Figure 1). The model contains five kinetic processes: the transcrip-
tion reaction (Vi), nucleation and growth of Mg,PPi crystals (Vouc,
Vsoiia), agglomeration of Mg,PPi nuclei and DNA (Viequestration), and the
degradation of PPi by PPiase (Vppiase)-

The process of transcription was modeled using a quasisteady-
state assumption as the time constants associated with the
transcription of a single transcript (3-30s) are substantially lower
than the time constant of substrate consumption in the data used in
this work (0.25-0.5h) (Koh et al., 2018; Tang et al., 2011). The
transcription rate was modeled as a process of reversible binding of
T7 RNAP (P) and DNA promoter (DNA), coupled with an irreversible
initiation step and an elongation step dependent on the number
of each base in the sequence (S| Section 1). The overall rate of
transcription is equivalent to the rate of chain initiation, which is
modeled as first order in the concentration of polymerase-DNA
initiation complex (P - DNA)

Vir = ki[P - DNA], (13)

where k; is an initiation rate constant. In addition to initiation, an
elongation step is required for the formation of RNA. Without loss of
generality, the effective rate constant for an elongating RNAP to
incorporate an ATP is given as

ke [MgATP] [Mg]

kn = , .
K1 + ) & migatey 2 * [ME) )

This formulation is based on a dual Michaelis-Menten structure
that has proved useful in previous work (Akama et al., 2012) and
includes a term previously used in the literature describing the
competitive inhibition of nucleoside addition by PPi (Arnold
et al., 2001). Using a quasisteady assumption, the concentration of

initiation complex is given as (S| Section 1)
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[P] + a[DNA] + Kmp

. ra - ~VPL+ aDNAT+ Kol - 4a[PIIDNA]
2a ’
(15)
where
a= 1+k(—+—“+':—§+':—§, KMD=%: (16)

and ko, and ko are rate constants for T/ RNAP and the DNA
promoter binding and unbinding, respectively (Sl Section 2). Whereas
Akama et al. (2012) modeled the rate of Mg,PPi solid formation using
empirical induction time models, we use classical nucleation theory
(Myerson et al., 2019):

- Rnucexp(%) forS > 1,

Viuc (17)
0 forS =<1,
where S is the supersaturation,

[Mg2PPi]
[Mg2PPileq

(18)

and B and Rnuc are the dimensionless free energy barrier to nucleation
and the nucleation rate constant, respectively. The total rate of a
solid formation of PPi (in molL"th™%) is modeled in keeping with

previous work as (Peng et al., 2015)

Vg = k [Nuc]InS for S > 1, (19)
0 for S <1,

where Rg is a rate constant governing the growth of nuclei as a
function of nuclei concentration, [N-LE]. The number of model
parameters can be reduced, by some algebraic manipulation (see Sl

Section 3), to give

Ve = exp(, 25) for S > 1, (20)
0 for S <1,

k, Nuc]inS forS > 1,
Vsolld = { grOWth[ UC] " or } (21)

0 forS=<1,

where kgrowth and B are the fitted parameters and [Nuc] is the rate-
normalized concentration of nuclei. In addition, based on qualitative
work demonstrating the agglomeration of Mg,PPi crystals and DNA
(Kim et al., 2019), a term was included to describe the rate of DNA

sequestration in the solid phase:
Vsequestration = kq[DNA][Nuc], (22)

which hypothesizes that the rate is first order in both DNA
concentration and rate-normalized nuclei concentration with a rate
constant kg. Past work has qualitatively shown that a similar
phenomenon takes place in sequestering RNA (Shopsowitz

et al., 2014). However, the experimental procedure used by Akama
et al. (2012) redissolved any solid before measuring RNA concentra-
tions, meaning that any RNA sequestration cannot be observed from
the Akama data set.

Enzymatic degradation of PPi is modeled by

[MgPPi]

—_, 23
[MEPPI] + Ky prime (23)

Vppiase = Kppiase [PPiase]
with the rate law and parameters from a kinetic study of PPiase (Chao
et al., 2006), where [PPiase] is in units of volume-based enzyme
activity (UpL™).

The above rates are dependent on the concentration of
complexes, such as MgATP and Mg,PPi. The concentrations of these
complexes over time are modeled by a set of algebraic equations that
describe known equilibrium relations and material balances of the
system. In this work, it is assumed that the equilibrium constants
associated with all NTPs are the same, and NTPs are treated as a
lumped state for the purpose of thermodynamic calculations, defining

a total NTP concentration,

[NTPliot = [ATPliot + [UTPliot + [CTPlior + [GTPiot. (24)

The material balances for the ionic species are

[Mgliot = [Mg] + [MgPPi] + [HMgPPi] + [MgNTP]
+ 2[Mg,NTP]
+2[Mg,PPi] + [HMgNTP] + [H, MgPPi] + [MgPi],

(25)
[NTPliot = [NTP] + [HNTP] + [HMgNTP] + [MgNTP] (26)
+ [MgaNTP],
[PPi}ot = [PPi] + [MgPPi] + [Mg,PPi] + [HPPi] + [HMgPPi] 27)
+ [H, PPi] + [H, MgPPi],
[Bufferliot = [Buffer] + [HBuffer], (28)
[Pilot = [Pi] + [MgPi], (29)

where the complex concentrations are defined by the equilibrium

relations
[HNTP] = [H][NTP]Kiinrp, (30)
[HMgNTP] = [HNTP][Mg]Kpmgnte (31)
[HPPi] = [H][PPi]Kyppi, (32)
[HMgPPi] = [HPPi][Mg]Kiimgppi, (33)
[H2PPi] = [HPPi][H] K, ppis (34)
[H2MgPPi] = [H, PPi][Mg] K, mgppi, (35)
[HBuffer] = [H][Buffer]Kgyster, (36)
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[MgNTP] = [Mg]INTP]Kygnte, (37)
[Mg2NTP] = [MgNTP][Mg]Kug,nte, (38)
[MgPPi] = [Mg] [PPi]Kmgppi (39)
[Mg2PPi] = [MgPPi][Mg]Kug,ppi (40)
[MgPi] = [Mg] [Pi]Kygp. (41)

Finally, the proton concentration is determined by a charge
balance. While all species in the reaction contribute to the charge
balance in theory, limited reporting of the exact counterions used in
reaction feedstocks makes exact accounting of charges infeasible.

The buffering salts are approximated to be the primary components.

[H] + [HBuffer] = [OH] + [CI], (42)
where
10—14
[OH] = (] (43)

and [Cl] is the initial concentration of Cl added via the HCI-Tris buffer
used for the reaction (Sl Section 11). For calculation of transcription
kinetics, without loss of generality, the concentration of [MgATP] is

calculated as

[ATPlot

INTPeot “

[MgATP] = [MgNTP]
As for all first-principles models of complex reactions, some
assumptions and simplifications are made: (1) The elongation rate
law (14) ignores the effect of noncoding and coding sequence
identity. (2) The transcription rate model ignores interactions
between RNAP molecules and pausing of transcription. (3)
Product quality variables, such as the presence of aborts and
double-stranded RNA, are not considered in this work, as the
literature data describing these byproducts are sparse. (4)
Degradation of RNA and T7 RNAP are not considered as those
effects were not essential for capturing the dynamics of the
Akama data set. (5) The Michaelis-Menten description of PPiase
action is a simplification of a more sophisticated network of
reversible and irreversible reactions (Halonen et al., 2002;
Tammenkoski et al., 2007). In addition, the rate law used in this
work has only been shown for PPiase from Helicobacter pylori,
which is not commonly used in IVT (Chao et al., 2006). However,
as the PPi concentrations in the Akama data are relatively high,
the most important part of this rate law is the maximum rate,
which is quantitatively well understood and captured by such a
simple model. (6) The nucleation-growth model does not take into
account the effects of size heterogeneity of Mg,PPi crystals and
the contribution to total solid formation of the nuclei formation
step. (7) Crystallization of magnesium hydrogen phosphate
(MgHPi), which has been postulated as an additional process in
the IVT system (Kim et al., 2019), is not considered.

BIOTECHNOLOGY| 5
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3.2 | Computational methods

Model evaluation and parameter optimization are performed in the
Julia language. The set of equations in the preceding section is
combined into a system of differential algebraic equations that are
solved forward in time using the high-order integrators available in
the DifferentialEquations.jl package. Experimental measurements are
assumed to have additive, uncorrelated measurement errors with a
normal distribution of zero mean and diagonal measurement error
covariance matrix V. Parameter estimation is performed in logso
space, to search the large numerical space and to best represent the
prior distribution of parameters, where the vector k represents the
logyo of the parameters. The prior distribution for k is assumed to
follow a normal distribution with mean p and covariance V,, which is
equivalent to assuming a log-normal distribution of parameters.

MAP estimation of the vector k was carried out:
min(y - uk)TV M)y = utk) + k= W™V Mk - ), (45)

where y is the vector containing all of the experimental data used for
estimating parameters and u(k) is the vector of corresponding model
outputs as a function of the logig parameter vector k. The error
covariance matrix Vi, of the best-fit estimate k* is approximated by
(Beck & Arnold, 1977)

-1
covlk* - kie) = Vie = (STV; S + ), (46)

where ki denotes the true logig of the parameters and S is the
sensitivity of the model outputs with respect to the vector k.
Additional details on the parameter estimation strategy can be found
in SI Section 5.

Local gradient-based optimization is carried out with
L-BFGS optimization using the ForwardDiff.jl and NLopt.jl packages
in Julia to compute model output sensitivities to parameters and use
those sensitivities in gradient-based optimizers, respectively (Liu &
Nocedal, 1989). Multistart optimization using 4000 random starting
points is performed to search for a global optimum (Marti, 2003).
Best-fit parameter estimates in k* are given in Table 1, and the

parameter error covariance matrix Vi, is given in Sl Section 10.

4 | RESULTS
41 | Fitting model to calibration data

The batch IVT reaction model is fit to the Akama data set, which
consists of three parts (Akama et al., 2012). The first, and primary,
source of data is a set of temporal trajectories of RNA and PPi
concentrations for 13 different sets of Mg, NTP, and T7 RNAP input
concentrations, each recorded at 9 timepoints (Figure 2). In addition,
a set of data depicting the initial rate of RNA synthesis for 20
different sets of initial Mg and NTP concentrations was collected
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TABLE 1 Model parameters.

STOVER ET AL

Parameter Units Process Prior value Value after fitting
ki h1 Transcription initiation prior 10297#06 (Koh et al., 2018) 103:61+0.06
ke h1 Transcription elongation prior 10°72*03 (Tang et al., 2011) 10520011
Kot h1 T7 RNAP-DNA binding prior 10364£05 (Koh et al., 2018) 10374043
Kon hinM1 T7 RNAP-DNA binding prior 10231#01 (Koh et al., 2018) 10230010
Ky M Transcription MgNTP dependence - 10-3590.18
K, M Transcription Mg dependence - flopE=getod
Ki ppi M Transcription PPi inhibition prior 107370#06 (Arnold et al., 2001) 1074.38£0.17
Kgrowth molesh™ Mg,PPi solid growth - 1(0:59+0.30
B arb. unit Mg, PPi solid growth prior 10113202 (Akama et al., 2012) 101.65£0.09
kg 1M1 DNA-Mg,PPi agglomeration - Q899054
Kuntp M1 lon equilibrium prior 10691116 10691£0.04
KimenTp M1 lon equilibrium prior 102820 (02252010
Kuppi M1 lon equilibrium prior 107.02%1.16 107:02#0.10
Kiimgppi M1 lon equilibrium prior 10332£1.16 103-32%0.10
Kiiypri M1 lon equilibrium prior 106-26+1.16 106-26+020
Kiiymgpei M1 lon equilibrium prior 10211£1.16 10211£020
Kwmentp M1 lon equilibrium prior 10454116 10410+0.14
KivigonTe M1 lon equilibrium prior 10177116 101.87£0.29
Kivigppi M1 lon equilibrium prior 10480+1.16 105-16+0.15
Kivigopei M1 lon equilibrium prior 10257116 10399011
Kigpi M-t lon equilibrium 10188 10188
Mg;PPigq M lon equilibrium prior 107485#2 (Akama et al., 2012) OpEEd
Kppiase MhH(U/pL)?t Degradation of PPi 60 (S| Section 7) 60

KM, ppiase M Degradation of PPi 2.14 x 107 (Chao et al., 2006) 2.14 x 1074

Note: Strategy and sources for generating prior values of equilibrium constants are discussed in S| Section 6. Error on parameter priors represents a 95%
confidence interval using standard deviation estimated from the literature. Error on parameter posteriors represents the 95% pointwise confidence
intervals as approximated by drawing samples from the probability distribution defined by the parameter error covariance matrix. The unit U represents

enzyme activity units, discussed in Sl section 7.

Abbreviations: NTP, nucleoside triphosphate; PPi, pyrophosphate; RNAP, RNA polymerase.

(Figure 3a). Finally, Akama et al. (2012) conducted a set of
experiments solely to assess the solubility of magnesium in the
presence of NTP and PPi in the absence of transcription (Figure 3b).
This data set contains 50 different sets of initial NTP and PPi inputs.
The PPiase enzyme is not present in any of the calibration data used
in this work.

The model features 24 parameters, which are fixed based on
literature data, estimated from the calibration data using a Bayesian
prior from the literature, or estimated from the calibration data
without a prior (S| Section 5). The model demonstrates an ability to
describe the trends of the calibration data set. PPi, a byproduct of
transcription, initially grows rapidly as the transcription reaction

progresses, but reaches a peak in concentration after which the PPi

concentration decays rapidly due to competing Mg,PPi solid
formation (Figure 2a). Mg,PPi solid formation is prevented in cases
of high NTP and low Mg concentration (Figure 2b,c). In cases of solid
formation, the reaction halts before reaching full conversion of NTPs
(Figure 2d-f). At low NTP concentrations, increasing NTP concentra-
tion increases initial transcription rates. However, at higher NTP
concentrations, this effect reverses as the addition of NTP decreases
free Mg concentrations (Figure 3a). When small amounts of PPi (less
than one equivalent of Mg) are added to aqueous Mg in the absence
of the transcription reaction, Mg,PPi solid formation decreases the
concentration of Mg in solution after 24 h (Figure 3b). However,
greater PPi input up to two equivalents of Mg decreases the amount
of solid precipitate formed as the system is pushed toward the
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FIGURE 2 Model fitting results compared with fitting data set of dynamic concentration trajectories. Temporal trajectories of PPi (a-c) and
RNA (d-f) concentration as a function of changing T7 RNA polymerase (a, d), NTP (b, €), and Mg (c, f) input concentrations. Purple dashed lines
represent maximum possible mRNA yield based on stoicheometry (not shown in plot E as changing NTP input results in a range of maximum
yields). Shaded areas about each model prediction are the 95% prediction interval (Sl Section 4). NTP, nucleoside triphosphate; PPi,

pyrophosphate; RNAP, RNA polymerase.

soluble MgPPi complex. The magnitude of precipitation is decreased
upon the addition of NTP.

4.2 | Predicting effect of PPiase on the IVT system

The above calibration data are for experiments that did not include
PPiase. In addition to these data, Akama et al. (2012) generated a
small data set describing the effect of PPiase on reaction yields,
which is used for model validation in this work (Figure 4). Akama and
coworkers did not report the quantity of PPiase added but showed
that when PPiase was used, the concentration of PPi was
indistinguishable from zero over the course of the reaction.

Even though a new species is added to the reaction that is not
present in the calibration data set, it is possible to use these data to
validate the model as parameters describing the kinetics of PPiase

activity are considered to be fixed from the literature (Table 1), and
because the excess use of PPiase in this context renders the exact
kinetics parameters of PPiase unimportant. PPiase addition was set to
an excess value of 1 UpL™! in the model to predict these results. Our
model predictions for the effect of PPiase on the IVT reaction are

within the experimental error bars (Figure 4).

4.3 | Predicting effect of sequence length

Rosa et al. (2022) collected trajectories of IVT yields for a set of three
DNA constructs varying in length between 1195 and 5299
nucleotides (Figure 5), with excess (4 UmL™) PPi in the reaction.
Our model is able to predict the dependency of the transcription rate
on sequence length. This data set was not used in fitting the model
parameters.
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FIGURE 3 Model fitting results compared with a fitting data set of initial reaction rates and Mg,PPi solubility. Initial transcription rates as a
function of NTP and Mg input concentrations represented by RNA yields after 5 min of reaction (a). Magnesium (initially 4 mM) remaining in
solution after 24 h as a function of input PPi and NTP input concentrations in the absence of the transcription reaction (b). Shaded areas about
each model prediction are the 95% prediction interval (Sl Section 4). NTP, nucleoside triphosphate; PPi, pyrophosphate.
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FIGURE 4 Model validation: effect of pyrophosphatase (PPiase).
Model predictions are compared with the experimental results of
Akama et al. (2012), showing the yields of otherwise identical
reaction conditions with and without PPiase. Shaded areas about the
model predictions are 95% prediction interval (Sl Section 4). The error
bar on each experimental data point is the 95% confidence interval
based on the t-distribution of points taken in triplicate. PPi,
pyrophosphate.

5 | DISCUSSION

The primary result of this work is that adding a nucleation-growth
model for MgyPPi crystallization, as well as a quantitative term
describing the first-order agglomeration of DNA and Mg,PPi nuclei, is
a sufficient addition to past models to describe trends in experi-
mental data. Our modeling of the additional phenomena is consistent
with the qualitatively understood physics of the IVT system. This
mechanism can additionally predict the effect of adding the PPiase
enzyme on IVT yields, and is the first mechanistic model to do so.
Validating this model on recent data demonstrates an ability to

20

15
=
3
©
= © eGFP (1195 nt)
o 10 @ RBD-eGFP (1864 nt)
= O CAS9-eGFP (5299 nt)
<
P /_
o

5

0 1 1

00 02 04 06 08 1.0
Time (h)

FIGURE 5 Representing various combinations of the extended
green fluorescent protien (eGFP), SARS-CoV-2 spike protein receptor
binding domain (RBD), and CAS9 Model validation: IVT yields of
multiple DNA sequences of varying lengths (Rosa et al., 2022).
Shaded areas about the model predictions are 95% prediction
intervals (S| Section 4). The error bars on the data points are 95%
confidence intervals based on the standard deviation estimated from
the entire data set of Rosa et al. (2022). IVT, in vitro transcription.
DNA sequences used in Rosa et al. are combinations of the extended
green fluorescent protien (eGFP), SARS-CoV-2 spike protein receptor
binding domain (RBD), and CAS9 genes.

predict IVT rates across a range of input conditions and sequence
lengths.

This work identifies Mg,PPi solid formation as an important
failure mode that is highly nonlinear, and the value of our model is its
ability to predict these nonlinear effects (Figure 2). As such, our
model is a suitable foundation for the development of model-based
optimal design and control strategies. In addition, the incorporation
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of sequence length into model predictions is a first step for the
development of models that are easily adaptable to arbitrary RNA

sequences.

5.1 | Mg,PPi solid formation is a crucial element
for describing IVT

Past experimental studies have shown that DNA agglomerates
with MgyPPi nuclei during IVT, removing DNA from solution
(Wang et al., 2019). The inclusion in the model of terms describing
this sequestration of DNA (22) is able to describe trends in the
calibration data, especially the early halting of reactions that do
not go to full conversion (Figure 2). When paired with ion
equilibrium laws describing the known thermodynamics of the
system, this model is able to describe the conditions at which solid
formation, and therefore reaction halting, occurs. At high NTP
concentrations, NTP competes with PPi for the Mg ion, which
leads to decreased Mg,PPi solution concentrations and decreased
solid formation (Figure 3b). This in turn prevents early halting of
the reaction (Figure 2b,e). By the same mechanism, solid
formation and reaction halting are prevented at low Mg
concentrations (Figure 2c,f). The model also has the ability to
describe the competition between the irreversible kinetic pro-
cesses of transcription and DNA sequestration. Increased T7
RNAP concentration increases the initial rate of reaction
(Figure 2d); while this causes solid formation to initiate earlier
(Figure 2a), it ultimately leads to higher yields.

This model clears up some misconceptions and misprescriptions
in the academic literature. Past studies in the mechanistic modeling of
IVT have noted that the onset of crystallization is associated with a
decrease or complete stoppage in transcription rates (Akama
et al.,, 2012; Kern & Davis, 1997), but have attributed this stoppage
to the onset of Mg,PPi crystallization causing a decrease in
magnesium concentration in the solution. Our analysis shows that
this pathway cannot describe trends in data on its own (S| Section 9).
Our model uses an entirely different explanatory pathway to describe
this phenomenon.

While this development may seem like an academic distinc-
tion, the true cause of early halting is highly relevant for IVT
process development and control. The general message from past
work that has been transmitted to practitioners is that because
Mg,PPi solid formation decreases the solution concentration of
Mg, reactions should be designed with a high concentration of Mg
to preempt this effect. The literature contains many reports in the
last 3years of academic researchers justifying IVT reaction
schemes and explaining results based on this idea (Pregeljc
et al., 2023; Rosa et al.,, 2022; Samnuan et al., 2022). While the
higher-order effects of magnesium on the IVT system remain
poorly understood, one conclusion from this work is that the
decrease in free Mg concentration due to Mg,PPi solid formation
cannot solely describe the early stopping of IVT as measured by
Akama et al. (2012).

BIOTECHNOLOGY| 9
e WiLEy—2
5.1.1 | Model describes mechanism of action of
PPiase

The PPiase enzyme, which degrades PPi, is commonly added to IVT
reaction schemes on a heuristic basis. The data set used to fit our
model (Figure 2) did not include the use of the PPiase enzyme. Data
from Akama et al. (2012) describing the effect of adding PPiase on
IVT yields was used for model validation (Figure 4). When PPiase was
added to the reaction, PPi was degraded to phosphate, preventing
solid formation and sequestration of DNA as well as competitive
inhibition of the transcription process. The quantitative predictions of
the model that PPiase extends the length of the reaction without
changing initial rates are consistent with the observed data (Figure 4).

As described in Section 4.2, the addition of PPiase to an IVT
reaction system can lead to increases in reaction yield, depending on
system inputs. However, despite the widespread adoption of PPiase
based on heuristic observations, researchers provide conflicting
explanations for the importance of both Mg,PPi crystallization and
PPiase to the IVT system, and many “rational” attempts at IVT
optimization start by removing PPiase (Kanwal et al., 2018; Samnuan
et al., 2022). We hypothesize that a key reason for disagreement in
the literature is due to the input dependence of the crystallization
process. Mg, PPi is a key yield-limiting process, but only in a select set
of regimes. Experiments performed in regimes in which crystallization
does not occur will report yield to be insensitive to PPiase input. The
model developed in this work represents a first step toward a unified
understanding of the behavior of regimes sensitive and insensitive to

PPiase.

5.2 | Mechanistic model predicts effect of
sequence length on transcription rates

In addition to the small Akama data set describing the effect of
PPiase (Figure 4), our model was validated on data from Rosa et al.
(2022), which modulated sequence length as an independent
variable. This data set is outside of the input and output range of
the calibration data set used in this work (Table 2). Considering that it
is heuristically understood amongst practitioners that the parameters
of the IVT reaction are sequence dependent as well as the
uncertainty associated with these data, we do not argue that our
model is correct by virtue of correctly predicting the reaction rates of
these experiments. These results should primarily be viewed as an
evaluation of the model's ability to predict the general trend of the
effect of sequence length on transcription rates.

These predictions may seem trivial, in the sense that they predict
that sequence length has roughly no effect on the mass-based
transcription rate of the IVT system. However, most previous models
of IVT rely on the assumption of initiation-limitation and would
predict that the initial rates of the three curves in Figure 5 should be
identical (Akama et al., 2012; van de Berg et al., 2021; Young
et al,, 1997). The only past work on developing expressions for the
transcription rate that attempts to model the effect of sequence
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TABLE 2 Ranges of inputs and outputs in data explored in this work.
T7 DNA
Author RNAP (nM) (nM) NTP (mM) Mg (mM)
Akama et al. (2012) 50-100 7.4 3.2-12.8 8-20
Rosa et al. (2022) 124 90 31 50

PPiase Sequence RNA RNA
(UmL™) length (nt) output (LM) output (gL™?)
0 868 2-3.5 0.65-1.3

4 1195-5299 5-20 8-14

Note: The Akama data set was used for model fitting (Figure 2), with the exception of PPiase addition data that was used for model validation (Figure 4).

The Rosa data (Figure 5) are used for model validation.

length was carried out using a relative paucity of data and concluded
that the IVT reaction is primarily initiation-limited (Arnold et al., 2001).
As such, the formulation presented in this work and demonstrated in
Figure 5 is a break with past modeling conventions and a framework

for the future development of IVT models.

5.3 | Limitations and directions for model
improvement

The mechanism in our model that is most poorly understood in the
literature is the physics by which Mg,PPi solid formation inhibits the
forward progress of the reaction. The hypothesis presented in this
work—that Mg,PPi nuclei agglomerate with DNA and decrease
solution DNA concentration—is the best available explanatory
mechanism based on findings of past qualitative work (Kim
et al, 2019) and the consistency of quantitative predictions with
data. However, the mechanistic understanding does not currently
exist to rule out interactions of Mg,PPi nuclei and other biomole-
cules, such as T7 RNAP, as an alternative cause. In addition, the two-
step hypothesis presented in this work—that crystals nucleate and
subsequently agglomerate with DNA—is currently indistinguishable
from a mechanism by which crystals directly nucleate on DNA. In
addition, a more developed understanding of how solution conditions
affect the inhibition process is needed to accurately extend these
results to different regimes. In the Akama data set, increasing
magnesium concentrations at already high Mg concentrations (from 8
to 20 mM) has a nonnegligible effect on final yields without affecting
the initial rate (Figure 2c). The model does not have the ability to
describe this phenomenon, which is possibly due to Mg modulating
the rate of sequestration. While this behavior is a limited component
of the calibration data used in this work, capturing that effect would
be needed for describing regimes of high Mg concentration that
experience Mg,PPi solid formation.

RNAP and DNA templates are two of the most costly
components required for the IVT reaction, and understanding the
highly nonlinear interactions of these components is essential for the
development of a generalizable model. For example, the elongation
of RNAP particles, approximated as a linear process in this work, is
known to feature pauses (Janissen et al., 2022). In addition, exclusion
between RNAP particles can decrease transcription rates due to
crowding and is commonly described using totally asymmetric simple
exclusion (TASEP) models (Wang et al., 2014). The effect of

transcriptional pausing can amplify the effects of particle exclusion.
Limitations due to polymerase exclusion should have an effect on the
regime of high RNAP and low DNA concentrations.

6 | CONCLUSION

Process development of the IVT reaction continues to rely on the
limited capabilities of heuristics-based design-of-experiments and
data-driven modeling methods. Mechanistic models for IVT stand to
provide rational and interpretable predictions of RNA yields outside
of previously tested design spaces. In this work, we synthesized the
first mechanistic model to feature an interpretable description of IVT
alongside magnesium pyrophosphate crystallization, DNA-Mg,PPi
agglomeration, and PPiase enzyme activity. This model successfully
describes trends observed in IVT experimental data, many of which
lead to critically low RNA vyields for previously unexplained reasons.
Given that the IVT reaction is a foundational component for the
manufacturing of a diverse and growing set of modern therapeutics,
this model has the potential to provide insights for a variety of

biomanufacturing systems.
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