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The uncertainty in crystallization kinetics is of major concern in manufacturing processes, which can result in deteriora-
tion of most model-based control strategies. In this study, uncertainties in crystallization kinetic parameters were char-
acterized by Bayesian probability distributions. An integrated B2B-NMPC control strategy was proposed to first update
the kinetic parameters from batch to batch using a multiway partial least-squares (MPLS) model, which described the
variances of kinetic parameters from that of process variables and batch-end product qualities. The process model with
updated kinetic parameters was then incorporated into an NMPC design, the extended prediction self-adaptive control
(EPSAC), for online control of the final product qualities. Promising performance of the proposed integrated strategy
was demonstrated in a simulated semibatch pH-shift reactive crystallization process to handle major crystallization
kinetic uncertainties of L-glutamic acid, wherein smoother and faster convergences than the conventional B2B control
were observed when process dynamics were shifted among three scenarios of kinetic uncertainties. © 2017 American

Institute of Chemical Engineers AIChE J, 63: 5007-5018, 2017
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Introduction

In industrial manufacturing practice, batch process is
repeatedly proceeded with routine recipes to produce various
customized products, for example, batch/semibatch crystalli-
zation is repeated with a cooling or antisolvent addition trajec-
tory to separate and purify pharmaceutical and fine chemical
ingredients. The repetitive nature in turn helps to boost the
learning-type control strategies, such as iterative learning con-
trol (ILC) and batch-to-batch (B2B) or run-to-run (R2R) con-
trols." Batch-to-batch control uses information obtained from
previous batches to optimize operation for the next batch with
an aim to improve the tracking of final product qualities,
which can also address the problems of process uncertainties
or unmeasured disturbances in batch processes.” The latter is
of great significance when common uncertainties in crystalli-
zation kinetics due to mixing conditions, impurities, fouling,
and so forth often downgrade the performances of most solely
model-based control strategies.

Batch-to-batch control, which was first proposed in the
beginning of 1990s,>* has been studied extensively in the past
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decades (see Refs. 5, 6 and the references cited therein). For
example, Clarke-Pringle and MacGregor (1998) introduced
batch-to-batch adjustments to optimize polymer molecular-
weight distributions.” Doyle et al. (2003) developed a batch-
to-batch control based on hybrid model to realize particle-size
distribution control.®> Zhang (2008) reported a batch-to-batch
optimal control of a batch polymerization process based on
stacked neural network models.” However, B2B control strate-
gies often suffer from its open-loop nature, as the correction is
not made until the next batch. Conversely, with the ability of
online control strategies, such as model predictive control
(MPC) to respond to disturbances occurring during the batch,
and the batch-to-batch control to correct bias left uncorrected,
integration of both strategies becomes interesting to research-
ers.'!! Recent implementations of the integrated batch-to-
batch and online control for product quality improvement of
batch crystallizers were reported in Refs. 12 and 13. For exam-
ple, an integrated B2B-NMPC design in the form of a hybrid
model was recently developed for a batch polymorphic crys-
tallization process.'* The hybrid model, consisting of a nomi-
nal first-principles model and a series of correction factors
based on batch-to-batch updated partial least square (PLS)
models, was used to predict the process variables and final
product qualities. The major benefit of such hybrid model was
its ability to harness the extrapolative prediction capability of
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the first-principles model while the PLS models provided a
means for simple model updating.

Encouraged by the previous works and the benefits of inte-
grated B2B-NMPC control strategy, a new integrated B2B-
NMPC control strategy is proposed in this study. Note that
previous efforts tend to concentrate on the update of model
prediction in the form of a hybrid process model. For example,
a bias term or a correction factor for final product quality is
measured after the finish of a batch or calculated from a histor-
ical operating database, respectively, and is added to the
model prediction of that quality variable to be used in the
online control of the next batch.”'* Addition of these acces-
sional terms assumes that same deviations will persist during
the next batch. Though simple and efficient in some batch pro-
cesses, it may not work properly for a nonlinear or complex
batch process, particularly when online control is combined
with a B2B control scheme as they work at a relatively differ-
ent time scale.

To the contrary, the batch-to-batch update of the process
model in our proposal of B2B-NMPC framework considered a
more direct manner. Hereby, we first assumed that major pro-
cess dynamics can be described by a first-principle process
model and any uncertainties in the process system dynamics
were reflected as the uncertainties in the corresponding kinetic
parameters, viz., the model structure is correct and the process
kinetic parameters are observable.'*! Therefore, it is of prac-
tical importance for model-based control strategies to detect
the change of system dynamics due to process uncertainties
and re-estimate the model parameters. Specifically, the recent
works by Kwon et al. (2015) and Mockus et al. (2015) also
added to the importance of detecting the kinetic shift or varia-
tions in batch operations.'®!” Other than perform the routine
model parameter estimation which is really time consuming, a
multiway partial least-squares (MPLS) model utilizing meas-
urements of the previous batch, for example, initial conditions,
process variable trajectories, and final product qualities, was
adopted to re-estimate the kinetic parameters.'® The MPLS is
a typical multivariate statistical process control (MSPC) tool
and has been commonly used to monitor the batch process
with a special predictive capability for final product qualities.
Instead of predicting the final product qualities, herein it is
assumed that the variance in the process kinetic parameters
can be explained and predicted together by the variance of the
process operating conditions during the batch and the final
product qualities at the batch end. In such, the proposed frame-
work performs the online control during the batch with batch-
to-batch updated model kinetic parameters to achieve consis-
tent final product qualities and to handle constraints and dis-
turbances/uncertainties within the batch.'*"3

This article is organized as follows. First, the MPLS method
is briefly described in the next section. Then a conventional
B2B control strategy based on the MPLS model is introduced,
which is followed by the proposed integrated B2B-NMPC
control strategy. Applications of the B2B and integrated B2B-
NMPC to a semibatch pH-shift reactive crystallization of
L-glutamic acid are illustrated in the Results and Discussion
section. Lastly, concluding remarks based on their control per-
formances are given.

Multiway Partial Least Squares

A historical database with nominal process data is usually
needed when implementing multivariate statistical process
control (MSPC) methods, like principal component analysis
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Figure 1. Batch-wise unfolding of batch process data.

(PCA) or partial least squares (PLS), for process monitoring
purpose.19 The variation within the database serves as a refer-
ence distribution, against which the performance of indepen-
dent new batches can then be compared and thus monitored.*
In batch manufacturing, process data are composed of three
dimensional array X (I X J X K), where [ is the number of
batches, J is the number of variables, and K is the number of
sampling times in a given batch. To apply the MSPC methods,
X should be rearranged into a 2-D dataset X (/ X JK) as shown
in Figure 1 by the widely applied batch-wise unfolding
method, which captures the correlation information of the var-
iables both within-time and time to time.>' Besides, measure-
ments of batch-end product quality variables, for example, Y
(I X M), where M is the number of final quality variables,
could also be considered in the database.

The multiway partial least squares (MPLS) is equivalent to
performing ordinary PLS on the unfolded 2-D measurement
data X and product quality data Y. For example, MPLS
decompose the X and Y matrices into a summation of np
scores vectors (t,) and loading vectors (p, and q,.), plus resid-
ual matrices E and F

r=np

X=> t,p/+E (1
r=1

r=np

Y=) tq/+F 2

r=1

This decomposition summarizes and compresses the data of X
and Y into low dimensional spaces that describe the operation
of the process.18 In addition, it also provides predictions of the
final product qualities, as by the predictive capability of the
PLS model. Applications and extensions of this method have
also been reported extensively. For example, to address the
uneven batch time problem, handling methods were reported,
such as using rescaled batch time as a maturity index, tracking
the batch progress with an indicator variable, or using local
batch time as the response vector.?’

With the recent development of in situ real-time measure-
ments for crystallization processes,zz’23 such as attenuated total
reflection Fourier transform infrared spectroscopy (ATR-FTIR)
for solute concentration, focused beam reflectance measurement
(FBRM) and particle vision measurement (PVM) for crystal
size and shape, and Raman spectroscopy for polymorphic
purity, more and more process data are now becoming readily
available for developing multivariate statistical tools, such as
MPLS, to efficiently monitor, diagnose, and control of crystalli-
zation processes, which are critically important for various rea-
sons such as safety, consistency, and quality improvement.**

Batch-to-Batch Control Strategy

A conventional batch-to-batch control strategy based on the
interaction of a first-principles process model and a multiway
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partial least squares model is introduced in this section, the
benefit of which lies in its ability to exploit the extrapolative
power of a first-principles model to optimize the process oper-
ation while the inevitable model-plant mismatch resulting
from process uncertainties is addressed through a batch-to-
batch model refinery by MPLS model.

From the perspective of Baye’s theory, unknown model
parameter shows a probability distribution (Pr) of certain
shape,®” which is distinct from the classical notion of treating
a model parameter as a fixed but unknown quantity. Rigorous
procedures, such as design of experiments (DoE), are gener-
ally required to describe these probability distributions.?®
Although effective they are not efficient to be used online, par-
ticularly, for large and complex systems due to the heavy cost
in experimental and computational efforts.”” To this end, an
alternative simple but efficient method based on a multivariate
statistical tool is proposed for the B2B scheme in this study.

Frist, when provided with enough system dynamic informa-
tion from proper experiments, for example, in sifu online mea-
surement profiles and batch-end product qualities of batch
crystallization processes, probability distributions of unknown
kinetic parameters in the process model could be estimated by
Bayesian inference.”” The main idea of Bayesian inference
lies in Bayes’ rule

Pr(x|0)Pr (0)

Pr (0]x)= Pr (x)

3

where 0 is a vector of unknown parameters and x is a vector of
the observations, such as measurements of state variables at dif-
ferent time points, to be used to infer 0. Pr (0) is the prior distri-
bution of 0; Pr(x|0) is referred as the sampling distribution for
fixed parameters 0; and Pr (0|x) is the Bayesian posterior distri-
bution of 0 provided the measurement of x; Pr (x) acts as a nor-
malizing constant to ensure that the Bayesian posterior
integrates to unity. One of the merits of Bayesian inference is
that it can update existing probability distribution with new
observation, that is, the existing posterior distribution Pr (0]x)
can act as the prior distribution of Pr(0) when new measure-
ment x arrives. In such way, when a batch is finished, theoreti-
cally it is possible to update the model parameters’ probability
distributions and use their mode values in the distributions as
new parameters. However, the Bayesian inference based on the
classical Markov Chain Monte Carlo (MCMC) simulation
would take too many samplings to reach a converged distribu-
tion,”’ making it impractical to be used with on-line control
strategies and swift batch-to-batch model update.

Hereinto, another way to conveniently deal with the process
model and its corresponding Bayesian parameter probability
distributions is to use the multivariate statistical tools, that is,
the MPLS. The MPLS model, which was previously used for
process monitoring and batch-end product quality prediction,
could now serve similar purpose in that it interprets, statisti-
cally, the relationship between process dynamics and its model
parameters’ probability distributions, viz., the MPLS uses the
initial conditions, measurement trajectories, and batch-end
product qualities to form an unfolded dataset X to predict the
model parameters ® which forms the vector Y.'®

The initial database for such MPLS model could be simply
generated by running the first-principles process model repeat-
edly with combinations of kinetic parameters sampled from
their probability distributions Pr (8|x) and with nominal oper-
ating conditions subject to normal disturbances. As this data-
base is generated offline, selections of measurement profiles
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Figure 2. The schemes of B2B and B2B-NMPC control
strategies based on a MPLS model and
Bayesian inference.

and product quality variables, as well as the size of the data-
base and number of principle components used in MPLS, can
be well trained to give predictions of model parameters with
good accuracy. Herein, the assumption is that the nominal var-
iations of kinetic parameters are within a modest range and
can be predicted using the linear MPLS model, otherwise
other nonlinear and complex empirical or data-based method
should be considered, for example, neural network model.

When it comes to the prediction of kinetic parameters after
each batch, similar procedures of MPLS as that used for pro-
cess monitoring are considered.'®?° For example, as illustrated
in Figure 2, when the batch process reaches its end point, the
measurement profiles are unfolded to form a 2-D array Xy,
the corresponding 0,,.,, will be calculated as follows

~1
trow= (WP ) WopXpen @
r=np
Gnew = Z tnew,rqz- (5)

r=1

Where W (KJ X np) is the weight matrix in the PLS algo-
rithm. Nevertheless, to avoid abrupt substantial changes in
model parameters, averages of parameter predictions obtained
from the previous batches are usually adopted as follows

1 I
O’ZE Z 0, (6)

where 6_,- is an average of parameter predictions for the jth
batch based on those from the previous m batches, which is
then incorporated into the first-principles process model
embedded in the B2B control strategy as also illustrated in
Figure 2. Furthermore, similar to other MPLS models for
batch process monitoring,>* the above model can also monitor
the changes of kinetic parameters 0 whether they are within
their nominal variations. If not, new historical process data
can be collected and inferred with Bayesian inference to
update the parameter probability distributions.
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In the conventional B2B control framework, the following
objective function to be minimized for the jth batch is
considered

Jpop = min (P—P,)" W, (P—P,)+ AU Wy AU+dU" W ydU
7

where

T
_[.r T T
U_{“j,()v“jp"'v“j./v—l}

T
_|r o T T T T
AU= [“j,l Wigs Win W55 Wiy uj,N*Z}

T
dU= [u:o_uffl,o?uzl_uffl,li s ujT‘Nfl_u/Tfl‘Nfl}

and P and P, are the predicted and desired final product quali-
ties, respectively, u; is the input vector (e.g., antisolvent addi-
tion flowrate or jacket cooling temperature in crystallization
process) at the kth sampling instant of jth batch, N is the total
number of samples in one batch, W), is the weight vector cor-
responding to the final product quality, Wy and W, are the
weight matrices to penalize excessive changes in the input var-
iables for within-batch and interbatch, respectively.

The above minimization problem is subject to the first-
principles process model updated with 0,.,, after each batch
and inequality constraints H(U) < 0 if any. Differential evolu-
tion (DE),"**2% or sequential quadratic programming (SQP)
technique can be implemented to solve the above minimiza-
tion problem.”” The resulting optimal input U obtained is then
implemented in an open-loop manner for the next batch.

Integrated B2B-NMPC Control Strategy

The main drawback of a conventional batch-to-batch con-
trol strategy results from its open-loop nature, where the cor-
rection is not made until the next batch. Therefore, the control
performance of the current batch depends only on the accuracy
of the process model, which is updated based on the informa-
tion of previous batch. Consequently, its control performance
may become sluggish or even diverging when the updated
model is still not accurate, which is very likely the case in the
first few batches when process dynamics shift.'> In light of
this, combinations of the best efforts of B2B and online con-
trol strategies receive great interest decade ago. In particular,
it is possible and beneficial to couple the nonlinear model pre-
dictive control (NMPC) technique with the B2B control strat-
egy to develop an integrated B2B-NMPC control strategy,
wherein both control strategies complement each other in an
interactively way such that the online control issue can be
tackled effectively by NMPC whose embedded nonlinear pro-
cess model is refined through the B2B control by re-estimating
model parameters from previous batches.'?

In the proposed integrated control strategy, the updating
policy of the first-principles model in B2B as shown in Figure
2 remains the same. Whereas, the objective function to be
minimized at every sampling time by NMPC is as follows

JB2B-NMPC= mlijn (P—Pd)TW,, (P—P,)

T . ®)
+AU WyyAU+dU' W ;ydU

where
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T
— | T T
U= [uj-,k’ W1 ’"i,Nfl}

T
[, _.T T _.T T _.T
AU= [“,gk W Wi~ Wi Wy “,gN—z}

T
— T _.T T - . T _ T
dU= |:uj,k ui717k7uj‘k+l uj*l,k+l’ 7uj1N71 uj*l,N*li|

and obviously, the online control of NMPC is implemented
in the way of shrinking horizon, by which control actions
from current kth to the end of (N-1)th sampling time are
optimized. The above minimization problem of (8) is also
subject to process model and inequality constraints H(U)
< 0if any.

The NMPC strategy considered here is based on the Just-in-
Time Learning-extended prediction self-adaptive control
(JITL-EPSAC) technique’“’33 to achieve the desired final
product qualities in batch process. The JITL-EPSAC has
improved the original EPSAC method reported in Ref. 13 in
the aspect of weight tuning and final product qualities control.
In this NMPC design framework, the model prediction of
future trajectory consists of a base and an optimized term. The
base term is computed from a nominal first-principles process
model using the current values of input variables obtained
from the predefined base input trajectory and the correspond-
ing output variables, while the optimized term is computed
from a set of local state-space models identified by JITL
method along its base trajectory.>*>> The key idea of EPSAC
is to predict nonlinear process variables by iterative optimiza-
tion with respect to future trajectories so that they converge to
the same nonlinear optimal solution. For example, in the JITL-
EPSAC, representations of P, AU, and dU in the minimization
problem of (8) can be decomposed as follows

P:Ph +G,,15U (9)
AU=AU,+CoéU (10)
dU=U}+0U—Upey (11)

where P, is the product quality calculated using the first-
principles model with updated model parameters and with pre-

T
determined future inputs U,= {u,fk,u,f‘k FETRERIN 174 N—l} . Gy
is the state-space model coefficients matrix corresponding to

the product quality and is obtained from JITL method, 6U=

T . . ,
[oul,dul | --- ouk_,]" is the incremental control actions,
T
Uprev=[uf_17,\,,uf_1’k+1,---,ujT_l,N_l} is the input sequence
implemented in the previous batch, AU, =
T
{Augk, Auf, iy, Au;’,\,,l} is the change in the predeter-

mined future inputs, and matrix C is as shown below.

I 0 0 0
-1 1 0 0

C= . (12)
0 0 - -1 1

Therefore, the minimization problem (8) becomes

J]gzngMpC: m%n (SUTF(SU'f‘(I)T(SU (13)
0
where
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I'= GIY;IWPGN + CTWAMC +W4U

O=2 |:(Pb —Pd)TWPGpl-FAUZWAMC‘F (Uh _Uprev)TWdUi| !

Analogously, the inequality constraints H(U) can be decom-
posed into

H,+G,0U <0 (14)

where Gy, is the state-space model coefficient matrix corre-
sponding to the constraints and Hj, is the constraints calculated
using the updated first-principles model with predetermined
future inputs Up. In this study, the soft-constraints approach13
is utilized and the minimization problem is modified as
follows

min Jg, B2B—NMPC (15)
oUe
subject to
H},+Gh15U <g (16)
€>0 (17)

where J, Bog—Nmpc =JB2B-NMPC +&'W,e+elw,, £ is a vector
of slack variables, W, is a diagonal matrix of positive weight,
and w, is a vector of positive elements.

Hence, the solution to the modified minimization problem is
shown as follows
JY BaB-NmpC= min JUTTOU+D U +e" W e+e'w,

sc,

r o oU ou
=min [§UT £T] +[@o" w!]
oUe 0 W, € ’ €
= mriln T AT+ 11 (18)
subject to
H, Gy -1
m<o (19)
0 0 I

where IT=[5UT " ]T, A=
0 W,

In summary, the procedure of implementing the integrated
B2B-NMPC control strategy for each batch j and sampling
time & is as follows

Step 1 Prepare the database matrices X and Y for the
MPLS model as follows:
e if j=1, the database matrices X and Y for the MPLS
model can be obtained by offline simulation runs. For exam-
ple, input sequences around the optimal input trajectory for
the nominal first-principles model and a combination of
model parameters sampled from their probability distribu-
tions, are implemented to the process model and the result-
ing state variables profiles are used to construct the database.

r o .
,and t=[ @ w! ]

Table 1. Variations in Model Kinetic Parameters for B2B
Control Study: Case 1 is the Nominal Model; Case 2 has
Fast Nucleation and Slow Growth Rate Parameters; Case 3
has Slow Nucleation and Fast Growth Rate Parameters

Cases ko1 kg1 Eq¢ kg p1

1 1.00x 10" 9.84X1077 0.888 1.07x1077
2 1.20x 10" 7.87x1077 1.066 0.86x1077
3 0.80x10'" 1.18X107° 0.710 1.28%1077
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Table 2. Tuning Parameters for Two Controllers

B2B Control B2B-NMPC Control

W,=1 W,=
(Wag),,=1x1073* (Wap);;=1x107°

(Way),,=1x107* (Wao), =1x107*

i

w.=[1,1,---1]"

“The diagonal elements of matrices, where i =1, ..., N.

e if j> 1, update the database matrices by including the pre-
vious simulation runs computed by NMPC during the online
control into the database. In this study, the moving window
approach is adopted, viz., the dataset from the earliest runs
is removed every time a new dataset is included.

e Step 2 Update the process model: collect the initial condi-
tions, measurement trajectories, and batch-end product quali-
ties from previous batch to form vector Xp, and predict the
model parameters 0., through the updated MPLS model, as
in Figure 2. And average the prediction of model parameters
by Eq. 6.

e Step 3 Obtain U, by the following method:

e If k=0 and iter =1, U, is chosen from the nominal oper-
ating point which was used in the previous batches;

e If k>0 and iter =1, Uy, is set as the Ugpima Obtained in
the previous sampling instance;

e If jter > 1, the updated U, from the previous iteration is
used; where iter is the iteration count in the EPSAC
algorithm.

e Step 4 Obtain P, and H, by using U, as the input to the
updated first-principles process model. In this study, it is
assumed that the state variables are measured or observed.

e Step 5 Obtain the state space model coefficient matrices
G, and Gy, using JITL method.

e Step 6 Obtain IT"= [5U*T s*T]T from the solution to the
minimization problem (18) and (19), then update the element
of U, using

16 T T T T T T T

14} |

12 .

Flowrate, ml/min

1 L L

0 5 10 15 20 25 30 35 40
Time, min
Figure 3. Flowrate profiles for initial database genera-
tion of MPLS model (solid line: nominal opti-
mal flowrate trajectory; dash line: random
flowrate profiles around the nominal one).

0 L L L

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 6. Flowrate profiles of B2B control strategy from nominal process of Case 1 to abnormal Case 2.
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Wy o+ =Up +j+ OU; (20)
where j=0, ---, N—1

G
e Step 7 Calculate err= H {Gp }5U* . If err is greater than a
hl

specified tolerance, iter = iter + 1, and go back to Step 3. Oth-
erwise, set Ugpima=U, and implemented the first element of
Ugpiimar to the process.

e Step 8 If the end of the current batch is reached, repeat
from step 1 and go to the next batch.

Results and Discussion

To illustrate and compare the control performances of the
conventional B2B and integrated B2B-NMPC control strate-
gies, their applications to a semibatch pH-shift reactive crys-
tallization of L-glutamic acid were investigated. More details
of the reactive crystallization process can be found in Refs. 23
and 24 with some of the features briefly defined as follows.

Process and control specifications

A first-principles mathematical model consisting of popula-
tion balance models for both « and f polymorphs, as well as
their respective crystallization mechanisms and kinetics was
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developed from the reported experiments of Refs. 23 and 24.
This model was used in this study to simulate the semibatch
pH-shift reactive crystallization of L-glutamic acid, whose
model parameters were estimated using the Bayesian infer-
ence.'” The nominal operating procedures are summarized
here. The crystallizer is initially half-filled with 0.65 L mono-
sodium glutamate (MSG, 1.0 mol/L). Then sulfuric acid (SA,
1.0 mol/L) is continuously added to produce glutamic acid and
induce crystallization of « and/or § polymorphic form without
seeding. The additional flow rate of SA is constrained between
0 and 16 ml/min with a maximum crystallizer volume of
0.97 L. The default batch time and sampling interval are 40
and 1 min, respectively. A nominal flow rate profile for SA is
selected to produce an on-spec product with respect to poly-
morphic purity of a-form (P,), volume-based mean crystal
size (M), and product yield of crystals (Py), which are chosen
from a Pareto front of a multiobjectives optimization
problem.36

Three scenarios of the crystallization process uncertainties
are summarized in Table 1 with four crystallization kinetic
parameters of o and § polymorphs were taken into account for
demonstration purpose here, which affects their nucleation
and crystal growth rates. The other process parameters were
remained the same as the mode values in their probability dis-
tributions in the Table 2 of Ref. 19. Of the three scenarios, the
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Figure 7. Flowrate profiles of B2B-NMPC control strategy from nominal process of Case 1 to abnormal Case 2.

[Color figure can be viewed at wileyonlinelibrary.com]

Case 1 considers a nominal crystallization process, Case 2 has
fast nucleation and slow growth rate parameters, while Case 3
has slow nucleation and fast growth rate parameters. The pro-
cess was first started in Case 1 and then shifted to abnormal
Case 2 after the first batch and stayed at this scenario until the
30th batch. From batch 31 to batch 60, the process entered the

Case 3, after which it resumed to the nominal Case 1 from the
61th batch till the 90th batch.

The first batch was initialized with a nominal optimal
flowrate profile as shown in Figure 3, which was obtained
under a nominal process by JITL-EPSAC to achieve a desired
a-form polymorphic purity, P,, of 0.8255. This is because
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Figure 8. Polymorphic purity of B2B (top) and B2B-NMPC (bottom) control strategies for Case 1, Case 2, and Case
3 (dash line: final quality setpoint; solid line: final quality).
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polymorphic purity was found to be the most important prod-
uct quality and also determining the other two final qualities
of mean crystal size M and product yield Py.36 Furthermore,
an initial database for MPLS model was generated by intro-
ducing random disturbances of N (0, 0.5) to this nominal opti-
mal flowrate profile at each sampling instant, with some of
them depictured in Figure 3. Besides, resampling of the four
studied kinetic parameters from their probability distributions,
as shown in Figure 4, were also introduced during the offline
simulation runs for initial database generation. With the recent
development in process analytical techniques (PAT), more
abundant process data are now available, though correlated
to each other. Nevertheless, initial concentrations of monoso-
dium glutamate and sulfuric acid, complete state variable
trajectories of pH value, crystallizer volume, solute concentra-
tions by ATR-FTIR, mean crystal size by FBRM or PVM, the
zeroth and first moments of crystal size distribution by FBRM,
and polymorphic purity of a-form by Raman spectroscopy, as
well as the batch-end product yield, are all collected to con-
struct the unfolded dataset X for process monitoring. While
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the four kinetic parameters formed the dataset Y. Totally
200 batches of the simulation runs were used to construct
the MPLS model with the number of principle components
fine-tuned as seven by cross-validation. Incidentally, dur-
ing the online application, here we assumed that all these
state variables in X are either measured or observed by
state estimators, such as extended Kalman filter (EKF) or
unscented Kalman filter (UKF).>?*773% Additional unseen
30 batches were used for validation test as given in Figure
5, which shows the MPLS model is capable of inferring the
kinetic parameters from the provided system dynamic
information.

It should be pointed out that this initial database was used
for both B2B and B2B-NMPC control strategies and was then
updated by their control techniques individually during online
implementation for all the 90 batches, from which the merit of
the batch-to-batch control can be demonstrated by gradually
learning, from the previous batches, the system dynamic infor-
mation while the process suffered from shifting among scenar-
ios of abnormality.
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For the controller implementation, the minimization prob-
lem of (7) for conventional B2B was solved by the DE
method,”’29 while the integrated B2B-NMPC was transferred
to a soft-constrained problem of (8) and therefore a time-
saving quadratic programming method was conveniently
adopted.13’32 The tuning parameters for the studied two con-
trollers are listed in Table 2.

Results comparison and discussion

For the batch-end product quality control of o-form poly-
morphic purity, performances of the B2B and integrated B2B-
NMPC control strategies, when crystallization process under-
went from Case 1 to 2 during the first 30 batches, are illus-
trated in Figures 6 and 7 for additional flowrate profiles of
sulfuric acid, respectively. Figure 8 shows the final product
quality, while Figures 9 and 10 demonstrate the convergences
of the four kinetic parameters.

It is observed that the integrated B2B-NMPC shows
smoother and faster convergences in both flowrate profile and
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final product quality compared to the standard B2B control
strategy, even though not only the penalty weights for exces-
sive changes inter and within the batches are the same for both
control strategies, as shown in Table 2, but also the kinetic
parameters updated by MPLS model converged at nearly the
same rate, as can be seen from Figures 9 and 10. This well
explains the fact that the open-loop nature of B2B results into
the unsatisfied control performance when the model-plant mis-
match resulted from process uncertainties is large. Conversely,
the performance of the proposed JITL-EPSAC in Ref. 33 is
further enhanced since under large model-plant mismatch, the
JITL-EPSAC gradually improved the final polymorphic purity
with the embedded first-principles model refined by MPLS
model from batch to batch. Incidentally, the tuning parameter
of m=4 in Eq. 6 is used for both control strategies here to
adjust the convergence rate of kinetic parameters. In pharma-
ceutical industries, high economic penalties are suffered so
that if one batch fails and the next must be on target. Thus, it
is intended to reduce the convergence rate here, such that if

November 2017 Vol. 63, No. 11 AIChE Journal
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only a single batch fails due to large random disturbance
within the batch, then it will have limited effects on the model
updating and then on the following batches. The main focus of
the batch-to-batch control is to deal with the process uncer-
tainties that show a clear trend of process dynamic changes
among batches. Whereas the abrupt disturbances within a sin-
gle batch can be tackled by on-line control.*

The second simulation study considered the crystallization
kinetics shifted from Case 2 to 3 in the 31st batch and contin-
ued the Case 3 till the 60th batch. Interestingly, the standard
B2B slowly reached the final product quality set point, how-
ever, it then slightly diverged as shown in Figure 8. To the
contrary, the integrated B2B-NMPC more steadily reduced the
unexpected high polymorphic purity, for example, about 10
batches faster, to the set point to maintain a constancy of the
other two product quality, that is, mean crystal size and prod-
uct yield.** What’s more, the convergences of the four kinetic
parameters by MPLS model can also be found in Figures 9
and 10, respectively.

Lastly, the crystallization process returned to the nominal
Case 1 from abnormal Case 3 after the 61th batch. Consistent
better performance of the B2B-NMPC are also observed, for
example, about 15 batches faster, as given in Figures 9 and 10
for batches from 61 to 90. Worth to note is that the initial data-
base for MPLS model at Batch 1 was only generated around
the nominal optimal flowrate profile, but it can be renewed by
gradually incorporating the simulation runs computed by B2B
or the integrated B2B-NMPC control strategies. This really
shows the capability of the proposed Batch-to-Batch frame-
work to learn from previous batch information when it is sub-
ject to process uncertainties, provided that the variances in the
process kinetics are captured by the Bayesian probability dis-
tributions. Otherwise, when it is detected to be exciting the
nominal varying range (cases not considered here), that is, by
Hotelling’s T7 statistics or squared prediction error (SPE),? in
the MPLS model, a new parameter estimation step has to be
taken, as schemed in Figure 2.

Conclusions

A new integrated B2B-NMPC control strategy based on a
MPLS model and the JITL-EPSAC technique was proposed in
this study. The MPLS model is capable of inferring the model
kinetic parameters from the system dynamic information
obtained from previous batches, which updates the first-
principles model for the JITL-EPSAC. At the meantime, the
robustness of the JITL-EPSAC can help to improve the batch-
end product quality online even under large model-plant mis-
match. The proposed integrated B2B-NMPC was applied to a
semi-batch pH-shift reactive crystallization process and was
also compared to a conventional B2B control strategy. The
simulation results showed that the proposed integrated control
strategy performed a much smoother and faster convergence
to the final product quality set point under multiple shifts of
abnormal scenarios, showing its capability to maintain consis-
tent production of on-spec product in batch manufacturing
process, which has never been demonstrated in previous
works.
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