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a b s t r a c t 

An algorithm is proposed that combines nonlinear feature generation and sparse regression to learn in- 

terpretable nonlinear models from noisy and limited data. This Algebraic Learning Via Elastic Net for 

Static and Dynamic Nonlinear Model Identification algorithm employs automated feature generation in- 

cluding families of ubiquitous chemical and biological nonlinear transformations. ALVEN balances model 

complexity and prediction accuracy through a two-step feature selection procedure, to produce an inter- 

pretable model useful for process applications while avoiding overfitting. The generalization to nonlinear 

dynamical systems, Dynamic ALVEN, is then described. The model accuracy of the algorithms is compared 

to well-established machine learning methods for a 3D printer and a chemical reactor. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Data-driven modeling has long been applied by process con- 

rol engineers to improve product quality ( Chiang et al., 2001; 

on Stosch et al., 2014 ), from sensors to individual unit opera- 

ions to entire manufacturing plants. At the unit operation scale, 

ata-driven models are heavily used in controller design, that is, 

o compute adjustments in manipulated variables to move oper- 

tional or quality variables towards desirable values. At the plant 

cale, data-driven models have long been used to predict the fi- 

al product quality variables from system inputs. Many textbooks 

nd review articles have been written on data-driven modeling, 

ften by the term system identification in the control literature 

 Zhu et al., 1994; Ljung, 2017 ). Data-driven methods include ARX, 

RMAX, state-space identification, and recursive neural networks, 

nd are available in many software packages including in Matlab 

 Ljung, 1995 ). Most systems identification methods produce dense 

odels , that is, models in which the predictions are functions of 

ll of the inputs, even if the effects of some of the inputs on the

utputs are zero. 

Despite significant increases in data from modern instrumen- 

ation and major advances in machine learning and data science, 

here has been limited diffusion of these advanced data analytics 

ethods to real manufacturing processes. One major reason is that 
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eal manufacturing processes often involve nonlinear dynamic in- 

eractions between the manipulated variables and the output vari- 

bles but do not have the quality and quantity of data needed 

y many of the data analytics methods. Also, many manufacturing 

rocesses have fewer data samples than predictor variables. The 

ata quality can be low because of sensor bias, drift, and noise. 

he dynamics and/or multivariable interactions are usually not suf- 

ciently excited during the experiments to construct reliable mod- 

ls using many of the modern machine learning techniques such as 

eep neural networks. Lastly, interpretability of the model is often 

esired. Interpretability sheds light on the relationship between 

he system inputs and outputs, making it easier to understand pro- 

esses and use of the model for other application purposes. An in- 

erpretable model that can be constructed using a limited number 

f samples and easily generalized to nonlinear dynamical systems 

as been missing. Such models are only a function of a subset of 

he potential inputs, and the data science literature refers to such 

odels as being sparse or parsimonious . 

To cope with the aforementioned challenges, Algebraic Learn- 

ng Via Elastic Net (ALVEN), is proposed for the identification of 

 nonlinear interpretable model for manufacturing data. ALVEN 

ombines nonlinear feature generation for chemical and biologi- 

al processes with sparse regression, which can be effective for 

ata with a relatively small number of samples. The two-step 

parsity-promoting technique used in ALVEN combines the univari- 

te feature selection with the elastic net sparse regression tech- 

ique ( Zou and Hastie, 2005 ), which is computationally efficient 

nd is able to select, from a large library, the most informative 

https://doi.org/10.1016/j.compchemeng.2020.107103
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inear and nonlinear terms. The resulting final model, unlike black- 

ox models, has interpretability, robustness, better generalization 

apability, and provides physical/chemical insights of the underly- 

ng system. Also, ALVEN is easily extended to nonlinear dynamical 

ystem identification by dynamic modification on the transforma- 

ion matrix. The resulting dynamic ALVEN (DALVEN) model has an 

nterpretable input-output structure while also maintaining high 

odeling accuracy. 

The rest of this article is organized as follows. Section 2 briefly 

eviews nonlinear model identification and sparse regression. 

ection 3 describes the core concepts of the ALVEN methodology. 

ection 4 describes the methodology of DALVEN for nonlinear dy- 

amical system identification. Two case studies are presented in 

ection 5 to demonstrate the effectiveness of ALVEN and DALVEN, 

espectively. Finally, the conclusion is in Section 6 . 

. Background 

Nonlinear regression has been an active research field for 

ecades. For systems without first-principles knowledge, black-box 

ethods have been introduced with high approximation capabil- 

ty, including widely applied techniques such as random forest (RF) 

egression ( Breiman, 2001 ) and support vector regression (SVR) 

 Vapnik, 20 0 0 ), and other nonlinear techniques such as k -nearest-

eighbor ( k NN) ( Altman, 1992 ) and neural networks ( Jain et al.,

996; Sarle, 1994 ). These black-box methods require access to mas- 

ive data sets (i.e., prone to overfitting) and lack interpretability. 

oreover, it can be difficult to incorporate those black-box meth- 

ds with other optimization and controller design applications, not 

nly because of their complexity but also due to the discontinuity 

n some of the functionalized forms (e.g., RF regression, k NN). 

The identification of interpretable nonlinear regression models 

s of high practical and research interest. The combination of non- 

inear feature generation with feature selection can provide solu- 

ions to this problem. Techniques have been developed for gen- 

rating parsimonious nonlinear regression models. The first cate- 

ory is based on symbolic regression ( Forrest, 1993; Koza, 1992; 

chmidt and Lipson, 2009 ). Symbolic regression is an established 

ethod for searching among candidate mathematical expressions 

hile minimizing regression errors. The procedure automatically 

enerates the features as well as the form of nonlinear equations. 

owever, symbolic regression is prone to overfitting unless care is 

xplicitly taken to handle model complexity. The second category 

s based on optimization, e.g., the ALAMO approach ( Wilson and 

ahinidis, 2017 ), to search among pre-selected candidate nonlin- 

ar transformations that minimize the objective function (e.g., re- 

ression error). ALAMO uses a mixed-integer quadratic formulation 

ith Bayesian information criterion (BIC) as the fitness metric to 

earch through a set of nonlinear functions defined by the user, for 

xample, polynomial transformations. The aforementioned tech- 

iques are generally computationally expensive and do not scale 

ell to large manufacturing systems of interests. 

The third category builds on the linear sparse regression tech- 

iques to select among different nonlinear transformations to build 

 nonlinear interpretable model, e.g., the SINDy modelling for non- 

inear dynamical system identification ( Brunton et al., 2016; Kaiser 

t al., 2018 ). SINDy utilizes sequentially threshold least squares or 

ASSO to pick nonlinear transformations from user-provided non- 

inear transformations. Besides LASSO, there are other sparse re- 

ression techniques and an overview is briefly discussed as follows. 

The linear sparse regression is formulated as a linear regression 

lus a penalty for model complexity, 

in 

w 

‖ y − X w ‖ 

2 
2 + λ‖ w ‖ 

q 
q (1) 

here λ is a positive penalty coefficient that quantifies the relative 

radeoff between the complexity of a model and its training error. 
2 
For different q , the penalty norm has different forms. If q = 0 ,

he penalty norm is called the l 0 pseudonorm and the regres- 

ion problem is also called best subset selection. The optimization 

hat defines l 0 -regularization is NP-hard, inherently combinatorial, 

nd computationally expensive to solve. The tightest convex relax- 

tion of the l 0 -pseudonorm penalty is the l 1 -norm penalty. Sparse 

egression with the l 1 -norm penalty is called the least absolute 

hrinkage and selection operator ( LASSO ) ( Tibshirani, 1996 ), which 

lso promotes sparsity. LASSO tends to select slightly more vari- 

bles as compared to best subset selection, but is computationally 

fficient and has been successful in many applications. However, 

or datasets with a large number of variables m x > N or highly cor- 

elated variables, LASSO has limited performance. The elastic net 

EN) has been proposed to resolve the limitations associated with 

ASSO ( Zou and Hastie, 2005 ). EN does feature selection and con- 

inuous shrinkage simultaneously, enabling variable selection with 

nly limited data and can select groups of correlated variables. EN 

s formulated as 

in 

w 

‖ y − X w ‖ 

2 
2 + λ(α‖ w ‖ 1 + 

1 −α
2 

‖ w ‖ 

2 
2 ) (2) 

here α is a scalar between 0 and 1 which specifies the trade- 

ff between the l 1 and l 2 penalties. The l 2 penalty is exactly the 

ame as used in ridge regression, which is a well-established ap- 

roach for dealing with multicollinearity in the dataset ( Zou and 

astie, 2005 ). 

The combination of l 1 and l 2 penalties imposes both sparsity 

nd grouping effects, which provides stable and automated feature 

election with good prediction accuracy. The LARS-EN algorithm is 

roposed ( Zou and Hastie, 2005 ) to solve the EN efficiently, which 

s based on the LARS algorithm for LASSO and has computational 

dvantages over other optimization techniques for feature selec- 

ion. Therefore, EN is adopted in ALVEN, and the detailed algorithm 

or ALVEN is introduced in the next section. 

. ALVEN 

ALVEN is a nonlinear regression model learning methodology 

hat builds interpretable, accurate, and robust models from manu- 

acturing data. ALVEN considers nonlinear systems of the form of 

dditive nonlinear transformations of the input variables, 

 = 

∑ 

i 

w i φi ( x ) + ε (3) 

here φ( · ) is the nonlinear mapping function. The nonlinear 

apping function does not have any additional parameters to be 

stimated. Eq. (3) is linear in the parameters w i , and the optimiza- 

ion (2) is a convex quadratic program. 

Sparsity-promoting techniques are used to select the most in- 

ormative nonlinear transformations from the nonlinear transfor- 

ation library. ALVEN requires three steps to construct the model, 

nd the detailed algorithm is described as follows. 

Step 1. Given the training data matrix X , the predictors are 

transformed by a set of candidate nonlinear functions to 

�( X ) ∈ R 

N×p . The candidate nonlinear functions considered 

in ALVEN are families of typical nonlinear functions in chem- 

ical and biological governing equations. For example, power 

functions are used to construct models for reaction rate laws 

and to predict concentration from wavenumbers that devi- 

ate from Beers law ( Milosevic, 2012 ). The logarithm trans- 

formation is often useful when taking the logarithms of both 

sides of an equation to transform the nonlinear function to 

an additive form, such as in expressions for heat and mass 

transfer coefficients and in rate laws for polymer degrada- 

tion reaction kinetics ( Pielichowski and Njuguna, 2005 ) or 
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Fig. 1. Schematic of the ALVEN algorithm. The three steps in ALVEN algorithm are (1) nonlinear basis expansion, (2) feature pre-screening via univariate test, and (3) sparse 

regression via the EN. 
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the biological growth model. The complexity of the nonlin- 

ear transformation is tuned by the degree d , which is up to 

the 3rd order. 

When d = 1 , the nonlinear transformation family includes 

basic transformations 1 : x i , 
√ 

x i , log x i , 
1 
x i 

, i = 1 , · · · , m x ; 

When d = 2 , the nonlinear transformation family includes 

the basic transformation from d = 1 , and also: (1) 2 nd -order 

interactions between input variables x i x j , ∀ i � = j and i, j =
1 , . . . , m x ; (2) 2 nd -order interactions between basic trans- 

formations of each input variable, which include x 2 
i 
, x 3 / 2 

i 
, 

(log x i ) 
2 , 

log x i 
x i 

, 1 

x 2 
i 

, x −1 / 2 
i 

, i = 1 , . . . , m x ; 

When d = 3 , the nonlinear transformation family includes 

transformations from d = 2 , and also: (1) 3rd-order interac- 

tions between input variables x i x j x k , ∀ i � = j � = k and i = j � =
k, i, j, k = 1 , . . . , m x ; (2) 3rd-order interactions between ba-

sic transformations of each input variable which include x 3 
i 
, 

(log x i ) 
3 , 1 /x 3 

i 
, x 5 / 2 

i 
, 

( log x i ) 
2 

x i 
, 

log x i √ 

x i 
, 

log x i 
x 2 

i 

, x −3 / 2 
i 

, i = 1 , . . . , m x . 

The final transformed matrix �( X ) consists of candidate 

nonlinear transformations of the columns of X . For example, 

when d = 1 , �( X ) has the form 

�( X ) = 

[ | | | | 
X 

√ 

X log X 1 / X 

| | | | 

] 

(4) 

where the operators 
√ 

X , log X , and 1/ X refer to the matrix

obtained from applying the scalar operation to each element 

in the matrix 

Up to third-order interactions are considered because it is 

rare for chemical and biological manufacturing systems to 

have higher order interactions. The transformed nonlinear 

features may exhibit multicollinearity, which is addressed by 

the use of elastic net, which employs an l 2 -norm to produce 

models that are interpretable, accurate, and robust ( Zou and 

Hastie, 2005 ). 

Step 2. A pre-screening univariate test is conducted for pre- 

feature selection in order to accelerate the final feature se- 

lection procedure and remedy the curse of dimensionality 
1 The term basic refers to transformations that are independent of each other, 

hat is, none of the basic transformations of x i can be implemented by the finite 

umber of applications of the other basic transformations of x i . The use of basic 

ransformations for d = 1 ensures that none of the features are repeated for any 

igher d . 

m

t

v

s

i

a

3 
introduced by the nonlinear basis expansion of the design 

matrix �( X ). Here three methodologies are proposed for the 

pre-screening test. 

The default option is to conduct a univariate statistical 

test for each variable. First, the linear correlation coeffi- 

cient between the response and each transformed feature 

r i = corr (y, x i ) , ∀ x i ∈ �( x ) is calculated. Then a univariate

statistical test is conducted where the test statistic (scoring 

function) is calculated from 

f i = 

r 2 
i 

1 − r 2 
i 

(N − 2) (5) 

The test statistic follows the F 1 ,N−2 -distribution and the pre- 

dictor is retained in the model when the p -value is lower 

than the predefined significance level, for example, α = 0 . 1 . 

The second approach is to select the features with the high- 

est scoring function values calculated by Eq. (5) and remove 

the rest. The percentage of features retained is specified by 

the user. 

The third approach is based on the elbow method 

( Thorndike, 1953 ). Basically, after calculating the scoring 

functions, the values are sorted from the highest to the low- 

est. Then, the sorted scoring functions are plotted, and the 

number of features where there is an elbow on the plot is 

chosen. Although this method is well established, the identi- 

fication of this break can be ambiguous and only works well 

when there is a clear elbow in the plot. 

Step 3. A sparse model is constructed using EN on the retained 

features from Step 2. The optimal hyperparameters of EN ( λ
and α) and the degree of complexity d are selected by cross- 

validation. EN is effective for feature selection and has low 

computational cost for large datasets and for a large number 

of predictors. The overall schematic of ALVEN is illustrated in 

Fig. 1 . 

The resulting sparse nonlinear model inherently makes the 

radeoff between model complexity and accuracy, avoiding over- 

tting to the training data, which is especially important for man- 

facturing data. As in any method, the performance of the ALVEN 

ethodology for sparse nonlinear model construction depends on 

he data quality, nonlinear function library, and measured system 

ariables. No single method is optimal for all nonlinear regres- 

ion problems. ALVEN highlights a specific methodology for build- 

ng an interpretable nonlinear regression model and can serve as 

 general framework for nonlinear model construction. When no 
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rior knowledge is available, these default nonlinear transforma- 

ions are a good starting point for nonlinear model construction 

or chemical and biological industrial systems, which is missing in 

ther sparse regression-based nonlinear model-building techniques 

 Brunton et al., 2016; Kaiser et al., 2018 ). Besides, ALVEN has high

exibility in that the nonlinear transformation library can be al- 

ered to the specific needs of a manufacturing system. For exam- 

le, the feature transformation can be restricted to only polyno- 

ial transformations, or specific forms informed by first-principles 

nowledge. The output variable y can also be transformed, for 

xample, using the inverse or logarithmic transformation, which 

ommonly arise in reaction engineering and transport phenomena. 

he transformation of the output variable should be done when 

eteroscedasticity is observed in the residual of the ALVEN model 

or the original y . After the final ALVEN model is constructed, man- 

facturers can apply domain knowledge to consider the reason- 

bleness of the selected model. 

While ALVEN provides accurate and robust prediction results, 

hether ALVEN identifies the model that truly captures the physics 

f the underlying process depends on the specific application. A 

imple example of ALVEN revealing the process physics is the ap- 

lication to the physical measurements of force F , mass m , and ac- 

eleration a . The identified ALVEN model will give d = 2 and the 

rue physic law F = ma . Similarly, for the measurements of energy 

 , mass m , and speed of light c , ALVEN will give d = 3 and the true

hysical relationship E = mc 2 . ALVEN will also find the true physi- 

al relationships for transport phenomena problems when the data 

re written in terms of dimensionless groups and when logarith- 

ic transformations are taken of both sides. For example, relation- 

hips involving mass transfer in flow have the form Nu m 

= c Re a Sc b 

nd heat transfer in flow have the form Nu h = c Re a Pr b . Taking log- 

rithms on both sides results in a linear additive form, and the 

rue physics of the process can therefore be easily determined by 

LVEN. This example illustrates how dimensionless groups, which 

ave long been used for constructing data-driven models for chem- 

cal systems ( Rasmuson et al., 2014 ), can be used to transform 

he data before feeding into ALVEN. This transformation is recom- 

ended for process modeling in which all of the parameters are 

nown in advance, which is typically true in problems dominated 

y transport phenomena and simple kinetics. When followed by 

 logarithmic transformation of input and output variables, ALVEN 

an reveal the true physical relationship. Regardless of whether the 

rue physical relationship is found, values of input variables that 

ive desired outputs by inserting the model into an optimization 

roblem ( Biegler, 2010 ). 

In terms of computational complexity, since ALVEN is based on 

lastic net, the time complexity of ALVEN is O (ALK 

2 N) , where A is

he grid size of the tuning parameter α in the elastic net, L is the 

rid size of the tuning parameter λ in the elastic net, K is the num- 

er of candidate features, and N is the sample size ( Efron et al.,

004 ). 

By only requiring a single convex optimization, ALVEN is much 

ore computationally efficient than best subset selection. By us- 

ng elastic net, ALVEN shares its higher robustness ( Zou and 

astie, 2005 ) than LASSO ( Tibshirani, 1996 ), which performs poorly 

or highly correlated variables. By defining features as nonlinear re- 

ationships typically observed in chemical and biological systems, 

LVEN adds a specificity to problems of industrial importance. 

. DALVEN 

ALVEN is designed for the construction of a static nonlinear 

odel. For typical industrial processes with fast sampling rates, 

 static model might not be sufficient to describe the underlying 

rocess. DALVEN extends ALVEN to account for nonlinear dynamic 

ehavior, which provides an interpretable input-output nonlinear 
4 
ynamic model for the system. DALVEN works in the same way as 

LVEN but uses a “time lag shift” method ( Ku et al., 1995 ) to aug-

ent the original input space X to form a new expanded space ˆ X , 

ith time-shifted vectors of all the variables in X and y . 

DALVEN used the form of a nonlinear autoregressive model 

ith exogenous inputs (NARX) structure ( Billings, 2013 ), 

 t = 

∑ 

t 

w i φi ( x t , . . . , x t−l , y t−1 , . . . , y t−l ) + ε t (6)

here l is the lag number for the past information. A DALVEN 

odel is constructed in three steps, which are detailed below. 

Step 1. There are two options in the DALVEN model for nonlin- 

ear mapping. For the first option, the design matrix is aug- 

mented with past input and measured output variables with 

previous l observations, 

ˆ X = 

⎡ 

⎢ ⎢ ⎣ 

x t · · · x t−l y t−1 · · · y t−l 

x t+1 · · · x t+1 −l y t · · · y t+1 −l 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

x N · · · x N−l y N−1 · · · y N−l 

⎤ 

⎥ ⎥ ⎦ 

(7) 

Then the nonlinear transformation used in ALVEN (see 

Section 3 ) is applied to the lagged design matrix ˆ X . The re- 

sulting nonlinear transformation �( ̂  X ) has not only the non- 

linear mapping of past inputs and outputs but also interac- 

tions between inputs and outputs at different time points, 

for example y t−1 x t−2 . The DALVEN model based on this 

transformation is denoted as the DALVEN-full model. 

The second option is to first nonlinearly transform the inputs 

with the nonlinear mapping in ALVEN, denoted as φ( x t ). 

Then the design matrix �( ̂  X ) is formulated by augmenting 

each observation vector with both the previous l observa- 

tions of transformed system inputs and outputs, and stack- 

ing as 

�( ̂  X ) = 

⎡ 

⎢ ⎢ ⎣ 

φ( x t ) · · · φ( x t−l ) y t−1 · · · y t−l 

φ( x t+1 ) · · · φ( x t+1 −l ) y t · · · y t+1 −l 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

φ( x N ) · · · φ( x N−l ) y N−1 · · · y N−l 

⎤ 

⎥ ⎥ ⎦ 

(8) 

This second type of nonlinear transformation allows only 

nonlinearity and interactions between past inputs variables 

within the same time point, while the past system outputs 

are not transformed. The second type provides a more re- 

strictive version of nonlinearity while potentially could pro- 

vide more robust estimates in specific applications. When 

the number of training samples is limited or prior knowl- 

edge of linearity in outputs is known, it is advised to use 

the second type of nonlinear transformation. 

Step 2. The nonlinear mappings with different lag orders are 

pre-selected on a pairwise basis. Similar as in Section 3 , for 

each transformed feature in �( ̂  X ) , the linear correlation co- 

efficient between the response and the transformed feature 

is calculated and used in the univariate statistical test (see 

Eq. (5) ). Then features with p -values lower than the prede- 

fined significance level are retained in the model for model 

construction. Alternatively, the other two univariate feature 

screening methods described in Section 3 can be used: 

the predefined number of features retained and the elbow 

test. 

Step 3. EN is used to construct a sparse model on the re- 

tained features from Step 2 to minimize the one-step- 

ahead prediction error. The optimal hyperparameters are se- 

lected based on cross-validation for time series or the in- 

formation criterion, e.g., Akaike information criterion (AIC) 
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Fig. 2. 3D printer data visualization via single-variable histograms and scatter plots: LH is the layer height, WT is the wall thickness, ID is the infill density, NT is the nozzle 

temperature, BT is the bed temperature, PS is the print speed, M is the material, FS is the fan speed, and TS is the tension strength. 
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( Akaike, 1974 ). After the DALVEN model is fitted, if there is 

significant autocorrelation remaining, an autoregressive in- 

tegrated moving average (ARIMA) model can be chosen to 

construct a time-series model for the residual, which gives 

DALVEN with ARIMA error. This step can further improve the 

prediction accuracy of the DALVEN model. The details of the 

ARIMA procedure are omitted here, and readers can refer to 

( Chatfield, 1975; Adhikari and Agrawal, 2013 ) for more infor- 

mation. 

The k -step-ahead prediction for DALVEN can be realized 

hrough recursion: the output at time t is predicted using previ- 

usly measured outputs up to time t − k as well as inputs up to 

ime t . For example, a 2-step prediction for the model with lag 

 = 1 is to use x t , x t−1 , x t−2 , y t−2 to predict y t , which can be cal-

ulated from 

ˆ 
 t = 

∑ 

i 

w i φi ( x t , x t−1 , ̂  y t−1 ) (9) 

here ˆ y t−1 is calculated from 

ˆ 
 t−1 = 

∑ 

i 

w i φi ( x t−1 , x t−2 , y t−2 ) . (10) 
5 
Similar to ALVEN, DALVEN might not have the ability to fit ev- 

ry possible function as compared to some black-box nonlinear 

ynamic system identification methods, e.g., recurrent neural net- 

orks (RNNs). However, DALVEN has a clear input-output nonlin- 

ar dynamic structure, which is useful for system understanding 

nd applications such as controller design. 

RNNs are widely used to model nonlinear dynamics in the 

hemical industry, for problems in which the quantity of data is 

ubstantial. DALVEN and RNN-based model identification are at 

pposite ends of the spectrum in terms of constructing discrete- 

ime nonlinear input-output models. RNN-based model identifica- 

ion does not include feature design or feature selection, is formu- 

ated in terms of an NP-hard nonconvex optimization, implements 

 numerical optimization algorithm that does not converge glob- 

lly, and generates a dense/noninterpretable model. On the other 

and, DALVEN extends elasstic net and feature engineering, which 

re approaches from the machine learning literature. DALVEN in- 

ludes feature design based on expressions that commonly arise 

n chemical and biological systems, includes feature selection to 

enerate a sparse/interpretable model, is formulated in terms of a 

olynomial-time convex optimization, and implements a quadratic 

ptimization that converges globally. 
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Table 1 

Model fitting results for 3D printer data using nested cross-validation. 

Mean Median Variance 

MSE Train Validation Test Train Validation Test Test 

ALVEN 0.106 0.398 0.322 0.107 0.400 0.298 0.025 

RF 0.064 0.602 0.488 0.063 0.601 0.453 0.049 

SVR 0.100 0.458 0.456 0.108 0.456 0.422 0.048 

Fig. 3. Testing error distributions via nested cross-validation for 3D printer dataset 

by three different nonlinear modeling methods. 
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Fig. 4. Final model fitting for 3D printer data using ALVEN. 
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. Case studies 

In this section, the proposed algorithms are demonstrated to 

e effective for two process case studies: a dataset collected from 

 3D printer for static nonlinear model construction using ALVEN 

nd a simulation dataset of a CSTR for nonlinear dynamical model 

onstruction using DALVEN. The proposed methods are compared 

ith other black-box methods to illustrate their effectiveness. 

A Python software implementation of the algorithms is avail- 

ble for download ( Sun and Braatz, 2020 ). 

.1. 3D printer 

The dataset was collected from samples manufactured by a 3D 

rinter (Ultimaker S5) by a researcher at the TR/Selcuk University 

 Okudan, 2018 ). The purpose of the modeling is to relate the ad-

ustment parameters in the 3D printer to the properties of the 

rinted objects. 

The dataset has 50 static samples. There are nine input vari- 

bles (denoted as x 1 to x 9 , respectively): layer height (mm), wall 

hickness (mm), infill density (%), infill pattern, nozzle tempera- 

ure ( ◦C), bed temperature ( ◦C), print speed (mm/s), material, and 

an speed (%). The output variable considered in this case study is 

he tension strength (MPa) of the printed samples, measured by a 

rofessional tension-compression device (a Sincotec GMBH tester), 

nd the test criterion is ASTM d638. The scatter plot of the data is 

rovided in Fig. 2 . 

ALVEN is compared with RF and SVR for this dataset, as both of 

hese machine learning methods are very well established in the 

iterature. Nested cross-validation is used for model construction 

nd performance evaluation due to the limited number of sam- 

les we have. Nested cross-validation provides an unbiased esti- 

ation of model performance on unseen data and model stabil- 

ty. In the outer loop of nested cross-validation, 20% of data is 

sed as testing data, and the outer loop is repeated for 180 times. 

n the inner loop, repeated 3-fold cross-validation with 20 repeti- 

ions is implemented. The training, validation, and testing results 

y three methods are shown in Table 1 , and the mean squared 

rror (MSE) distributions for testing datasets over 180 repetitions 

re shown in Fig. 3 . ALVEN is observed to have has much bet-

er performance (typically 30% to 50%) over the other methods for 

his application, in terms of both prediction accuracy (testing data 
6 
SE mean/median over 180 repetitions) and model stability (test- 

ng data MSE variance over 180 repetitions). Besides accuracy and 

obustness, ALVEN has interpretability where the nonlinear struc- 

ure can be obtained from the model. 

The final model fitting performance by ALVEN based on all the 

easured data is shown in Fig. 4 , and the residual analysis is 

hown in Fig. 5 . The residual analysis strongly suggests that one of 

he data points is an outlier, and if the experimentalist was avail- 

ble would be advised to repeat that experiment. 

Repeated 3-fold cross-validation with 20 repetitions is used for 

yperparameter selection. The final ALVEN model has 55 retained 

erms, and model coefficients for retained terms are plotted in 

ig. 6 . The significant terms (with an absolute value above 0.1) are 

 3 x 8 x 9 , x 1 x 3 , x 2 x 8 x 9 , x 1 x 8 , and x 3 
5 
. ALVEN provides a direct interpre-

ation of which variables are most informative for predicting the 

ystem output and can be easily used for system design (e.g., op- 

imization) purposes. For example, the choice of variables indicate 

hat the tension strength of the 3D-printed product (1) weakly de- 

ends on the infill pattern, bed temperature, and print speed, (2) is 

uch more sensitive to nozzle temperature than bed temperature, 

nd (3) depends in a high order on the nozzle temperature. 

.2. CSTR 

This dataset is from a simulation of a CSTR where the reaction 

s exothermic (A → B), and the concentration is controlled by 

egulating the coolant flow ( Morningred et al., 1992 ). The dataset 

an be downloaded from ( De Moor, 2019 ). The input variable is 

he coolant flow rate (L/min), while the output variable considered 

n this example is the concentration of A (mol/L). There are 7500 

amples in total: the first 50 0 0 samples are used for training and 

he rest 2500 samples are used for testing. Fig. 7 is the scatter plot 

f the data. 

Both DALVEN with full nonlinear mapping (denoted as DALVEN- 

ull) and partial nonlinear mapping (denoted as DALVEN), as dis- 

ussed in Section 4 , were applied to the dataset. Both cross- 
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Fig. 5. Residual analysis for ALVEN model. 

Fig. 6. ALVEN model coefficient magnitudes for the final retained terms. 
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Fig. 7. CSTR data visualization as single-variable histograms and scatter plots: Q is 

the coolant flow rate and CA is the concentration of A. 
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alidation using a single hold-out dataset (20% of training data) 

nd AIC are used for hyperparameter selections in DALVEN. For 

omparison, RNNs, with linear, relu, and sigmoid activation func- 

ions, are also applied with AIC for hyperparameter selection. RNNs 

ere chosen for being the most popular and widely used machine 

earning method for the construction of models for nonlinear dy- 

amical systems. During training, the RNN model uses the current 

nput x t , the previous state s t , and the previously measured output 

 t−1 to predict the next output y t , which can be stated as 

 t+1 = φ( A s t + B x t + D ̂  y t + b ) 

y t = C s t + k (11) 

here A , B , C , D , b , k are the parameter matrices and vectors with

he appropriate dimension, φ( · ) is the nonlinear activation func- 

ion, s is the state of the system, and ˆ y t−1 is the actual output 

easurement at t − 1 . The RNN model is also capable of doing 
7 
ultiple-step-ahead prediction with recursion, and more details 

an be referred to Sun (2020) . The dynamic model performance 

s compared based on 1-step to 10-step-ahead prediction perfor- 

ance. In the final RNN model selected by AIC, relu is selected as 

he activation function, and the RNN model has a two-layer archi- 

ecture with 7 states in each layer. 

The training and testing results are shown in Figs. 8 and 9 , re-

pectively. DALVEN with full nonlinear mapping gives the best per- 

ormance for both training and testing, with an order of magni- 

ude better prediction results than RNN for the testing data. RNN 
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Fig. 8. Training MSE for CSTR data over 10 prediction steps. The values calculated 

by DALVEN-full-CV and DALVEN-full-AIC are nearly identical, with the largest dif- 

ference being 0.0 0 0 03. 

Fig. 9. Testing MSE for CSTR data over 10 prediction steps. The values calculated 

by DALVEN-full-CV and DALVEN-full-AIC are nearly identical, with the largest dif- 

ference being 0.0 0 0 01. 

Fig. 10. CSTR 1-step-ahead prediction result for the testing data by DALVEN-full 

(AIC). 
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Fig. 11. Model coefficients for the final retained terms in the DALVEN-full (AIC) 

model of the CSTR. 
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with relu activation function selected) has lower prediction accu- 

acy and is also hard to interpret. For DALVEN with partial non- 

inear mapping, the testing prediction results for long prediction 

orizon is comparable to RNN, even though its nonlinear form is 

ore restricted than for the RNN. 

The testing 1-step prediction by the DALVEN-full model with 

IC is plotted in Fig. 10 . The final DALVEN-full model degree is 3,

he lag order is 4, l 1 ratio is 0.5, and the model has 29 retained

erms with interpretable nonlinear forms, and the final model co- 

fficients are plotted in Fig. 11 . The significant terms (with abso- 

ute values higher than 0.1) are y t−1 , x t y t−1 , x t−1 y t−1 , and x t−2 y t−1 .

hese results indicate that the nonlinear dynamics of the CSTR is 
8 
ostly modeled by only including information of the previous out- 

ut and the past two values of the predictor. Also, the nonlinearity 

s mostly bilinear, which can be written as the past output value 

 t−1 multiplied by a linear combination of current and past predic- 

ors. 

Additional case studies that show qualitatively similar compar- 

tive results are available in a Ph.D. thesis ( Sun, 2020 ). 

. Conclusion 

This article presents ALVEN, which is an interpretable nonlin- 

ar model construction technique to address the problem of learn- 

ng algebraic functions from manufacturing datasets without infor- 

ation on the nonlinear relationships. ALVEN enables automated 

eature selection among a family of predefined nonlinear transfor- 

ations that are suitable for chemical and biological systems. The 

wo-step feature selection procedure, including univariate feature 

re-screening and the EN for simultaneous feature post-selection 

nd parameter estimation, enables high model prediction accuracy, 

obustness, and model interpretability. The proposed algorithm is 

eneralized to dynamic nonlinear system identification, called DAL- 

EN, through an additional step of past information augmenta- 

ion. ALVEN and DALVEN algorithms are demonstrated on two pro- 

ess case studies and compared with other advanced black-box 

achine learning algorithms, where both algorithms have shown 

alient model performance in terms of both model accuracy and 

nterpretability. 
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