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The ever increasing dependence on portable electrical devices
calls for the development of reliable and efficient lightweight power
sources. Modern laptops, music players, smartphones, tablets, and
wearable health devices are only some of the applications that make
use of batteries. In addition, the modern car market is moving toward
the replacement of Internal Combustion Engines (ICEs) with electric
powered engines. For these reasons, in recent years, research has fo-
cused on the development and production of portable electric power
sources. As a result, different chemistries for Electrochemical Accu-
mulators (EAs) have been introduced, with lead acid, NiMh, NiCd,
Li-ion, and Li-po being the most common .!~ Batteries can be di-
vided into two major categories: primary and secondary. Secondary
batteries (SBs), which are rechargeable EAs, are of particular inter-
est. Li-ion SBs represent the state of the art in battery technology.®
While their electrochemical characteristics are remarkable, the use
of Battery Management Systems (BMSs) is required in order to: (i)
ensure safety, (ii) provide good operating performance, and (iii) pro-
long life. When charging Li-ion cells, most industrial BMSs rely on
the so-called Constant Current-Constant Voltage (CC-CV) protocol.”
The approach first applies a galvanostatic charge (the CC stage). Once
the cell voltage reaches a threshold value (Vy,), a potentiostatic charge
(the CV stage) is then applied. During this second phase, the current
flowing through the cell decreases exponentially as a function of the
governing physics. While the CC-CV approach provides reasonable
performance, better results can be achieved by exploiting a mathemat-
ical model of the process.®’

Advanced Battery Management Systems (ABMSs) rely on accu-
rate mathematical descriptions to achieve effective control, monitor-
ing, and diagnostics.® Two main classes of models are commonly
used for this purpose: (i) Equivalent Circuit Models (ECMs), and (ii)
Electrochemical Models (EMs). ECMs approximate the battery dy-
namics by means of electrical circuits composed mainly of resistors
and capacitors.'®!3 In contrast, EMs rely on the first-principles physi-
cal laws and are able to represent all the physicochemical phenomena
occurring inside a cell. Some examples of EMs are the pseudo two-
dimensional, the single-particle, and the multiple-particle models.'*
EMs provide higher accuracy than ECMs but at the cost of an increased
computational complexity.

One of the objectives of ABMSs is to provide suitable charging
strategies. To achieve this goal, several control schemes have been
proposed. The design of traditional PID control algorithms is ad-
dressed, in, for example, Refs. 15 and 16 while fuzzy logic techniques
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are considered in Refs. 17 and 18. The authors in Ref. 19 propose a
modified reference governor control algorithm, while optimal control
strategies are discussed in Refs. 20 and 21. Model Predictive Con-
trol (MPC) strategies have been considered by many authors (see e.g.
Refs. 22-28).

Model predictive control refers to a class of algorithms that make
explicit use of a process model to optimize the future predictive be-
havior of a plant, taking operating constraints into account.?’ Due to
its characteristics, MPC may be suitable for the design of ABMSs.
On the other hand, when dealing with nonlinear/complex/high-order
systems, the computational time required to solve MPC online be-
comes intractable. For this reason, linearized approximations and/or
reduced order dynamics of the controlled plant are usually adopted.
In practice, this choice can still provide very satisfactory closed-loop
stability and performance.

This article proposes MPC strategies for the optimal charging of
a Li-ion cell based on linear and piece-wise linear model approxima-
tions. The use of linear models has been already considered in, e.g.,?
where a finite step response model was used for the development of
MPC based ABMSs. The approach showed interesting but still not
completely satisfactory results, mainly due to the poor approxima-
tion of the temperature dynamics provided by a linear time-invariant
model. Similarly, an MPC approach based on a finite step response
model was considered in Ref. 27 where the aging of the battery was
also modeled and controlled. While an interesting health-aware charg-
ing strategy was obtained, no advances were made in terms of model
approximation. The use of ARX and hybrid models was introduced
in Ref. 28 in order to better approximate the nonlinear behavior of
the P2D model with simpler models suitable for control purposes.
Although linearized models can provide interesting results, the strong
nonlinearities driving the thermal dynamics make it extremely diffi-
cult to enforce temperature constraints using linear models. For this
reason, this article considers also piecewise-affine approximations of
the P2D model. In particular, AutoRegressive eXogenous (ARX) and
PieceWise affine AutoRegressive eXogenous (PWARX) models are
adopted. PWARX models are formulated as a set of affine dynam-
ics, where binary variables are used to represent switches among
different submodels. While this choice represents a compromise be-
tween accuracy and complexity, its online application within MPC
becomes prohibitive as the number of submodels increases. With the
aim of further reducing the computational burden, while still providing
satisfactory results, LTV approximations of highly accurate PWARXs
are also considered. These models are obtained by linearizing the
dynamics around a nominal trajectory.’**3 Such approximations are
accurate in the neighborhood of the nominal trajectory, and have

Downloaded on 2017-07-11 to IP 18.189.112.130 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).


http://dx.doi.org/10.1149/2.0201706jes
mailto:davide.raimondo@unipv.it
http://ecsdl.org/site/terms_use

A950

the benefit of not relying on binary variables, therefore dramatically
reducing the online computational cost. The effectiveness of the pro-
posed control algorithms is demonstrated by comparing closed-loop
performance on the P2D model. In all the proposed control scenarios,
the objective is to charge the Li-ion cell to a reference value of the State
Of Charge (SOC) while enforcing constraints on applied input current,
temperature, voltage, SOC and anodic side-reaction overpotential. Ac-
cording to the obtained results, the use of PWARX/LTV models within
MPC-based ABMSs provides significant improvements in terms of
constraint satisfaction when compared to approaches based on linear
models only.

With respect to the approaches in Refs. 26-28, we make the fol-
lowing contributions: (i) provide a detailed explanation of the identi-
fication procedure of models suitable for control purposes (ii) design
control strategies based on highly accurate PWARX models (iii) derive
LTV approximations for alleviating the computational burden related
to PWARX models. Note that, the use of a highly detailed EM allows
to investigate, analyze and even constrain internal electrochemical
states which cannot be considered when using ECMs.

This article is organized as follows. Model for simulations: Li-
ion pseudo two-dimensional (P2D) model section introduces the P2D
model and its partial differential-algebraic formulation. Models for
control section presents ARX, PWARX, and LTV models, and Model
identification section describes the methodology used for their iden-
tification. Model predictive control section addresses the formulation
of ARX-, PWARX-, and LTV-based MPC algorithms. Results section
presents identification and closed-loop control results. Conclusions
section is the conclusion.

Model for Simulations: Li-ion Pseudo Two-dimensional (P2D)
Model

The pseudo two-dimensional (P2D) model consists of nonlin-
ear and tightly coupled partial differential and algebraic equations
(PDAE?S), which are used to express the conservation of charge and
mass within the three main sections of a Li-ion cell: (i) cathode, (if)
separator, and (iii) anode. The structure cathode-separator-anode is
immersed within an electrolyte solution which facilitates the flow of
ions between the electrodes. A porous separator avoids possible short
circuits between the electrodes, while allowing the flow of ions. Fi-
nally, current collectors are connected to the electrodes in order to
provide power to external devices. During a discharge cycle, the ions
deintercalate from the anode and, flowing through the separator, in-
tercalate into the cathode. The inverse process takes place during a
charging phase. A schematic representation of a Li-ion cell is pro-
vided in Figure 1. In the following, the index i € {a, p, s, n, z} refers
to a particular section of the battery, whereas p, s, and n refer to the
cathode, separator, and anode respectively, while a and z refer to the
positive and negative current collectors. For convenience, we intro-
duce the quantities %y = l,, X, = I, +1,, & = I, + 1, + I, and
Xy =1, +1,+1;+1,, where l; is the thickness of the ith section of the
cell and Ly = ), I; represents the overall cell thickness. The ionic
flux is defined as the sum of two quantities

j(X, t) = jinl(x’ t) + jside(xs t),

where 1 € R* represents the time, x € R is the one-dimensional
spatial variable along which ions flow, ji,(x,t) is the intercala-
tion/deintercalation ionic flux, while jgq4.(x, ) accounts for side reac-
tions during charging phases at the electrolyte-anode interface. The
ionic flux j(x, ) is zero inside the separator. The porous electrodes are
composed of active particles in which ions intercalate or deintercalate.
Different geometrical approximations of the shape of these particles
have been proposed in literature.>* This work treats the active parti-
cles as spheres as usually done in the literature, and the intercalation
and deintercalation processes are modeled according to Fick’s law of
diffusion:

des(ri)y 10 |:r2 D dcs(r, 1)

a  rlar i 5y
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Figure 1. A schematic of a Li-ion cell.
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where r is the pseudo second dimension along which the ions diffuse
within the particles, c¢,(r, #) the concentration of ions in the solid
particles, D ; the effective solid-phase diffusion coefficient and R/
the radius of the solid particles. The concentration of ions inside the
electrolyte solution is represented with ¢, (x, t), and the conservation
of these species is modeled by means of the diffusion equation:

dc.(x,t d dc.(x,t
E.&:f[pww

boar dx 9x ] +ai(l —11)j(x, 1), [2]

where 7, is the transference number, a; the particle surface-area-to-
volume ratio, €; the material porosity. The term D.g; accounts for the
electrolyte effective diffusion coefficients according to the Brugge-
man’s theory. Zero-flux boundary conditions (BCs) are enforced to
impose mass conservation in the liquid phase,

dc.(x, 1)

0x =0 131

x=%0,%n

and continuity conditions are enforced at the interfaces across different
materials,

dc,(x,1) ace(x, 1)
— Dy, pig = —Dqjp g ———— , [4]
ox o ax o+
x=%} x=%p
dce(x, 1) dce(x, 1)
— Dy —22 = —Dejpp————— 5
eff.s - eff, ™ . [5]
x==Xg X=Xy

The conservation of charge in the porous electrodes is modeled ac-
cording to Ohm’s law,

ad |: 0D, (x, 1)
Oeff,i — 7

dx 0x

with the BCs,
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where ®,(x,t) is the solid-phase potential, o.s; the electrodes ef-
fective conductivity, F the Faraday’s constant, and I,() the ap-
plied current density. The cell voltage is defined as V(1) =
D, (xo, t) — Py(x,, t). Similarly to the solid-phase potential, the elec-
trolyte potential ®,(x, ¢) is modeled using a modified Ohm’s law,

8®E(x,t):|

. d
a;Fjx,t)= o [chf,f o

dlnc.(x,1t)

, i e{p,s,n},
ox :| i €{p,s,n}

0
+ — |:Keff,i ET(x,1)
0x

where E = 2%, Kesr.; 18 the effective electrolyte conductivity, R is
the universal gas constant, and 7 (x, ) is the temperature. Without loss
of generality, given that only potential differences are measurable, the
value of ®,(x, 1) is set to zero at the anode side,

D, (x,1) =0,

x=3%,

while no-flux conditions are enforced at the other end of the cell,

0d,.(x,1)
ax

=0.

x==Xg

Continuity BCs are enforced across the different sections of the cell,

e D, (x, 1) - 0D, (x,1)
eff, p ox - eff,s ox . [}
x==%p x==%p
0D, (x,1) 0®,(x, 1)
—Keff,s = —Keff,n
0x s ox et

Finally, thermal dynamics are included and coupled to the above set
of equations

AT(x,1) 9 xaT(x,z)
ar  ax| ' ox

+ ern,i(xv t) + Qrev,i(xv t)v

where p; is the material density, C,; is the specific heat, ); is the
heat diffusion coefficient, and Qopm, Orev, and Q,x, are the ohmic,
reversible, and reaction generation rates respectively. The thermal
model is in accordance with Ref. 35 (a pouch type cell is considered).
Continuity BCs are required to guarantee a continuous heat flux across
the different sections of the battery,

picp,i ] + Qohm,i(xs Z)

i €{a,p,s,n,z},

oT (x,t oT (x,t
LTl atwnl
0x - ox -
X:XO X:’(O
oT (x,1) o7 (x,1)
A = |
ox W ox .
x==%, x=X),
N aT (x,t) _ oT (x, 1)
ax e 0x it
oT (x,1) _ oT (x,t)
" ax o - °oox J;

while Newton’s law of cooling is enforced at the end of the two
current collectors to account for heat dissipation with the surrounding
environment,

oT (x,t
TS (T = T(x 1),
0x
x=0
oT (x,t
D TED N TG ) = T,
ox .

where /. is the heat exchange coefficient, and 7., the environmental
temperature. A thorough description of the thermal model develop-
ment can be found in Ref. 35. The above equations are coupled by
means of the ionic flux. Given that the side reactions are considered
to occur only at the electrolyte-anode interface, the contribution of
Jsige(x, t) at the cathode side is null and no Solid-Electrolyte Inter-
face (SEI) resistance between cathode and electrolyte is considered.
According t0,%® the side reaction portion of the ionic flux is modeled
with a Tafel relation of the form:

ioside(?) . 0.5F . 1)
- X side (X, )
FOP\RTG ™

where i gqe() and ngee(x, f) are respectively the side reaction ex-
change current and the side reaction overpotential. The side reac-
tion exchange current iy q.(#) depends on the battery applied current
density. No experimental data are available for the identification of
such relation, and the empirical equation described in Ref. 37 is here
adopted. The side reaction overpotential is defined as

Nside (X, 1) = P(x, 1) — D (x, 1) — Uspr — Fj(x, )R (1)

where the term Ugg; represents the side reaction Open Circuit Voltage
(OCV)and Fj(x, t)R s(t) accounts for an extra voltage drop due to the
presence of the SEl resistance R /(). To model the SEI layer behavior,
the following equation is considered

Jside(x, 1) =

0 M, .
*8()@ t)= _7Jside(x7 1),
dt 0

where M, is the molar weight of the electrode and 3(x, 7) represents
the film thickness. The overall film resistance is given by
3(1)
Ry(t) = Rspr + -
where v is the admittance of the film, Rgg is the initial SEI layer
resistance, and

1/1
§(t) = l/ d(x, 1)dx.
ln 0

Because of the presence of the SEI layer at the anode side, the con-
tribution of jgqe(x, ) at the cathode side is null (the diffusion process
of Li-ions within the electrodes is driven from ji,(x, t) only). The
intercalation part of the ionic flux is governed by the Butler-Volmer
equation

i0.int(X, 1) . 0.5F
1) = 220 1) smh[

RT(x,1)

where ig iy (x, 1) is the exchange current density

YIim(xv t)} ’

fo,int(X, 1) = chff,i\/ce(xv DM — (R, D)es(RY, 1), i € {p,n},

max

with ¢{"* the maximum solid-phase concentration. The electrode over-
potential 1;,(x, ) at the anode side is defined as

Nine(x, 1) = O(x, 1) — Do (x, 1) = U, — Fj(x, )Rz (1)
while at the cathode side as
Nin(X, 1) = Oy(x, 1) — D(x, 1) — Up

where the terms U, and U, represent the cathode and anode OCV
respectively. Due to its PDAE representation, the P2D model needs to
be reformulated into a set of DAEs or AEs in order to be numerically
solved. The P2D model has been developed and experimentally vali-
dated in Ref. 38. This article relies on LIONSIMBA* which provides
a numerical implementation of the P2D model suitable for control
purposes. The complete set of equations and parameters used in this
work, together with a thorough description of the P2D model, can be
found in Ref. 39.

The remainder of this article considers Iy, (#) as the input of the
Li-ion cell, with the outputs being the voltage V,, (), the temperature
at the negative current collector 7'(L,,,t) (from here on denoted
as T(t)), the side reaction overpotential at the end of the negative
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electrode 1;4.(X,,, t) (from here on denoted as n,;4.(f)) and the State
Of Charge (SOC) defined as

1"
SOC(t) = T om f Y8 (x, t)dx
cde )?A

n%s.n

where ¢3"2(x, 1) is the average solid-phase concentration in each solid
particle.

Models for Control

The P2D model provides a detailed description of the phenom-
ena occurring inside a cell. Unfortunately, the complexity of this EM
model makes it difficult to use it for control purposes.***! For this rea-
son, order reduction or linearization techniques may be employed.**
In Refs. 26,27, we investigated the use of linear input-output approx-
imations of the P2D model for the development of MPC strategies.
With these models we obtained promising results for the case of
constant-temperature operation. On the other side, such approxima-
tions do not allow to capture the nonlinear nature of the thermal behav-
ior inside a Li-ion cell. When temperature variations and constraints
are present, better approximations are required. For this reason, this
article considers also piecewise affine and Linear Time Varying (LTV)
input-output approximations. Below is a brief overview of the ARX,
PWARX, and LTV models relevant to this study.

AutoRegressive eXogenous (ARX) models.—AutoRegressive
eXogenous (ARX) models are a particular family of input-output
linear models.*’ For a single-input single-output (SISO) system, the
ARX one-step ahead output prediction scheme is

yk+1)=0 [s(lk)] , (6]

where y is the output, s € R” is the array of regressors, 0 € R"*! is
the set of parameters, and k is the discrete time step. For a given time
instant, s(k) is defined as

stk) = [y(k) yk = 1) -+ y(k —n, +1)
utk +1—n)utk —ny) -+ utk —ng —ny +2)],

which is composed of the past n, output values and the past n,, input
values, where n; > 0 accounts for the relative degree of the system,
and n = n, + n,. Model 6 can be straightforwardly extended to
the multiple-input multiple-output (MIMO) case. Consider a system
having n, inputs and n, outputs. Moreover, let the matrices N, €
R"™>"y N € R*™ and Ny € R"™>*" be analogous to the SISO
indexes n,, n,, and n; respectively. The element of row i and column
j of N, accounts for the number of past values of the jth output
contributing to the dynamics of the ith output of the system. Similarly
the effects of the mth input over the ith output are given by the element
of Ny atrow i and column m. Finally, the element of row i and column
J of Ny accounts for the relative degree between input j and output i.

PieceWise affine AutoRegressive eXogenous models.—Define
the regressors set X C R" as a bounded polyhedron that satisfies
s(k) € X for all s(k) and is partitioned in L polyhedral subregions
{X},,suchthat ¥ = |J, Xy and X, N X; = 3, Vi # j.

In the case of a SISO system, the PWARX one-step ahead output
prediction scheme is>

[s(k)T .
0, e if s(k) € &)
(s ]
0, L ifsk) € Xy
yk+1=4{ L1 7]
[s(k)] .
0 it if s(tk) € X,
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where 0; is the set of parameters related to the /th subregion, and
the active dynamics (i.e., the set of parameters 0; used to predict the
next value of the output) are chosen according to the membership of
s(k) to a polyhedral partition element &;. In this modeling approach,
a set of affine ARX models are used to approximate the input-output
behavior of a system. The SISO formulation 7 can be straightforwardly
extended to a general MIMO plant by considering the matrices N, €
Ry Ny € R™>*" and N € R"™*" as in Eq. 6.

State-space representation of ARX and PWARX models.—When
dealing with MPC algorithms, it is more convenient to represent the
dynamics of the prediction model in terms of a state-space formula-
tion. According to realization theory,”' several canonical forms (e.g.,
observability or controllability) can be adopted to reformulate an
input-output model in terms of a state-space model. The adoption
of such forms lead to state-space representations with dummy states
that do not have a physical meaning. All of these considerations also
hold for the PWARX models, where the switching dynamics have to
be carefully treated. PWARX models can be reformulated as state-
space models using two main alternative representations:>> (i) the
Mixed Logical Dynamical (MLD) scheme, and (ii) the PieceWise
Linear Time-Invariant (PWLTI) scheme. This work adopts the MLD
formulation, where a set of logic rules, physical laws, and constraints
are used to represent the dynamical behavior of a switching system.
With the state array x(k) € R", the output array y(k) € R", and the
input array u(k) € R", the one-step ahead prediction scheme of a
MLD systems is

x(k + 1) = Ax(k) + Byu(k) + By8(k) + Bzz(k)

y(k) = Cx(k) + Dyu(k) + D»8(k) + D3z (k) [8]

E»d(k) + E3z(k) < Equ(k) + Esx(k) + Es
where the array 8(k) € {0, 1} represents the set of binary variables
(logic rules) used to switch from one submodel to another, z(k) € R":
are auxiliary variables,”® and A, By, B,, B3, C, Dy, D,, D, E,

E,, E;, E,4, and E5 are matrices of suitable dimensions. The model 8
should be constructed to be well posed, as done in this article.

Linear time-varying dynamics.—Consider the discrete-time dy-
namical system,
x(k+1) = flxk), uk), k), [9]
Yk) = gx(k), uk), k),

where f(-) and g(-) are nonlinear/complex algebraic functions. Con-
sider a nominal input sequence @#" € R where Hj is the length
of such sequence, which, if fed into the system, results in a set of
nominal states £" € R™ > and outputs " € R *#, By linearizing
9 around the nominal trajectories (&#", "), the LTV dynamics

Sx(k + 1) = A(K)8x(k) + B(k)du(k),
y(k) = C(k)dx (k) + D(k)du(k),

are obtained, where

df df
k) I . B(k) y .
k), @™ (k) F(k), 7™ (k)
dg dg
Ck)=— , Dk)=—=> ,
(k) I (k) 7
(k) a" (k) k), @™ (k)

and the terms dx(k) = x(k) — X¥"(k), du(k) = u(k) — u"(k), and
3y(k) = y(k) — y"(k) account for the deviations of the linearized
dynamics from the nominal trajectories.

Model Identification

Model identification requires the collection of data that are suf-
ficiently informative to describe the behavior of the system under
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the operating conditions of interest.*’ Here the identification of the
Li-ion cell dynamics is obtained by applying a set of different charg-
ing/discharging profiles to the P2D model. The procedures for identi-
fying the ARX and PWARX models starting from the collected data
are briefly summarized below for the SISO case.

ARX identification algorithm.—Consider a discrete-time SISO
system at equilibrium conditions (ug, o). The application of input
variations 8@ € R" (on top of uo) produces output variations 85 € RY
(on top of yy). For chosen scalars n,, n,, and ny, the array of regressors
is defined as

s(k) = [8y(k) dy(k — 1) --- dy(k —n, + 1)
dulk — ny + Ddu(k — ny) --- du(k —ny —ny, +2)].

According to 6, the complete characterization of an ARX model re-
quires the definition of the parameter vector . In this work, the optimal
0* is chosen according to the Least Squares (LS) approach as

0* = arg min ||®0 — 87||2, [10]
[}

where

-
o [ 5@ o ST L

1 1 e 1
The explicit solution of 10 is 8* = (&' ®)’® 757, where the symbol
T is the matrix inverse operator.

PWARX identification algorithm.—The identification of PWARX
models has been addressed by many authors. In Ref. 50 a modified
K-means algorithm is proposed to cluster the measurement data, fol-
lowed by a Weighted Least Squares (WLS) technique for parameter
identification. A Kohonen neural network-based method was pro-
posed in Ref. 54 for both clustering and identification of PWARX
parameters, while™ proposed a geometric-algebraic approach for the
identification of hybrid systems. A thorough comparison of identifica-
tion techniques for PWARX models is given in Ref. 56 and references
therein. Although identification toolboxes for PWARX exist (e.g.,
HIT,”” PWAOAFID™®), the support for MIMO systems is limited, and
the scalability with respect to the number of identification data points
is poor. For these reasons, we implemented in Matlab> a tailored
algorithm consisting of two steps:

1. Given the regressors set /X' and a number of centroids L to be
positioned, find the optimal clustering configuration {X*'}E
according to the K-means algorithm.

2. Foreach X*!, [ € {1,---, L}, compute the optimal parameter
vectors 07 according to the the LS approach in Eq. 10.

The next subsection briefly recalls the K-means algorithm.

K-means algorithm.—The objective of the K-means algorithm is
to divide N points (which represent the data defined over the re-
gressors set) into L clusters X', [ € {1, ---, L}. Given a distance
function d(x, y), a cluster X' is defined as X! = {x | d(x,C)) <
d(x, C;), Vi # 1}, where C; € R" indicates the centroid of the [th clus-
ter. The optimal cluster configuration X* := {X*!, x*2 ... x*L}
is obtained by applying an iterative procedure aiming to minimize the
cost function

L

J(X) = Z Z d(x, C)).

I=1 xex!

This work uses the Euclidean norm as the distance function d(x, y).
Under this assumption, the optimal cluster configuration results in a set
of polyhedra {X*'}E_|, such that X* = | J, X*/ and X*P N X*/ = 0,
Vp # j. Once the LS approach has been applied on each region X*/,
the MLD formulation of the PWARX model can be obtained using
the MPT Toolbox.®

LTV identification.—As discussed in Linear time-varying dynam-
ics section, LTV representations are used to approximate dynamics
around nominal trajectories of inputs and states. Such trajectories
can be obtained in several ways, based on: (i) prior physical or
heuristic knowledge of the plant,®' (ii) some empirical rules, or (iii)
optimization approaches that exploit a mathematical model of the
plant.>% When optimization-based approaches are applied over non-
linear/complex dynamics, computational expensive procedures are
employed offline to obtain sub-optimal (or, if possible, optimal) solu-
tions to the given problem. This work relies on this latter approach,
which is discussed in MPC formulation for LTV systems section.

Model Predictive Control

MPC is used in a wide variety of industrial applications.®*®> This
control paradigm exploits mathematical models to provide an optimal
control law by considering future references of the controlled plant,
while ensuring the enforcement of operating constraints on the inputs
and outputs. Denote the arrays of states, inputs, and outputs as

Errthrm+pe = [xk + U™ x(k + H, + k)7,
fppimn = [wklk)" - uk + H, k)",

Fenemyp = EIOT - yk+ Hy '], [11]

where H,, and H, are the prediction and control horizons, respectively,
and x(i|j) denotes the value of x at time instant i starting from
time instant j. For computational reasons, it is common to define
H, < H, in order to reduce the number of optimization variables.
When H, < H,, the control moves are kept fixed after the k + H,
(.e.,u(k+H,lk) = utk+ H,+ 1k) = - -- = u(k + H, |k)). At every
discrete time instant k, MPC provides an optimal input sequence by
solving an online optimization,

~min  J (@41, k> Xinit) [12]
Uje:k+Hy |k
subject to
x(j + k) = fx(lk), u(jlk), j) [13]

Y(lk) = gx(jlk), u(jlk), j)
x(klk) = Xinit (14]

IA

Umin u(]lk) =< Umax

A

Xmin = x(.]lk) = Xmax

ymin S y(]|k) S ymax’
where j € [k;k—l— Hp],

b = el % + [ Fersmy i — Frerllp,

[15]
and @, and ¥ .; are reference setpoints (or trajectories) for the inputs
and outputs respectively, the notation ||x||p = ||Q"?x||, denotes
the weighted 2-norm, Q, € R¥r">Hpy is a positive semidefinite
matrix that weights the deviation of the outputs from their references,
and R € RFwmxHou jg a positive definite matrix that accounts for
the deviation of the inputs with respect to their reference value. The
solution of the optimization provides an optimal control sequence
i} 4. - Giventhat @iy, ., . is obtained based only on the predictions
of a mathematical model, its entire application to the plant would not
reject unknown disturbances to the system. For this reason, the so-
called Receding Horizon (RH) approach is adopted where, at each
time step k, only the first element of the optimal control sequence is
applied to the plant,%6-8

J @it by 1k Xinid) = N gekta,

urn(k) = u*(k|k). [16]

At the next time instant, the array of the initial states Xy is updated
with the new measurements and a new optimization is solved.
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MPC formulation for LTI systems.—Consider a Linear Time-
Invariant (LTI) description of the process to be controlled, which has

S x(k), uk), k) =
g(x(k), u(k), k) =

with the cost function 15. In this case, the optimization 12 is a
Quadratic Program (QP). In particular, by replacing the states with
their explicit dependence on the inputs, it is possible to obtain suit-
able matrices A € R H ¢ RHumxHae and vectors b € R”,
f € RHwm guch that 12 can be rewritten as

Ax (k) + Bu(k),
Cx(k) + Du(k), [17

1
.
min 2uk v Hibcir e + f e e [18]
fjeik+ Hy |k

subject to

Allgyrmx < b

MPC formulation for MLD systems.—When MLD systems 8
are considered, due to the presence of binary variables 8xxin,x €
{0, 1}"Hr | the optimization 12 becomes a Mixed Integer QP (MIQP),

Lot o 3
ImnEYTHYH+fTT [19]
Y

subject to

AY <b

8(jlk) € {0, 1),
where j € [k;k + H,] and Y= [ﬁ;HHﬂk, S,:k+Hp|k, Z,:HHN,{]T isa
suitable array containing all the problem variables. Due to the presence

of binary variables, the complexity of the optimization is always higher
than in the LTI/LTV case.

MPC formulation for LTV systems.—Finally, when a Linear
Time-Varying (LTV) description,

Sx(k 4 1) = A(k)dx (k) + B(k)du(k),
[20]
Sy(k) = C(k)dx(k) + D(k)du(k),

is considered with the cost function 15, the optimization 12 is still a QP.
However, differently from the LTI case, the matrices H (k), A(k) and
the arrays f(k), b(k) are time varying and need to be recomputed at
each time step k. By introducing the optimization variables 8 ..,
similarly to 11, the reformulation

1 ) _
min 5Su;HHl,‘kH(k)Suk;Hm+fT(k>8uk;k+m [21]

Sitkck-+Hy Ik
subject to

AR ysy 1,11 < b(k)

is obtained. LTV systems can be used to approximate nonlin-
ear/complex dynamics around a nominal trajectory. The latter can
be computed by solving, at a given initial time &, an optimization of
the form

min S, Xin) [22]
ko ko+Hy
subject to
x"(j+ D= f&"0), u(), J) (23]

YU = g&" (), u" (), J)
x"(ko) = Xinic [24]

Umin = un(]) = Umax
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X min S x“(j) =< X max

Ymin = yn(j) = Ymax
where j € [ko;ko 4+ Hz] and @i ;. (. € R™M7, %y, € R,
and ¥y 1 n, € R™ A are defined similarly to 11. Due to the nonlin-
ear/complex dynamics in Eq. 23, this optimization is solved offline.
To obtain a nominal trajectory useful for control purposes, the opti-
mization is solved over a horizon sufficiently long to guarantee the
attainment of a neighborhood of the desired target.

LTV closed-loop MPC scheme.—Starting from k = kj, the optimal
solution &7, . ;. and &% ., provided by Eq. 22 are applied within
a MPC context as:

1. Obtain the LTV approximation of the nonlinear/complex dynam-
ics using the sub-sequences @y, and ¥,

2. At time k, solve the optimization 21 to obtain 8&.iim,x and
update the subsequence &y, ;. <= ey, + Sk, ik

3. According to the RH approach 16, apply u™ *(k) to the real plant

4. Ifk+14 H, > ko + Hj; then extend the nominal input trajectory

by repeating its last element, i.e.,
i gem, = K+ D u™ ke +2),
u™*(k + Hy)].

Update the initial states 8x;,; using the plant measurements
~n, % . ~n, %

Compute X, 11, according to &’y p,

7. Setk < k4 1 and go back to Step 1

u™*(k + Hy),

AN

Constraint softening.—When dealing with nonlinear systems,
such as the P2D, the use of model approximations for control purposes
brings inevitable mismatch which may lead to constraint violations
on the real plant. A common approach to guarantee feasibility is to
soften the state and output constraints by suitably modifying the opti-
mization. The softening of the outputs constraints can be carried out
by adding a set of optimization variables to the general formulation
12, which leads to the optimization

min j(ﬁk:kJrH,,lk, fk:k+H,,\k7 Xinit) [25]
Bt Hy 1k Tkek+Hp [k
subject to
x(j + k) = f(x(jlk), u(jlk), j) [26]
Y(lk) = g(x(jlk), u(jlk), j)

x(klk) = Xinit [27]
Umin < u(jlk) < Umax,

Xmin < X(J|K) < Xmax

Ymin — LUK < ¥ 1K) < Yiax + T 16,

L(jlk) =0,

where f'k:H ke € R™ Hu is defined similarly to 11, the cost function
J is defined as

T = ~ = 2
J(uk:kJrHuUw rk:k+Hp|k» Xinit) = J(uk:k+HM|k7 Xinit) + ||rk:k+H,,\k||Qra

and Qr e R *Hpmy ig a positive semidefinite matrix used to weight
the constraint violations.

Results

Identification results.—To identify the ARX and PWARX approx-
imations of the Li-ion cell dynamics, a set of charging and discharging
input profiles were applied to the P2D model. The cell starts from a
steady-state condition characterized by SOCy = 20%, Vouo = 3.73
V, T, = 298.15 K and 14,0 = 0.15 V, which corresponds to the
application of I, 0 = 0 A m~2. The identification dataset Z (i.e., the
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Figure 2. Li-ion cell data used for the identification of the PWARX models.

values of Iy, (1), Vou, T (t), and SOC(?)) are reported in Fig. 2. A sim-
ilar dataset, V, was used for validation purposes. ARX and PWARX
models were obtained according to the procedures summarized in
ARX identification algorithm and PWARX identification algorithm
sections respectively, with N,, Np, and Nj as

1000 1 1

1 20 2 0
Ne=1, 0 1 o M=|s| M=, [28]

000 1 5 1

This choice was made upon the analysis of the cell dynamics. Note
that, the first row of N, refers to the SOC(¢), the second to Vy(1),
the third to 7'(¢) and the fourth to y4.(¢). As shown in Fig. 2, the
SOC(#) exhibits an integral behavior with respect to the applied current
density, whereas V() also exhibits higher order dynamics during
relaxation periods. Moreover, the dynamics of the voltage shows a
direct feedthrough with respect to I,,,(f), which motivates the struc-
ture of Ny. The temperature is mainly affected by the applied current
density and the SOC. Whereas SOC(z), Vo (¢) and ny;4.(f) are well
described by linear models, a linear approximation of 7'(¢) provides
poor performance (see first row of Table I, where the results refer to
the dataset V). Indeed, inspection of Fig. 3 indicates that (i) under-
shoots in the temperature profile can be observed for certain values
of the SOC, (ii) a change of rising slope can be found according to
the duration of the charging or discharging current, and (ii7) the tem-
perature rises in the presence of either positive or negative values of
Lpp(1). To better capture these phenomena, a PWARX model was em-

Table I. Comparison of the fitness function 29 among different
models. Where the number of clusters is 0, a linear ARX model is
used.

# of clusters SOC Voltage Temperature Nsr
0 97% 83% —4% 87%
4 97% 83% 69% 87%
8 97% 83% 89% 87%

ployed to approximate the temperature dynamics, while the behaviors
of SOC, voltage and side reaction overpotential at the end of the neg-
ative electrode are still described with ARX models. The choice made
in Eq. 28 implies that the temperature regressors set Xy C R%. Two
different PWARX models were identified, with 4 and 8 clusters respec-
tively. The performance of the obtained approximations are reported in
Table I, where the fitness function Jg, is computed as

. =51, ) 291

Joe = 100% (1 - _
|y, = 3.0,

with y, the vector of outputs of the validation dataset V, y the pre-
dictions obtained according to a particular model, and y, the mean
value of y,. Since the ARX models used in the three experiments are
the same for SOC(z), V,u(?) and g 4.(2), their fitness values remain
unchanged. On the other hand, the use of PWARX models improves
significantly the approximation of the temperature behavior as ob-
served in Fig. 4, which compares the temperature profiles for a subset
of the validation profile. In particular, the ARX model sometimes
even fails to identify the correct sign of the temperature change. The
PWARX models produce much more accurate temperature predic-
tions, even when only a few clusters are considered. Fig. 5 reports the

304

(]
o
N

Temperature [K]

3.4 3.6 3.8 4 4.2 4.4
Time [s] «10°

Figure 3. Temperature profile for the identification dataset 7.
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Figure 4. The temperature profiles for three different identified models and
the P2D dynamics using the V' dataset.
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Figure 5. Switches among the different submodels for the 4- and 8-cluster
PWARX models. These data were obtained during the validation of the hybrid
models.

switches among the different submodels, for PWARX models with 4
and 8 clusters.

Control results.—According to Identification results section, the
PWARX model with 8 clusters was the most accurate approximation
of the P2D model. On the other hand, due to its hybrid nature, its model
form has the highest online computational cost when used in an MPC
algorithm. Indeed, its MPC formulation would require the solution of
an MIQP at each time instant, with an online computational cost of
~3600 s¢, which is much higher than the sampling time 7; = 80 s. To
reduce the online computational cost while still providing satisfactory
results, an LTV approximation of the 8-cluster PWARX model was
computed.

The nominal trajectory used to compute the 8-cluster LTV
model was obtained according to problem 23 with initial condition
SOCy = 20 %, Vouwo = 3.79 V, Ty = 298.15 K and ny;4.0 = 0.15
V (steady-state condition corresponding to Iy0 = 0 A m™2),
y = [SOCVouTsizel", u = Lpp, Hy = 30 steps, and optimiza-
tion parameters as in Table II. In this case, the optimization 23 was
solved without any softening of the output constraints.

To optimally charge the Li-ion cell, MPC strategies based on ARX,
PWARX, and LTV models were designed using the same parameters
as in Table I and H, = H, = 30 steps. The effectiveness of the
different controllers was evaluated using the P2D model as the real
plant. Due to the mismatch between the P2D dynamics and the mod-
els used for control, soft constraints were considered as in Eq. 25
with Qr = diag{3000, 3000, 3000, 3000}. All simulations were per-
formed using Matlab and the numerical implementation of the P2D
model provided by the LIONSIMBA toolbox,* which relies on the

°The commercial solver CPLEX® was used to solve the resulting MIQP and QP problems
on ai5@ 2.7-GHz 64-bit CPU system with 16 Gbytes of RAM running Windows 10 Pro.
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Table II. Optimization parameters.

Parameter Value
Yrin [0%, 2.5V, 290K, 0 V]
Yimax [95%, 4.2V, 303.65K, — V]
Umin 0Am2
Umax 40 Am~?
Aupin —10 A m_2 S_]
Aty 10Am25s!
0, diag{10, 0, 0, 0}
R 1
Yret [50, 0, 0, 0]"
Uref 0
Ts 80 s

numerical integrator IDAS to solve the resulting set of DAEs. The
MPT Toolbox® was used to compute the MLD dynamics, and the
commercial solver CPLEX® to solve the resulting MIQP and QP
problems on a i5@ 2.7-GHs 64-bit CPU system with 16 Gbytes of
RAM running Windows 10 Pro.

The closed-loop responses are compared in Fig. 6 for MPC based
on ARX (solid blue), PWARX (dashed red), and LTV (dot-dashed
yellow) models. MPC with the ARX model attained the desired SOC
in the shortest time (1280 s) but had the highest temperature con-
straint violation (305.7 K). Moreover, due to the significant mismatch
between the P2D model and its ARX approximation, the closed-loop
current profile exhibited undesired fluctuations, mainly between 800
and 1100 seconds. The use of a PWARX model with 4 clusters pro-
vided significant improvement both in terms of constraint satisfaction
and current profile. This improved performance comes with increased
complexity (2.5 s to solve each optimization compared to 0.02 s for the
ARX model) but is still fast enough for online application (the sam-
pling time is 7; = 80 ). Finally, the use of an LTV model leads to even
better performance, with a smoother input profile when compared to
the PWARX model. In fact, the better model approximation leads to an
anticipated current drop, which allows the MPC algorithm to (i) avoid
undesired fluctuations in the input profile, (i7) attain the reference SOC
value in a shorter time (1840 s vs. 2100 s for the PWARX model),
and (iii) almost not exceed the temperature constraints (303.9 K
vs. 304.3 K for the PWARX model). Since the LTV-based MPC re-
quires the solution of a QP (rather than an MIQP), its online cost
(0.022 s) is comparable to the ARX case. Note also that we required
the side-reaction overpotential at the end of the negative electrode
to be greater than zero. By doing so, we prevent lithium plating on
the particles, thus limiting the degradation of the cell. A potential
limitation of the LTV-based approach is that it relies on the lineariza-
tion of the 8-cluster PWARX around a nominal trajectory. Given that
such trajectory was obtained offline starting from a particular initial
condition, the closed-loop performance may be poor when different
starting conditions are considered. For this reason, the developed LT V-
based MPC was also tested for steady states with SOCy = 15% and
SOCy = 25%. According to Fig. 7, which compares the LTV with
the 4-cluster PWARX, even in the presence of initial condition un-
certainties, the LTV-based approach still provides better closed-loop
performance.

Note that, even though an LTV approximation could be directly ob-
tained starting from the P2D dynamics, we decided to use the 8-cluster
PWARX model instead for the following reasons: (i) computing the
optimal trajectory using the P2D model requires the solution of a
nonlinear optimization problem. Due to the nature of such a prob-
lem, there is no guarantee to obtain the (global) optimum. Besides,
(ii) when linearizing the P2D dynamics, one would actually have
to linearize the discretized (in space) version of such a model. The
use of, for example, a finite volume scheme (as in LIONSIMBA),
with a reasonable number of volumes to guarantee a good approxi-
mation, would lead to a high-order LTV model. Even being linear, the
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Figure 6. State profiles for three ABMSs: ARX-based (solid blue line), PWARX-based (dashed-orange line), and LT V-based (dot-dashed yellow line).
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complexity of the resulting model would prevent the use of long MPC
horizons, thus limiting its performance.

Conclusions

This article considers the optimal charging of a Li-ion cell using
a variety of MPC strategies that were validated using the well-known
P2D model based on porous electrode theory. The complexity of the
P2D model, which is a set of highly nonlinear and tightly coupled
PDAEs, makes its direct usage within a MPC framework impracti-
cal. For this reason, the P2D dynamics were represented by means
of a linear ARX model. Although the ARX model is able to pro-
vide interesting results, the presence of strong nonlinearities for the
thermal behavior called for the adoption of more sophisticated ap-
proximations. As a step toward the improvement of the closed-loop
performance, PWARX models were proposed. A comparison among
the prediction accuracy of the ARX, 4-cluster, and 8-cluster PWARX
models highlighted the capabilities of the piecewise affine dynamics
to better approximate the P2D nonlinearities and lead to improved
closed-loop performance. A drawback of PWARX models is their use
of binary variables, which leads to the formulation of MIQPs that
need to be solved online by the MPC algorithm. Since the complexity
of such problems grows exponentially with the number of clusters,
their real-time application can become expensive. To reduce online
computational cost, the 8-cluster PWARX model was approximated
with an LTV representation obtained around a set of nominal trajec-
tories. With respect to the ARX model, the MPC strategies based on
the 4-cluster PWARX and the LTV approximations provided better
closed-loop performance. Thanks to the absence of binary variables,
the LTV-based MPC algorithm is formulated as a QP instead of an
MIQP and so is the least expensive for online applications. Even in
the presence of perturbations of the initial states, the LTV strategy
provided good closed-loop performance. To further exploit the poten-
tiality of both the P2D model and MPC algorithms, control strategies
with constraints over the side reaction overpotential have been pro-
posed. The outcomes of this strategies have further emphasized the
remarkable capabilities of predictive techniques to guarantee high
control performance, while ensuring the enforcement of key physical
constraints.

The results highlighted the suitability of the MPC algorithms for
the development of future ABMSs. By predicting the plant dynam-
ics while enforcing operational constraints, the optimal control law
provided by MPC can anticipate possible unwanted behaviors and
improve the overall closed-loop performance.
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