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a b s t r a c t 

With the development of technology in data collection and storage, new types of higher order tenso- 

rial information streams are available in chemical and biological manufacturing processes, which contain 

valuable information about the process condition and product quality. However, tensorial data have not 

been fully utilized yet and the application of tensorial data analytics to manufacturing processes has not 

been thoroughly investigated. In this article, different types of higher order data in manufacturing pro- 

cesses are described, and their potential usage is addressed. Then some perspectives are provided on the 

application of tensorial data analytics to manufacturing processes, with an emphasis on multilinear sub- 

space learning problems. In particular, the most representative multilinear subspace learning methods are 

reviewed. Looking into the future, the potential and research needs for tensorial data analytics are briefly 

discussed. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Process data analytics, which refer to the application of ma- 

hine learning techniques to manufacturing data, are becoming in- 

reasingly popular due to its capability of improving process pro- 

uctivity, reliability, and control. With the development in sensor 
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echnologies and wireless networks, an increase in the availability 

f various types of data and a decrease in costs for data collection 

nd storage further enable wide application of process data ana- 

ytics. Process data analytics have been applied in various chem- 

cal and biological manufacturing processes, from the level of in- 

ividual unit operations up to the level of the entire manufactur- 

ng systems. It can be used in a number of different ways by the 

anufacturers. For example, the process models can be used to 

ake predictions, such as the early identification of batches which 

ill eventually fail to meet specifications, or to modify operating 

rocedures for downstream processes to improve product quality 

 Chiang et al., 2017 ; Mitchell, 2014 ). Process data analytics can be

sed for control, that is, to compute adjustments to the critical 

rocess parameters to move the quality variables towards desir- 

ble values ( Moe et al., 2018 ), and can also be used for the real-

ime detection and diagnosis of anomalous behavior, which is re- 

erred to as process monitoring and statistical process control in the 

hemical engineering literature ( Chiang et al., 20 0 0 ; Ge et al., 2013 ;

in, 2012 ; Severson et al., 2016 ). 

Due to the high dimensionality of manufacturing data and 

he volume of measurements, linear subspace learning has been 

idely applied in the chemical and biotech industries for dimen- 

ionality reduction, pattern recognition, and data mining. For ex- 

mple, principal component analysis (PCA) ( Jackson, 1991 ) is an 

xplanatory tool to handle high-dimensional data by extracting the 

ajor source of variation from highly correlated measurements, 

nd is widely used for data visualization, information extraction, 

nd process monitoring ( MacGregor and Kourti, 1995 ; Wang et al., 

015 ). Popular supervised subspace learning methods for predic- 

ive modeling of high-dimensional data are principal component 

egression (PCR) and partial least squares (PLS) ( Geladi and Kowal- 

ki, 1986 ; MacGregor, 2004 ; Næs and Martens, 1988 ). PCR and 

LS construct regression models using the derived latent vari- 

bles, which not only improve the modeling accuracy for high- 

imensional noisy measurements, but the derived latent variables 

an also be useful for process understanding. 

The widely applied process analytical methods are designed to 

e applied to a data matrix (aka two-way array aka second-order 

ensor), such as a collection of vector measurements or a single 

ray-scale picture. With the increasing usage of multisensory tech- 

ology and data storage infrastructure, new types of higher order 

ultidimensional data arrays (aka tensors) arise in a variety of 

hemical and biological manufacturing processes. Instead of vec- 

or measurements, a single measurement can consist of second- 

 third-, or higher order tensors. One example is the coupling of 

n-line automated sampling systems with liquid chromatography- 

ass spectroscopy (LC-MS) to simultaneously measure transient 

ariations in large numbers of distinct small molecules and pro- 

eins during pharmaceutical manufacturing ( Gülbakan et al., 2015 ; 

ogers et al., 2015 ; Jiang et al., 2017 ). As a standard practice in

he industry, the higher order data are often pre-processed and re- 

ormatted as large matrices and then the classical two-way anal- 

sis methods are applied to the pre-processed data ( Bro, 1999 ; 

effy et al., 2018 ). However, this approach is not optimal, and im- 

ortant structural information within multiway data cannot be dis- 

overed. To this end, tensorial data analytics methods have been 

eveloped to directly address higher order data for process moni- 

oring, design, and optimization, which has not gained enough at- 

ention in the chemical engineering field and is what motivates 

his review article. 

This article does not review the entire tensorial data analytics 

eld or provide detailed discussions on all of the various tenso- 

ial data analytics techniques. The focus of this article is to pro- 

ide some perspectives on the potential usage of tensorial data 

n chemical and biological systems and address the value of the 

irect application of tensorial data analytics. This review of ten- 
2 
orial data analytics emphasizes multilinear subspace learning, as 

his approach is the largest class of methods and is the direct ex- 

ension of the matrix methods that are widely applied to chemical 

nd biological systems. The article then discusses some future re- 

earch needs. 

. New information streams: tensorial data 

Modern datasets collected in the chemical and biological man- 

facturing processes not only have scalars (e.g., temperature mea- 

urement) and 1-way arrays (e.g., multiple sensors or a single 

pectrum) as a single measurement, but also 2-way arrays (e.g., 

easurements from batch processes or gray-scale images), 3-way 

rrays (e.g., color or hyperspectral images), and even higher or- 

er arrays (e.g., color videos) . Here the order of the data refers 

o a single sample. When analyzing multiple measurements at the 

ame time, which is usually the case for process data analytics, the 

rder of the dataset is increased by one representing the sample 

umber. This section describes some examples of various higher 

rder datasets in manufacturing processes and their usage for pro- 

ess design and optimization. 

.1. Examples of two-way arrays 

A typical example of a single two-way array measurement is a 

atrix of measurements collected from a single batch process run. 

ach batch sample is a series of measurements collected over a 

eriod of time on a separate, identifiable item or parcel of ma- 

erial. Such batch processes are common in fine chemicals and 

bio)pharmaceutical manufacturing, for both the active pharmaceu- 

ical ingredient and the drug product. Each batch measurement 

s taken over a specific run with the first order representing the 

ample number and the second order representing different sensor 

easurements. Batch data can be used to design a model for early 

rediction of failure of a batch or use the data to build a model us-

ng critical process parameters to predict critical quality attributes. 

or example, a real-time monitoring system is developed to accu- 

ately identify the end-point of the batch in order to reduce the 

verall cycle time of the process as described in ( Marjanovic et al., 

006 ). 

Another type of two-way measurement is the gray-scale im- 

ge. The images captured during the process can be used as an 

fficient non-invasive low-cost analysis for process monitoring and 

roduct quality control. An example is the gray-scale stereomicro- 

cope images of product crystals from a slug-flow crystallizer (see 

ig. 1 ). Each image is a 2-way matrix with each order represent- 

ng space along horizontal and vertical axes and each pixel being a 

ray-scale value between 0 and 255. The product crystal size and 

hape statistics can be directly obtained by analyzing the images. 

esides, the performance of the designed slug-flow crystallizer, a 

elatively low degree of aggregation with high slug-to-slug vari- 

bility as shown in Fig. 1 , can be obtained from the figure to infer

ppropriate adjustment of operating condition. 

The last example is the measurement collected by hyphen- 

ted techniques ( Patel et al., 2010 ). One typical hyphenated tech- 

ique is LC-MS. The measured data has two orders with the first 

rder representing retention time from LC and the second or- 

er representing mass-to-charge ratio from MS, as illustrated in 

ig. 2 . The traditionally used high-performance liquid chromatog- 

aphy (HPLC) method lacks specificity for some molecular mix- 

ures. LC-MS combines the separation capabilities of HPLC and 

he mass analysis capabilities of mass spectrometry to provide 

ery sensitive and specific detection of a wide range of molecules. 

ecreased price and easier implementation has enabled the ap- 

lication of LC-MS in manufacturing processes. The coupling of 

n-line automated sampling systems with LC-MS simultaneously 
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Fig. 1. gray-scale stereomicroscope images of product crystals with nucleation induced by coaxial mixing in different experimental runs, adapted from ( Jiang et al., 2014 ). 

Fig. 2. Illustration of an LC-MS measurement, adapted from ( Rapin et al., 2016 ). 
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easures transient variations in large numbers of distinct small 

olecules and proteins during biomanufacturing, which is useful 

or product assessment and process monitoring. Additional types 

f analytical chemistry techniques that provide matrix measure- 

ents include liquid chromatography with photodiode array detec- 

ion (LC-DAD), gas chromatography-mass spectrometry (GC–MS), 

uorescence, and MS/MS ( Seger et al., 2005 ; Hübschmann, 2015 ; 

iang et al., 2017 ; Ou-Yang et al., 2018 ). 
3 
.2. Examples of three-way arrays 

The simplest type of a three-way array measurement is cou- 

ling two-way arrays with time. For example, a gray-scale video 

onsists of gray-scale images over time, where the first two orders 

re for the x- and y-axis of images and the third order is for time.

imilarly, when taking LC-MS over a period of time, the extra order 

s the time point. 

Another example of a three-way measurement is spectral imag- 

ng. An ordinary camera captures color images with the order of 

he data increases by one as compared to the gray-scale image. 

he additional order being the color axis for red, green, and blue 

RGB). The data are stored as a number between 0 and 255 for 

ed, green, and blue at each pixel of a two-way array. Color images 

ave been used in industry to assess process performance. For ex- 

mple, the RGB image captured during the flotation process is uti- 

ized for monitoring and control of the process by analyzing the 

ubble size distribution, the presence and amount of clear win- 

ows, or black holes in the froth ( Liu et al., 2005 ). 

Besides traditional RGB imaging, spectral imaging encompasses 

 wide variety of techniques, such as infrared, visible spectrum, 

nd x-rays. Hyperspectral imaging is a subcategory of spectral 

maging, which collects a continuous spectral band at every pixel 

n an image plane. One application of hyperspectral imaging is 

he near-infrared chemical imaging (NIR-CI) for process monitor- 

ng of a freeze-drying process ( Brouckaert et al., 2018 ). Freeze dry- 

ng is a method for preserving the chemical nature of substances 

ith sensitive thermal reactivity, which is useful for biological drug 
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Fig. 3. NIR-CI of a freeze-drying sample. The color scale shows the highest pixels 

in red and lowest in blue, adapted from ( Brouckaert et al., 2018 ). 

s

a

g

i

t

s

e

e

b

m

t

a

d

m

a

i  

p

t

t

o

s

a

d

a

t

d

M

c

a

t

a

2  

2

i

m

l

n

p

2

c

w

i

e

l

b

s

r

c

c

2

l

t

b

m

A

h

l

t

s

q

a

t

h

m

a

r

T

t

t

S

a

t

c

t

a

c

3

t

h

e

d

t

f

d

a

p

p

d

d

f

torage. Freeze-drying processes have had very limited in-process 

nalytical sensor technology, and a potential solution is to inte- 

rate imaging-based process analytical technology devices to mon- 

tor operations and ensure final product quality. The NIR-CI cap- 

ured during the freeze-drying process (see Fig. 3 ) has a three-way 

tructure, where the x and y axes are the height and full circumfer- 

nce of the freeze-dried cake, and a NIR spectrum is obtained for 

ach pixel in the image as shown in the z-axis. The NIR-CI com- 

ines the chemical selectivity of spectroscopy with spatial infor- 

ation, which can be used for water content determination as in 

raditional NIR spectroscopy. NIR-CI also opens up possibilities for 

ssessing the homogeneity throughout the product via individual 

etector elements in a CI array. Another example is the IR ther- 

ography of a freeze-drying process ( Emteborg et al., 2014 ), where 

n IR camera is shown to be a highly versatile tool for online mon- 

toring (see Fig. 4 ). An IR camera can take images every 120 s and

rovides contact-free measurements of the temperature distribu- 

ion of the freeze-drying shelf, which offers superior spatial and 

hermal resolution in contrast to traditional probes. The application 

f IR camera for process monitoring should allow better design of 

helves and trays in the freeze dryer, and could potentially provide 

 better understanding of how different materials are dried during 

ifferent steps. 

Samples collected from several hyphenated chromatographic 

nd multidimensional chromate-graphy techniques also have a 

hird-order structure. For example, the measurement from two- 

imensional gas chromatography-mass spectrometry (GC × GC–

S) is a third-order tensor. The GC × GC–MS uses two GC 

olumns for separation where the second column is operated with 

 different stationary phase. The third order represents the mass- 

o-charge ratio from MS. GC × GC–MS has been applied to the 

nalytical characterization of complex metabolomes ( Koek et al., 

011 ; Winnike et al., 2015 ) and organic compounds ( Ou-Yang et al.,

018 ), which gave more accurate chromatographic peak capac- 

ty, selectivity, and lower detection limit for the analysis of small 

olecules than GC–MS. GC × GC–MS is also a promising tool for 

arge-scale broad-spectrum biomarker discovery, which requires 
4 
ew bioinformatics tools to process the data in an efficient and 

roper way ( Shi et al., 2014 ). 

.3. Examples of four-way arrays 

A typical example of a four-way array in the manufacturing pro- 

ess is the video. The first three orders represent a single image 

hile the last order represents the time. One application example 

s the inline imaging system used to characterize the shape prop- 

rties of crystals in liquid slugs that flow down a tubular crystal- 

izer (see Fig. 5 ). The low-cost imaging system is composed of a 

asic stereomicroscope and a video camera. Many such images as 

hown in Fig. 5 are collected each second in real-time video. This 

eal-time video can be used to guide the experimental design, in- 

luding the improvement of the slug aspect ratio, visualization of 

rystal shapes, and online monitoring of the extent of aggregation. 

.4. Remarks 

Sections 2.1 –2.3 describe several examples of tensorial data col- 

ected from the manufacturing process that could be used for bet- 

er system design and operations. Many types of tensorial data will 

ecome increasingly common with the continued advances being 

ade in sensor technology. 

A particular fast-growing market is for hyperspectral imaging. 

ccording to a research report by Grand View Research (2019) , the 

yperspectral imaging system market size is estimated at $8.2 bil- 

ion in 2017 and is expected to grow at 10.06% each year. Due to 

he increasing investment and technology development in hyper- 

pectral imaging, now hyperspectral imaging systems can be ac- 

uired at a much lower price and are easier to use. In the past, 

 hyperspectral imaging system was expensive at about $50,0 0 0 

o $10 0,0 0 0 for a single device, and required complex specialized 

ardware to operate. Hyperspectral imaging systems have become 

ore affordable – with prices available from $10 0 0 to $20,0 0 0 –

nd are easier to operate. In many cases, sample preparation is not 

equired, and the optical systems are rugged and readily available. 

here are also compact designs for the hyperspectral imaging sys- 

em, and results from specialized cell phones have been reported 

hat take hyperspectral images directly (e.g., Kim et al., 2019 ; 

alazar-Vazquez and Mendez-Vazquez, 2020 ). Those advances en- 

ble non-destructive acquisition of both qualitative and quantita- 

ive information from the manufacturing processes. 

In summary, advances in technology are making available low- 

ost and user-friendly sensors for generating tensorial data. The 

ensorial information streams are expected to become widely used 

nd open up new possibilities for more accurate and efficient pro- 

ess monitoring and design. 

. Tensorial data analytics 

While tensorial data bring in more meaningful information for 

he establishment of high-fidelity models, the question becomes 

ow to fully utilize such data. Due to the complexity of mod- 

rn instruments, the volume of measurements taken, the high- 

imensional nature, and the strong correlations of the manufac- 

uring data, dimensionality reduction techniques are widely used 

or various analytical problems. For the traditional matrix-based 

ata analytics, linear subspace learning methods have been widely 

pplied in industry for both supervised and unsupervised learning 

roblems. For unsupervised learning, such as data exploration and 

rocess monitoring, the typical methodologies include PCA and in- 

ependent component analysis ( Hyvärinen and Oja, 20 0 0 ). For pre- 

ictive modeling, PCR and PLS are powerful methods that account 

or multicollinearity of the predictors. For classification, such as 
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Fig. 4. IR images of the freeze-drying shelf with different running condition, adapted from ( Emteborg et al., 2014 ). 

Fig. 5. An in-line stereomicroscope image from the real-time video of a crystalliza- 

tion process, adapted from ( Jiang et al., 2014 ). 
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istinguishing bad batch production from good batches, Fisher dis- 

riminant analysis ( Welling, 2009 ), aka linear discriminant analy- 

is (LDA), is a widely applied linear dimensionality reduction tech- 

ique for improving classification accuracy. 

Traditionally, three approaches are widely used to pre-process 

ensorial data in order to use matrix-based methods for data an- 

lytics. The first approach is to apply a matrix-based method to 

ach two-way dataset. For example, as shown in Fig. 6 a, PCA is ap-

lied to each gray-scale image. This method cannot be applied to 

igher order tensors, and does not produce a single model for all 

f the measurements. The second approach is to unfold the ten- 

or over specific orders to form a large matrix and then apply a 

atrix-based method. For example, as shown in Fig. 6 b, the im- 

ges are stacked to form a matrix, and a linear subspace learn- 

ng method is applied to the new matrix. This approach has been 

sed extensively in the chemical engineering community and is re- 

erred to as the multiway method . Multiway methods are the appli- 

ation of classic linear subspace learning methods to the unfolded 
5 
ata, which have been applied to a variety of processes ( Hu and 

uan, 2008 ; J et al., 2018; Kourti, 2003 ; Lakshminarayanan et al., 

996 ; Lee et al., 2004 ; Marjanovic et al., 2006 ; Yu and Qin, 2009 ).

he third approach, as shown in Fig. 6 c, is to average the data over

ertain orders. For example, the average intensity is calculated over 

ll images and PCA is performed on the averaged image. 

The traditional methods are suboptimal as reformatting the 

ata, and using only matrix-based methods potentially loses im- 

ortant structural information in the tensors. Besides, those meth- 

ds do not provide the most compact way of data representation 

nd often lead to overfitting. Finally, the constructed model is also 

ifficult to interpret and might not improve process understanding. 

he ideal model should be constructed by unbiased data-driven 

pproaches that directly extract information from the data tensor. 

ensorial data analytics techniques are designed to handle tensors 

irectly from its natural tensorial representation, and many differ- 

nt tensorial data analytics methods have been developed. In the 

est of this section, the discussion will focus on multilinear sub- 

pace learning, which is a generalization of the linear subspace 

earning methods widely used in chemical engineering to tensors. 

he rest of this section discusses the extension of PCA to multilin- 

ar decomposition, as well as other methodologies, with the pur- 

ose of providing an introduction to the topic and the potential 

f these methods. Readers interested in a more exhaustive discus- 

ion of the methodologies including deep dives into the underlying 

athematics are directed to existing reviews written for computer 

cience and data science audiences ( Cichocki, 2014 ; Cong et al., 

015 ; Lu et al., 2011 ; Papalexakis et al., 2016 ; Rabanser et al., 2017 ;

idiropoulos et al., 2017 ). 

.1. From linear subspace learning to multilinear subspace learning 

The generalization of linear subspace learning to multilinear 

ubspace learning can be cast into a general framework, and the 

eneralization of PCA to multilinear tensor decomposition is shown 

s an example here. 
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Fig. 6. Three traditional approaches to preprocess tensorial data to enable application of a matrix-based data analytics method (example images are from Borden et al., 

2003 ). 

Fig. 7. Illustration of PCA based matrix decomposition. 
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Recall that PCA is a linear dimensionality reduction technique 

hat is optimal in terms of maximizing the retained variability in 

he lower-dimensional representation. PCA calculates a set of or- 

hogonal vectors, also called loading vectors, in an order of de- 

reasing variance explained in the corresponding loading direc- 

ions. Given a training set of N observations, m variables, and the 

orresponding training matrix X ∈ R N × m , the loading vectors are 

alculated by solving the optimization 

ax 
v � =0 

v � X 

� X v 
v � v 

(1) 

here v ∈ R m is the loading vector. The problem (1) can be solved 

ia the singular value decomposition (SVD), 

1 √ 

N − 1 

X = U �V 

� (2) 

here U ∈ R N × N and V ∈ R m × m are unitary matrices, V contains 

he loading vectors, and � ∈ R N × m contains the singular values 

f decreasing magnitude in its main diagonal and 0 in off-diagonal 

lements. Besides the formulation (1), PCA can also be viewed as 

inimizing the reconstruction error of the projection. 

 = T P � + E (3) 

In order to use PCA for dimensionality reduction, the loading 

ectors corresponding to the largest a singular values are typi- 

ally retained and stored in the loading matrix P ∈ R m × a , and the

riginal data matrix can be decomposed as a summation of the 

rincipal subspace and the residual subspace as shown in Eq. (3) , 

here the principal subspace is the multiplication of the score ma- 

rix T ∈ R N × a and the loading matrix P . Another representation of 

CA-based dimensionality reduction is that the original data ma- 

rix is approximated by a sum of rank-one products using the score 

nd loading vectors. These two representations are equivalent and 

re illustrated in Fig. 7 . 

Based on multilinear algebra, any method from linear subspace 

an be extended to multilinear subspace within the general formu- 

ation with two modifications: the multilinear projection method 

mployed and the objective criterion to optimize. The first step 

s to replace the linear projection with a multilinear projection. 
6 
here are different multilinear projection methods based on dif- 

erent forms of input and output, such as vector-to-vector pro- 

ection, tensor-to-tensor projection, and tensor-to-vector projection 

 Lu et al., 2011 ). The second step is to reformulate the objective 

unction for tensors. For example, in order to expand PCA into mul- 

ilinear subspace learning, the projection of a single vector mea- 

urement can be replaced by n -mode matrix product of a tensor 

 = P � x ⇒ � = A ×1 U 

1 ×2 · · · ×k U 

k (4) 

here x is the measurement vector and t is the score vector 

n PCA. A ∈ R m 1 × ··· ×m k is a k th -order tensor measurement, � ∈ 

 

a 1 × ··· ×a k is a k th -order core tensor with reduced dimension in 

ach order, and U 

i ∈ R m i ×a i is the projection matrix for the i th - 

rder. Then the objective function is re-defined as minimizing the 

econstruction error of the tensors, 

in 

1 

N 

N ∑ 

i =1 

‖ x i − ˆ x i ‖ ⇒ min 

1 

N 

N ∑ 

i =1 

‖ A i − ˆ A i ‖ F (5) 

here the distance between two tensors is measured by the Frobe- 

ius norm. Depending on the exact projection method, the objec- 

ive function, and the constraints, there are different ways to ex- 

end PCA into multilinear subspace learning. The two most widely 

sed multilinear dimension reduction methods are discussed in 

ections 3.2 and 3.3 , which can be viewed as a generalization of 

CA into multilinear PCA. 

.2. CANDECOMP/PARAFAC (CP) decomposition 

The first method is the CP decomposition ( Carroll and 

hang, 1970 ; Harshman, 1970 ; Kiers, 20 0 0 ). Similar to PCA which

an be expressed as a summation of rank-1 matrices, the CP 

ecomposition approximates a tensor by a sum of component 

ank-one tensors. For example, given a third-order tensor A ∈ 

 

m 1 ×m 2 ×m 3 , the CP decomposition factorizes A as 

 = 

∑ 

k 

a k � b k � c k + E = 

∑ 

k 

λk u 

1 
k � u 

2 
k � u 

3 
k + E (6) 

here � is the Kronecker product of vectors; a k , b k , c k for k =
 , . . . , K are vectors of dimension m 1 , m 2 , m 3 respectively; and u 

1 
k 
,
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Fig. 8. CP decomposition of a three-way array. 

Fig. 9. General framework of the ALS algorithm to compute a CP decomposition. 

u

s

w  

b  

b

t

A

t

p

m
λ

h

t

s

(

d

o

c

t

s

d

c

U

p

f

s

n

k

w

u

B

t

t

d

Fig. 10. Tucker decomposition of a three-way array. 
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2 
k 
, u 

3 
k 

are the normalized vectors of length one with weights ab- 

orbed into λk . The three-way decomposition is illustrated in Fig. 8 . 

here A , B , C are the matrices with the columns being vectors a k ,

 k , c k , respectively. Note that the columns in matrices A , B , C could

e linearly dependent, and is therefore different from PCA. 

The CP decomposition can be applied to a general d th -order 

ensor A ∈ R m 1 × ··· ×m d , which is expressed as 

 = 

∑ 

k 

λk u 

1 
k � u 

2 
k � · · · � u 

d 
k + E (7) 

The objective function of the CP decomposition is to minimize 

he reconstruction error between the original tensor and the ap- 

roximated tensor: 

in 

k , u 
i 
k 

∥∥∥∥∥A −
K ∑ 

k =1 

λk u 

1 
k � u 

2 
k � · · · � u 

d 
k 

∥∥∥∥∥
F 

(8) 

Unlike PCA, the minimization (8) is not convex and does not 

ave a closed-form solution, which requires a numerical optimiza- 

ion procedure. Given a fixed number of components K , one ba- 

ic algorithm for the CP decomposition is alternating least squares 

ALS) proposed in ( Carroll and Chang, 1970 ; Harshman, 1970 ). The 

etailed procedure is omitted here and the reader can refer to the 

riginal paper. The key idea behind ALS is to fix all factor matri- 

es except for one in order to optimize the non-fixed matrix and 

hen repeat this step for each matrix until the stopping criterion is 

atisfied, as illustrated in Fig. 9 . 

An interesting property of the CP decomposition of higher or- 

er tensors is that the rank decompositions are often unique under 

ertain mild conditions, whereas matrix decompositions are not. 

niqueness means that the CP decomposition provides the only 

ossible combination of rank-one tensors that sums to A , except 

or the elementary indeterminacies of scaling and permutation. As 

tated in ( Kruskal, 1989 , 1977 ), a sufficient condition for unique- 

ess of the CP decomposition of a third-order tensor is 

 A + k B + k C ≥ 2 K + 2 (9) 

here k A denotes the k -rank of matrix A . More discussion on the 

niqueness of the CP decomposition can be referred to ( Kolda and 

ader, 2009 ). The uniqueness property is very useful in applica- 

ions, which enables the exact determination of the underlying fac- 

ors of what is being measured and is easy for interpretation, as 

iscussed in ( Bro, 1999 ; Williams et al., 2018 ). 
7 
.3. Tucker decomposition 

The second method is the Tucker decomposition ( Tucker, 1966 , 

963 ), which decomposes a tensor into a core tensor multiplied by 

 matrix along each mode, which can be viewed as a higher order 

CA. For example, in the three-way case A ∈ R m 1 ×m 2 ×m 3 

ˆ 
 = T ×1 U 

1 ×2 U 

2 ×3 U 

3 (10) 

here × i is the i th mode matrix product of a tensor, U 

i ∈ R m i ×t i 

re the factor matrices (which are usually orthogonal). The tensor 

 ∈ R t 1 ×t 2 ×t 3 is the core tensor and its entries show the level of 

nteraction between different components. The Tucker decomposi- 

ion of a three-way array is illustrated in Fig. 10 . 

Similar to the CP decomposition, the objective function for the 

ucker decomposition of a d -way array is to minimize the recon- 

truction error 

in 

 , U i 

∥∥A − T ×1 U 

1 ×2 U 

2 · · · ×d U 

d 
∥∥

F 
(11) 

A numerical optimization procedure is also required for solving 

q. (11) . There are many algorithms for solving the Tucker decom- 

osition, and one widely applied algorithm is called higher order 

VD (HOSVD) ( De Lathauwer et al., 20 0 0 ), which imposes orthog- 

nality constraints on the factor matrices and the core tensor is 

ot super-diagonal. The key idea of HOSVD is to find the com- 

onents that best capture the variation in each mode while fix- 

ng the other modes at that point. This directly corresponds to the 

asic PCA concept. The Tucker decomposition might be useful for 

ensor compression and exploratory analysis. A detailed discussion 

n different algorithms for the Tucker decomposition is available 

 Kolda and Bader, 2009 ). Unlike the CP decomposition, Tucker de- 

ompositions are generally not unique. 

.4. Available libraries 

While the solution of tensorial data decomposition discussed in 

ections 3.2 and 3.3 requires a numerical optimization procedure, 

any libraries in different programming languages are available to 

rovide data structures for tensors and solutions of basic tensorial 

ata analytics tools such as CP and Tucker decompositions. Here 

nly a few popular tensor libraries are listed, which provide opti- 

ized approaches of storing tensors and algorithms for decompos- 

ng tensors. Libraries for Python, Matlab, and R are 

• Tensor Toolbox for MATLAB [B. Bader et al., www.tensortoolbox. 

org ] 
• N-way Toolbox for MATLAB [R. Bro and C. Anderson, www. 

models.life.ku.dk/nwaytoolbox ] 
• Tensorlab for MATLAB [N. Vervliet et al., www.tensorlab.net/ ] 
• Tensorly for Python [J. Kossaifi et al., tensorly.org/stable/home. 

html] 
• TensorD for Python [M. Abadi et al., github.com/Large-Scale- 

Tensor-Decomposition/tensorD] 
• Scikit-tensor for Python [M. Nickel, github.com/mnick/scikit- 

tensor] 
• rTensor for R [J. Li et al., cran.r-project.org/web/packages/ 
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.5. Other methods for tensorial analysis 

Sections 3.2 and 3.3 discussed the basic generalizations of PCA 

o tensor decomposition. Besides CP and Tucker decompositions, 

ther tensorial PCA methods are available including ( Lu et al., 

011 ) 

➢ Tensor-to-Tensor Projection 

• Two-Dimensional PCA (2DPCA) ( Yang et al., 2004 ) 
• Generalized low rank approximation of matrices (GLRAM) 

( Ye, 2005 ) 
• Multilinear PCA (MPCA) ( Lu et al., 2008a ) 
• Non-negative MPCA (NMPCA) ( Panagakis et al., 2010 ) 
• Bayesian Tensor Analysis (BTA) ( Tao et al., 2008b ) 
• Incremental Tensor Analysis (ITA) ( Sun et al., 2008 ) 
• Dynamic Tensor Analysis (DTA) ( Sun et al., 2006b ) 
• Streaming Tensor Analysis (STA) ( Papadimitriou et al., 2005 ) 
• Window-based Tensor Analysis (WTA) ( Sun et al., 2006a ) 

➢ Tensor-to-Vector Projection 

• Tensor Rank-One Decomposition (TROD) ( Shashua and 

Levin, 2001 ) 
• Uncorrelated MPCA (UMPCA) ( Lu et al., 2009 ) 

These multilinear PCA methods can be viewed as different 

orms of tensorial generalization of PCA based on different formu- 

ations of the objective functions, constraints, and projection meth- 

ds. For example, MPCA can be viewed as a special case of the 

ucker decomposition, which decomposes the original tensor A ∈ 

 

m 1 × ··· ×m d on d − 1 modes and leaves one mode uncompressed 

which typically refers to the sample number). Another example is 

LRAM, which only works for a series of matrices. GLRAM can be 

iewed as a special case of MPCA for three-way arrays. 

Besides the unsupervised multilinear subspace learning meth- 

ds, there are multiple methods for supervised multilinear sub- 

pace learning. Tensorial LDA methods for supervised classification 

nclude ( Lu et al., 2011 ) 

➢ Tensor-to-Tensor Projection 

• 2D LDA (2DLDA) ( Ye et al., 2005 ) 
• Discriminant Analysis with Tensor Representation (DATER) 

( Yan et al., 2005 ) 
• General Tensor Discriminant Analysis ( Tao et al., 2007 ) 

➢ Tensor-to-Vector Projection 

• Tensor Rank-One Discriminant Analysis ( Tao et al., 2008a ) 
• Uncorrelated Multilinear Discriminant Analysis (UMLDA) 

( Lu et al., 2008b ) 

For predictive modeling, there are multiple extensions of 

he commonly used PCR, PLS, and canonical correlation analy- 

is (CCA) ( Hardoon et al., 2004 ) methods, including multilinear 

CR ( Su et al., 2012 ), N-way PLS ( Bro, 1996 ), higher order PLS

 Zhao et al., 2013 ), and tensor CCA ( Kim et al., 2007 ; Luo et al.,

015b ). 

There are also different tensorial extensions to other popu- 

ar machine learning techniques, such as support tensor machine 

 Guo et al., 2014 ; Hao et al., 2013 ; Xiang et al., 2018 ) as a gener-

lization of support vector machine. In addition, various types of 

eural networks can handle tensorial data directly, including con- 

olutional neural networks ( Gu et al., 2018 ), recurrent neural net- 

orks ( Rumelhart et al., 1986 ), and tensor net ( Oseledets, 2011 ). 

.6. Applications 

The previous sections discussed various types of tensorial data 

nalytics methods. There is no single versatile method suitable for 

ll types of applications because each method has advantages de- 

ending on how well its assumptions align with the particular 

ataset. Besides, the application subjects of different methods are 
8 
ot the same. Since tensorial data analytics has not been widely 

pplied in the chemical and biological manufacturing industries, 

hich method is best for a specific application and how to best 

se the methods remains an open problem. 

With regard to method selection, two points should be care- 

ully assessed: (1) what kind of problem are you trying to solve, 

nd (2) what are the key properties and constraints of each data 

nalytics method. Then, based on the requirements of that specific 

pplication, the appropriate method should be selected or devel- 

ped to construct the model. Here a simple illustrative example is 

resented for method selection between the CP and Tucker decom- 

ositions for spectral analysis. 

First of all, as discussed in Section 3.2 , the CP decomposition 

an be viewed as a summation of rank-1 components with no core 

ensor, which can also be viewed as a super-diagonal core ten- 

or. The columns in the factor matrix are linearly dependent. Be- 

ides, under mild conditions, the decomposition is unique. How- 

ver, in order to enhance the accuracy, prior knowledge of data 

ay be incorporated into constraints to relax the uniqueness con- 

ition, such as orthogonality and non-negativity. The CP decom- 

osition is useful for exploratory data analytics and is capable of 

evealing the natural source of the data. For the Tucker decom- 

osition, the method allows for variable transformation in each 

ode with orthonormal mode-wise factor matrices and a dense 

ore tensor. The decomposition is non-unique in general. Unlike 

he CP decomposition, which is typically used for factorizing data 

nto interpretable components, the Tucker decomposition is often 

sed for data compression or to find the subspaces spanned by the 

bers. Adding other constraints to the Tucker decomposition, such 

s non-negativity and sparsity, may help to find a unique solution 

n the Tucker representation. Therefore, the CP decomposition is 

ften selected for spectral analysis. For example, in Bro (1997) , the 

P decomposition is used for fluorescence measurements to as- 

ess the composition of the samples. The samples contain differ- 

nt amounts of three types of amino acids in buffered water, and 

 model with three CP components is developed with each com- 

onent representing a rank-one contribution of one specific amino 

cid. 

Tensor decomposition have been applied to spectral data 

 Baum et al., 2013 ; Gu et al., 2016 , 2014 ; Henrion, 1994 ;

urphy et al., 2014 ; Nørgaard, 1995 ), biological signals ( Cong et al.,

015 ; Mahyari et al., 2017 ; Williams et al., 2018 ), batch process

ata ( Guo et al., 2010 ; Hu and Yuan, 2009 ; 20, Luo et al., 2013,

015, 2016 ; Muñoz et al., 2018 ), and imaging ( Dey et al., 2019 ;

apastergiou et al., 2018 ; Schultz et al., 2001 ). While some chem- 

cal engineers have recently been learning about tensorial data 

nalytics, the inspection of the literature indicates that the vast 

ajority have not, as suboptimal methods continue to dominate 

ith no acknowledgement or reference to tensorial methods. Given 

he sparsity of published applications, there remains little known 

bout which methods to apply to which chemical and biologi- 

al manufacturing processes, and more detailed application stud- 

es need to be clearly documented in the open literature before 

ensorial data analytics becomes widely accepted and consistently 

pplied in the community. 

. Conclusions and future directions 

With the development of sensor technologies and wireless net- 

orks, different types of sensor data are available in chemical and 

iological manufacturing processes. It is crucial to effectively uti- 

ize those new information streams to further improve the process 

fficiency, product quality, and process safety. One feature of the 

ew information streams from the manufacturing processes is the 

resence of higher order tensors. Instead of scalar or vector mea- 

urements, a single measurement could be a second-, third-, or 
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igher order tensors. However, data analytics methods for handling 

igher order tensorial manufacturing data have not been fully in- 

estigated. The vast majority of industrial applications still use tra- 

itional statistical learning methods on the unfolded data, which 

re suboptimal. This article provides an introduction to the oppor- 

unities of tensorial data analytics and how these methods work, 

ith the main emphasis on the largest class of methods, multi- 

inear tensor decomposition, which are generalizations of the PCA, 

LS, FDA, and related methods commonly applied to matrix data 

y chemical engineers. Other extensions to tensorial data analyt- 

cs and their applications in chemical and biological manufactur- 

ng processes are also briefly discussed. The goal of this article is 

o show that tensorial data analytics, as compared with the tradi- 

ional two-way learning methods, opens up new possibilities for 

xtracting useful process information and is a promising tool for 

rocess understanding and optimization. 

To enable wide and consistent application of tensorial data an- 

lytics to industrial processes, several challenging issues remain to 

e addressed in more depth: 

• Since tensorial data analytics has not been widely applied in 

chemical and biological manufacturing industries, systematic 

and in-depth comparison of various tensorial methods for man- 

ufacturing application purposes is needed, to provide guidance 

on which method should be used in any specific situation and 

how to use the method effectively. Systematic comparison stud- 

ies should provide rigorous performance analysis and compar- 

isons, and serve as benchmarks for methods development. 
• Data pre-processing procedure for tensorial manufacturing data 

is crucial for consistent application and achieving high model 

accuracy. For example, tensor models are sensitive to data scale 

and it is important to scale the tensor data to ensure the same 

scale for all columns ( Louwerse et al., 1999 ). Another example 

is pre-processing for higher order spectra for peak alignment 

and background drift removal. 
• New algorithms are needed to further extend the flexibility and 

accuracy of tensor models. Efficient iterative algorithms, op- 

timal initialization, and methods for automated estimation of 

critical hyperparameters (e.g., the number of components in 

tensor decomposition) are needed as the complexity of mod- 

els increases. Besides, it is important to tailor the model struc- 

ture to particular data properties of given applications, such as 

adding additional sparsity and non-negativity constraints to the 

model. 
• Advanced generalization of process data analytics to tenso- 

rial analysis is important for complex systems, such as non- 

linear, dynamic, and time-varying processes. The model com- 

plexity of those advanced methods will be high. Therefore, it 

is also important to develop approaches to efficiently assess 

tensorial data properties to inform whether advanced meth- 

ods are needed for a given application. Another needed exten- 

sion is probabilistic tensorial modeling (e.g., Bayesian tensor re- 

gression ( Guhaniyogi et al., 2017 )) to incorporate process un- 

certainties and intrinsic variability for risk assessments, which 

are critical in industries such as pharmaceutical manufactur- 

ing. Prior knowledge such as complex variable interactions and 

noise distributions can also be incorporated with probabilistic 

modeling to improve model accuracy and efficiency ( Yılmaz and 

Cemgil, 2010 ). Finally, tensorial data analytics should be inte- 

grated with process knowledge, such as first-principles models 

and the process structure. 

Chemical and biological process systems are in an interesting 

lace right now, in that advances in sensor technologies for higher 

rder tensorial datasets have created opportunities for the gener- 

tion of vastly larger datasets at much lower costs. Many of these 

maging-based sensors are non-contact, which is also highly de- 
9 
irable in applications to many (perhaps most) chemical and bi- 

logical processes. Chemical processes often involve highly corro- 

ive environments that damage or foul sensors, and it is desir- 

ble in biopharmaceutical and biomedical device manufac-turing 

o reduce the number of potential contact points that could cause 

roduct contamination. Such sensors also enable the measurement 

f spatial concentration field which characterize spatial hetero- 

eneities in chemical and biological processes, from fast combus- 

ion processes to food products to freeze-dried biopharmaceutical 

nd cellular products. 

The technometricians and computer scientists have also been 

eveloping numerous algorithms and freely available software for 

ensorial data analytics, so those advances can be leveraged by 

he chemical engineering community to push forward their ap- 

lications. The combination of new information streams of higher 

otential value and lower costs with higher order learning meth- 

ds has significant potential for better and smarter next-generation 

anufacturing. 
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