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a b s t r a c t

The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of
partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo
two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating
conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex
for standard estimation and control applications. This article presents an original algorithm for state-of-
charge estimation using the P2D model. Partial differential equations are discretized using implicit stable
algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model
(consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncer-
tainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the
pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial co-
ordinates independently is developed. This algorithm circumvents the degeneracy problems associated
with high-dimensional state estimation and avoids the repetitive solution of implicit equations by
defining a ‘tether’ particle. The approach is illustrated through extensive simulations.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Lithium-ion (Li-ion) batteries are prevalent due to their appli-
cations in a variety of low-power consumer gadgets, high-power
automobiles and spacecrafts. Their widespread use is due to
numerous desirable properties, such as high energy density, high
efficiency, slow material degradation, lack of memory effect, low
self-discharge, and minimal maintenance requirements. Despite
their advantages, Li-ion batteries are susceptible to over-heating
), yiting@interchange.ubc.ca
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and explosions caused by overcharging and/or high coulomb
rates. Disasters caused by overheated lithium batteries include the
fiery destruction of laptops and commercial aircraft. Given the va-
riety of applications that benefit from the use of Li-ion batteries, it is
essential that they are operated safely and reliably under a wide
range of load and weather conditions. To ensure safe operation, a
method is needed to predict the onsets of overcharging and
runaway temperatures. The State-of-Charge (SOC), which is a
measure of the amount of charge remaining in a battery, is a
property that can be used for this purpose.

The dynamics of a Li-ion battery are dictated by a set of complex
equations that govern the electrochemical reaction kinetics and
transport phenomenaoccurringwithin the battery. A typical battery
model accounts for variations in the concentrations and potentials
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across the length of the battery. In most practical cases, other than
the voltage and current, the concentrations and potentials within
the battery are almost impossible tomeasure. Interestingly, the SOC
is a direct function of the concentration of lithium ions, and not of
voltage and current. Therefore, voltage and current measurements
are uninformative with regards to SOC estimation. An obvious,
alternate solution to this problem is to use a dynamic model.

Literature has demonstrated the modeling of Li-ion batteries at
various levels of abstraction, ranging from simple empirical models
(such as equivalent circuit models) to fully-coupled, complex
models (such as molecular level). The Equivalent Circuit Models
(ECM) approximates battery dynamics using analogous combina-
tions of electrical resistors and capacitors, but disregards the
physics and chemistry within the battery [1,2,3]. Therefore, ECMs
perform poorly in cases where the physical and chemical effects
become prevalent, such as during high discharge rates. A compar-
ative study of different ECMs is presented in Ref. [4]. On the other
Fig. 1. An illustration of (a) standard Single Particle Model and (b) Pseudo Two-dimensional M
(right side) during a discharge cycle.
hand, the Single Particle Model (SPM) reflects the physical and
chemical properties of a battery by representing each electrode as a
a single large particle. By doing so, the overall Li-ion intercalation
process is appropriately approximated [5] (see Fig. 1(a) for an
illustration of single particle model). SPMs consist of two algebraic
equations and a diffusion equation based on Fick's second law. The
model equations can be solved easily and require insignificant
computational resources [6]. Finally, the Pseudo Two-Dimensional
(P2D) Model is the most comprehensive fundamental model that
is commonly used in the battery modeling literature. This model is
based on porous electrode theory and provides implicit chemical
and electrochemical relations between concentrations, potentials,
and current [7,8]. Other complex models such as 3D thermal model,
P2D stress model, population balance model and molecular dy-
namic models are also available [9,10,11]. The accuracy of these
models roughly improves with their complexity; however, the
more complex models are difficult to simulate faster than real time
odel with a positive electrode (left side), a separator (center), and a negative electrode
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and have not been useful for estimation and control ([12]). On the
other hand, simple models are not accurate and are weakly con-
nected to the phenomena occurring in the battery. Therefore, it is
important to strike a balance between the model accuracy and the
real-time implementation speed so that estimation and control
algorithms can be embedded in microprocessors with limited
memory and processing power. It has been shown in practice that
the pseudo two-dimensional (P2D) model, developed by Ref. [8], is
accurate over a wide range of coulomb rates and for different bat-
tery chemistries. The P2D model is not as complex as molecular
dynamic models, since size and morphology of the lithium battery
material are not considered [13,14], but is still complex enough that
its use in online battery estimation and control algorithms has been
limited. In this paper, the P2D model is reformulated to enable the
application of real-time estimation and control algorithms.

The P2D model consists of a set of coupled nonlinear partial
differential equations (PDEs). A number of approximations of this
model have been developed in literature to convert the model into
a form that is suitable for analysis and to simulate the model at a
fast rate for use in online applications. Most approximations of this
model are either accurate at small coulomb rates or are too slow for
online implementation ([12,6]). The only known high-speed
implementation of the P2D model is developed by Ref. [15] using
orthogonal collocation methods. However, this method is not
suitable for direct application of standard estimation algorithms.

1.1. Current challenges

A variety of approximate models have been used for state and
parameter estimation in Li-ion batteries ([16]). ECMs in conjunction
with nonlinear observers are used in Refs. [17,18], and linear time-
variant models are used in Ref. [19] for state estimation. The
extended Kalman filter has been widely used on approximate
models including linearized P2D and SP models ([20,21,22,23]). An
adaptive extended Kalman filter and an adaptive nonlinear
observer for an SP model are developed in Refs. [24] and [25].
Moreover [26], demonstrated the use of a nonlinear Luenberger
observer. This observer was based on an approximation of the P2D
model, with the important assumption of uniform concentration
across the battery. Finally [27], designed an unscented Kalman filter
based on an ordinary differential equation (ODE) approximation of
the P2D model. These model and estimator approximations are
accurate at low discharge or charge rates, but often exhibit severe
inaccuracies at high discharge rates. Therefore, an estimator that
can be applied on the original P2D model is preferred and expected
to provide better estimates. Although intensive research efforts
have been applied in the area of state estimation for P2Dmodels, no
known approach has been developed that can be applied to the P2D
model without order-reducing model simplifications.

1.2. Contributions

In light of the previous arguments, this articlewill demonstrate a
state estimation technique for P2D models that requires no model
simplifications, except two minor ones. The method requires nu-
merical approximations that are common in most discrete time-
based approaches, as well as an approximation on solid concentra-
tions. The P2D model is reformulated as a state-space model with
linear, nonlinear, and algebraic states. Measurement and model
uncertainties are characterized by stochastic noise. State estimation
is accomplished by a modified particle filter that sweeps indepen-
dently in timeand spatial domains. This article is an expansionof our
conference paper [28]. The proposed approach has three main ad-
vantages: (1) The estimator is developed for the highly accurate P2D
model, (2) The partial differential equations (PDEs) can be solved
very fast, and (3) The estimation algorithm is low-dimensional.
In summary, there are several articles written on the topic of

state of charge estimation in Li-ion batteries spanning more than a
decade. The differences in these articles are either due to the dif-
ferences in models or due to the differences in the estimation al-
gorithms employed to solve this problem. Naturally, the quality of
the SOC estimates depends both on the quality of themodel and the
estimation algorithm. The literature is replete with algorithms to
solve this problem with rather simplistic models that are not
realistic in an operational setting. The P2D is one of the more so-
phisticated and accurate models that are available in the literature.
However, to the best of our knowledge there are just a handful of
articles that have used the P2D model and even those articles do
not consider a stochastic model. It is not surprising that nobody has
so far proposed using a stochastic P2D model because there are no
off-the-shelf estimation algorithms that can be applied on a sto-
chastic P2D model. We believe this is the very first article where a
novel solution to the SOC estimation problem is proposed with one
of the most sophisticated models for Li-ion batteries. The contri-
butions of this paper are two-fold: 1) a realistic stochastic model is
used, and 2) a novel estimation algorithm is developed.

2. Li-ion battery model

A typical intercalation Li-ion battery consists of three standard
regions: a positive electrode, a separator, and a negative electrode.
A thorough description of the various chemical, transport, and
electrochemical phenomena that occur in a Li-ion battery can be
found in Ref. [29]. The positive and negative electrodes contain
electrolyte to transport the lithium ions and an active material that
holds the lithium ions. The electrolyte and the active material are
held together by fillers and other binding material. The separator
contains the electrolyte, fillers and a binding material but no active
material. The separator prevents the battery from short circuiting
and allows transportation of positively charged lithium ions but
blocks negatively charged electrons. During a discharge cycle, the
lithium ions leave the active material in the negative electrode,
travel through the separator with the help of the electrolyte, and
then become deposited (or intercalated) in the active material in
the positive electrode. The electrons leave the negative electrode,
travel through an external circuit and react with lithium ions in the
positive electrode as the ions are deposited on the active material
(see Fig. 1(b) for a typical battery operation during a discharge
cycle). This process reverses itself during a charging cycle.

2.1. Pseudo two-dimensional (P2D) model

A typical Li-ion battery dynamics is modeled by writing the
conservation of mass and the conservation of charge equations on
lithium ions. These equations can be written using the electrolyte
concentration ce,i(x,t) 2 ℝþ, the electrolyte potential Fe,i(x,t) 2 ℝ,
the active material potential (also called the solid potential)
Fs,i(x,t) 2 ℝ, and the concentration of lithiu, ions in the spherical
particles of the active material cs,i(x,r(x),t) 2 ℝþ, where x 2 ℝ de-
notes the one-dimensional spatial direction along which the
lithium ions are transported, t2 ℝþ is the time, and r(x)2 ℝþ is the
radial distancewithin an active particle at location x. Also, the index
i ¼ {p,s,n} indicates the region of the battery e positive electrode
(i¼ p), separator (i¼ s), and negative electrode (i¼ n). The standard
P2D model can be derived using concentrated solution and porous
electrode theories [7,30,31,8]. The original P2D model, as proposed
in Ref. [30], consists of two PDEs for diffusion of lithium ions
through the electrolyte and through the active particles. The orig-
inal model has been slightly modified by approximating the diffu-
sion equations corresponding to active material in Ref. [32]. This



Table 1
A modified pseudo two-dimensional (P2D) model for a standard Li-ion battery. The positive electrode extends from x ¼ 0 (n ¼ 1) to x ¼ lp (n ¼ Np), separator up to
x¼l pþ ls (n ¼ Np þ Ns), and negative electrode up to x¼l pþ ls þ ln (n ¼ N pþ Ns þ Nn).

Conservation equations Boundary conditions

x ¼ 0 x ¼ lp x ¼ lp þ ls x ¼ lp þ ls þ ln

Mass

(M1) εi
vce;i
vt ¼ Di

 
v2ce;i
vx2

!
þ aið1� tþÞji

vce;p
vx ¼ 0 �Dp

vce;p
vx ¼ �Ds

vce;s
vx �Ds

vce;s
vx ¼ �Dn

vce;n
vx

vce;n
vx ¼ 0

(M2) vcs;i
vt ¼ �3 ji

Ri

(M3) c�s;i � cs;i ¼ � Ri
Ds;i

ji
5

Charge

(C1) ki
vFe;i
vx ¼ �ie þ 2kiRT

F ð1� tþÞ vlnce;ivx
vFe;p

vx ¼ 0 �kp
vFe;p

vx ¼ �ks
vFe;s
vx �ks

vFe;s
vx ¼ �kn

vFe;n
vx

vFe;n
vx ¼ 0

(C2) vie;i
vx ¼ aiFji ie,p ¼ 0 ie,p ¼ I ie,n ¼ I ie,n ¼ 0

(C3) vFs;i
vx ¼ ie;i�I

si
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modified P2D model and the corresponding boundary conditions
are shown in Table 1 ([32,15]). Using index i 2 {p,s,n} to denote
positive electrode, separator, and negative electrodes: εi2 (0,1) and
Di 2 ℝþ are the porosity and the effective diffusion coefficient in
section i, respectively; cs;iðx; tÞ2ℝþ is the average lithium ion
concentration in the solid particles; c�s;iðx; tÞ2ℝþ is the surface
concentration of the solid particles; ai2 ℝþ is the ratio between the
particle surface area to its volume; tþ 2 (0,1) is the transference
number; Ri 2 ℝþ is the radius of the particle; ie,i(x,t) 2 ℝ is the
current in the electrolyte; ki(x) 2 ℝþ is the conductivity of elec-
trolyte; R is the universal gas constant; T2 ℝþ is the temperature; F
is the Faraday constant; I(t) 2 ℝþ is the current applied to the
battery; si2ℝþ is the effective solid-phase conductivity; and ji(x,t)
2ℝ is the lithium ion flux at the surface of solid particles. Finally, in
the modified P2D model, it is assumed that the flux and other
concentrations only vary in the x-direction and are constant in the y
and z directions. The list of all the parameters in the P2Dmodel and
their values are provided in Table 2.

The modified P2D model consists of two coupled PDEs and an
algebraic equation that define the conservation of mass in each of
Table 2
List of variables and parameters used in the P2D model in Table 1. Unless otherwise note
Ref. [15]. Note that Ui and ki are variables defined as a function of the electrolyte concen

Symbol Definition Values

Positiv

(i ¼ p)

Constants
ai Particle surface area to volume ratio 88500
cmax
i Maximum lithium concentration in solid particles 51554
Di Diffusivity 1.65 �
Ds,i Solid phase diffusivity 1.0 � 1
εi Porosity 0.385
F Faraday's constant
ki Reaction rate constant 2.334
li Length of region 80 � 1
R Universal gas constant
Ri Particle radius 2.0 � 1
si Effective solid-phase conductivity 100
T Temperature 298.15
tþ Transference number
Variables
ce,i Electrolyte concentration
cs;i Average lithium concentration in solid particles
c�s;i Surface lithium concentration on solid particles

ji Lithium ion flux
I Current applied to battery
ie,i Current in electrolyte
Fe,i Electric potential in electrolyte
Fs,i Electric potential in solid particles
Ui Open-circuit voltage
ki Liquid phase conductivity
the three sections of the battery (see (M1) (M2), and (M3) in
Table 1). The conservation equation (M1) is obtained using the
concentration solution theory and material balances. The
boundary conditions for (M1) has the electrolyte concentration
flux being zero at the boundary between the electrode and the
environment and equal to the flux on the side of the separator at
the corresponding boundary. Equations (M2) and (M3) are sim-
plifications of the Fick's diffusion equation for lithium ions in the
active material in each electrode [32]. These equations relate
lithium ion flux (ji) to the average (cs;i) and surface (c�s;i) concen-
trations of the lithium ions in the active material. The modified
P2D model also consists of three PDEs that define the conserva-
tion of charge in the electrodes and the separator (see C1, C2 and
C3 in Table 1). The charge conservation equations are derived
using porous electrode theory [7]. Equation (C1) provides an
expression for the electrolyte current and the boundary condi-
tions ensure that the current is zero outside the battery and equal
on both sides of the boundary between the electrodes and the
separator. Equation (C2) provides a relation between the elec-
trolyte current and the lithium ion flux through the active
d, all constants used for the positive and negative electrodes and separator are from
tration [15].

Units

e Separator Negative

(i ¼ s) (i ¼ n)

0 723600 M2/m3

30555 mol/m3

10�11 2.06 � 10�10 4.15 � 10�11 M2/s
0�14 3.9 � 10�14 M2/s

0.724 0.485 e

96487 C/mol
� 10�11 5.034 � 10�11 M2.5/mol0.5/s
0�6 25 � 10�6 88 � 10�6 m

8.314 J/mol/K
0�6 2.0 � 10�6 m

100 S/m
298.15 298.15 K
0.364 e

mol/m3

mol/m3

mol/m3

mol/m2/s
A/m2

A/m2

V
V

[15] V
[15] S/m
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Fig. 2. The time-space discretization grid used in solving the PDEs.
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material. The boundary conditions on (C2) ensure that the elec-
trolyte current is zero outside the battery and equal to the applied
current I in the separator. Equation (C3) is Ohm's law relating the
solid potential to the electrolyte current and the applied current.
In Table 1, ji(x,t) is the approximate flux of lithium ions across the
surface of the active material at distance x and time t. It is a
function of the spatial and temporal coordinates and is given by
Butler-Volmer kinetics [33]:

ji¼2ki
h
ce;ic

�
s;i

�
cmax
i �c�s;i

�i0:5
sinh

�
0:5F
RT

�
Fs;i�Fe;i�Ui

��
; (1)

where: ki is the kinetic reaction constant; cmax
i 2ℝþ is the

maximum possible lithium ion concentration in the solid particles;
Ui2ℝ is the open-circuit voltage; and i ¼ {p,s,n} is an index variable
denoting the section of the battery. Here p, s, and n correspond to
positive electrode, separator and negative electrode, respectively.
The fluxes jp and jn in the electrodes are typically non-zero, while
the flux js in the separator is always zero. This is because the
separator does not include any active material.

3. Simulation of P2D model

Developing an efficient, fast and a reliable numerical solution for
the complex nonlinear PDEs in Table 1 is a non-trivial exercise. In
Ref. [8], the PDEs were iteratively solved using a first-order Taylor
series approximation, and later in Refs. [34,15] the PDEs were
solved using a coordinate transformation followed by collocation
methods. Since 1995, numerous numerical solutions have been
proposed to efficiently solve the PDEs in Table 1; however, these
methods do not lend themselves to the state-space model (SSM)
form suitable for estimation and control algorithms.

3.1. Proposed numerical solution

In this paper, a numerical approach is developed reformulates
the numerical solution to the modified P2D model into a SSM rep-
resentation. The proposed numerical solution is based on the
following important observations about the modified P2Dmodel in
Table 1. The PDEs and their corresponding boundary conditions are
nonlinear and highly coupled and require advanced numerical
techniques to solve (M1). and (C1) have two Neumann boundary
conditions in each section and therefore, explicit numerical ap-
proximations can become unstable (C3). does not have any explicit
boundary conditions but are implicitly enforced through (C2) (C2).
has two boundary conditions in each section despite being a first-
order PDE. These boundary conditions are enforced by finding a
suitable solid potential Fs and ionic flux ji. The proposed numerical
method divides the time and spatial coordinates into M equal time
grid points and Ni equal spatial grid points, where i ¼ {p,s,n} as
shown inFig. 2. Theconcentrations, potentials, andothervariables at
time and space coordinates (t,x) are denoted by the corresponding
discrete coordinate (m,n) where m denotes discrete time and n de-
notes discrete spatial location.1 The bold-faced variables are ob-
tained by concatenating their corresponding values at all the spatial
locations. For instance, ce;iðmÞ≡½ce;iðm;1Þ; ce;iðm;2Þ;/; ce;iðm;NiÞ�T.
The Crank-Nicolson approximation of (M1) leads to

ce;iðmÞ ¼ Ac;ice;iðm� 1Þ þ Bc;ijiðmÞ; (2)

where Ac,i and Bc,i are constant matrices of appropriate dimensions.
1 Note that the same notation is used for continuous and discrete variables, with
the meaning being clear from the context.
Observe that the constants Ac,i and Bc,i depend on the index i2
{p,s,n}. The boundary conditions for (M1) are numerically approx-
imated using second-order discretization methods and the corre-
sponding equality constraints are included in (2). Observe that in
(2), ce,i at timem can be expressed as a function of ce,i atm� 1 and ji
atm. This makes (2) implicit in ce,i, since ji itself depends on ce,i (see
(1)). For the sake of brevity, the derivation of (2) is not shown here,
but can be easily derived. Similarly, using first-order implicit nu-
merical approximation, (C2) and (C3) can be written as follows�
Fs;iðmÞ
ie;iðmÞ

	
¼ AF;ijiðmÞ þ BF;iIðmÞ; (3)

where AF,i and BF,i are constant matrices of appropriate di-
mensions. As in (2), the boundary conditions on (C2) are included in
(3). Observe that although (C3) does not have any defined boundary
conditions, (C2) and (C3) together are well-posed, and can be
solved uniquely using (3) for any assumed boundary conditions.

The PDE in (C1) is similarly approximated using first-order im-
plicit equations to obtain

Fe;iðmÞ ¼ FF
�
ie;iðmÞ; ce;iðmÞ�; (4)

where FF is an appropriate nonlinear function of ie,i and ce,i. The
PDE (M2) and the algebraic equation (M3) can similarly be
discretized and expressed as

cs;iðmÞ ¼ cs;iðm� 1Þ þ Bavg;ijiðmÞ; (5)

c�s;iðmÞ ¼ cs;iðmÞ þ Bsurf ;ijiðmÞ; (6)

with constant matrices Bavg,i and Bsurf,i. Both (5) and (6) are implicit
equations due to ji, which is given as

jiðmÞ ¼ F j

�
ce;iðmÞ; c�s;iðmÞ; ie;iðmÞ;Fs;iðmÞ;Fe;iðmÞ

�
; (7)

where F j is an appropriate nonlinear function. Finally, themodified
P2D model in Table 1 is represented by its discrete approximation
through (2)e(6). The implementation of the proposed numerical
solution is discussed next.

3.2. Implementation

The implementation of the proposed numerical solution is
based on the following observations in Table 1:
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(i) equations (M1), (M2), (M3), and (C2) are linear PDEs once ji is
known;
(ii) equation (C3) does not have any specified boundary condi-
tions, and therefore, initial conditions for Fs,p and Fs,n need to
be guessed; and
(iii) the first-order PDE in (C2) can be treated as an initial value
problem and solved iteratively until both the boundary condi-
tions are satisfied (this is a form of the shooting method to solve
ordinary differential equations with two boundary conditions).

The PDEs in Table 1 are solved by starting with an initial guess
for ji(m). Then ce,i(m) is obtained from (2), and cs;iðmÞ and c�s;iðmÞ are
obtained from (5) and (6), respectively. Since the PDE (C3) does not
have specified boundary conditions, the potential at the interface of
current collector/positive electrode and the interface of separator/
negative electrode denoted by Fs,p(m,1) and Fs,n(m,1) in the
discretized-space, respectively, are initially guessed and later
updated based on an optimization algorithm. Equation (C2) is
solved recursively as an initial value problem and ji(m) is updated
using an optimization algorithm until all of the boundary condi-
tions for (C2) are satisfied. This procedure is shown in Algorithm 1
in the form of a pseudocode. In Algorithm 1, J is the objective
function defined as

J≡w1jjji � jtempjj2 þw2jibc;1j þw3jibc;2j; (8)

where k$k2 is the two-norm, j$j is an absolute value function, and
w ¼ [w1,w2,w3]T are the user-defined weights in the optimization
problem. Typically, w2, w3 are set to some large value to ensure
accurate estimation of Fs,p(m,1) and Fs,n(m,1). This is because ac-
curate estimation of Fs,i is crucial since in (1), as F is large (see
Table 1), the hyperbolic sine function is sensitive to small changes
in Fs,i, which in turn result in large fluctuations in ji. Therefore, the
potentials must be accurately estimated to ensure that the corre-
sponding flux is physically realizable and meaningful. Note that the
optimization problem in Algorithm 1 is nonlinear, and possibly
non-convex thereby requiring an efficient optimization method.

Example 1. (Deterministic P2D Model Simulation) The modified
P2D Li-ion battery model is simulated using Algorithm 1 at a con-
stant galvanostatic discharge current of I(m) ¼ �30 A/m2 at a
discharge rate of 1.0 C. The x-direction is discretized with
Np ¼ Nn ¼ 52 and Ns ¼ 50. The initial guesses for the solid potential
at its boundary conditions are chosen to be Fs,p(1,1) ¼ 4.116 V and
Fs,n(1,1) ¼ 0.074 V, which were obtained through a trial-and-error
process for quick initialization. Note that rational but arbitrary
initialization of these boundary conditions can generate extremely
large lithium ion fluxes leading to divergence of the proposed
algorithmdin fact, no algorithm will converge under this scenario.
The initial electrolyte concentration, ce,i(1,q) is assumed to be uni-
form across the battery length at 1000 mol/L. The initial average
lithium ion concentration in solid particles, cs;ið1; qÞ is assumed to
be uniform at 2.554 � 104 mol/m3 in the positive electrode, 0 mol/
m3 in the separator, and 2.612 � 104 mol/m3 in the negative elec-
trode. The initial lithium ion flux, ji(1) was assumed to be in the
order of magnitude 10�6 mol/s-m2 in both positive and negative
electrodes. The rest of the model parameters and empirical diffu-
sion and conductivity relations are taken from Ref. [15]. The toler-
ance parameters are set to d1 ¼ d2 ¼ 0.1 and weights tow ¼ [1,1,1]T.
The SNOPT Optimization Suite [35] is used to solve the optimization
in Algorithm 1. The proposed algorithm runs through the discharge
cycle of about 3500 s with cut-off voltage of 2.6 V.

Fig. 3 shows the evolution of concentrations, potentials, flux
and current with time in the three sections of the battery during a
discharge cycle. Fig. 3(a) shows the electrolyte concentration
increasing across the length of the battery from the positive
electrode to the negative electrode. Fig. 3(b) shows average
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lithium ion concentration in solid particles during a discharge
cycle. The lithium metal stored in the negative electrode comes
out of the active solid particle and reacts at the surface to produce
Fig. 3. Simulation of the deterministic P2D model using Algorithm 1. The subfigures show th
solid particles; (c) electrical potential in electrolyte; (d) electrical potential in solid particles;
of the battery. The ticks along the battery length correspond to the length of the positive e
lithium ions. As more lithium ion are released at the negative
electrode and absorbed in the active material in the positive
electrode, the average concentration of lithium ions in the solid
e dynamics of (a) concentration of electrolyte; (b) average lithium ion concentration in
(e) current in the electrolyte; and (f) lithium ion flux at different times along the length
lectrode, separator and negative electrode.
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particles in the positive electrode increases with discharge time.
Fig. 3(c) through 3(f) show other states of the Li-ion battery. Fig. 4
shows discharge curves for the lithium ion battery at discharge
rates of 1.0 C and 1.5 C.
Fig. 4. Discharge curves for higher discharge rates.
4. Stochastic P2D state space model (SSM)

The P2D model in Table 1 is based on a number of theoretical
and experimental approximations. It is natural to expect that the
P2D model simulation in Algorithm 1 will only approximately
represent the exact dynamics of a Li-ion battery. The discrepancy
between the model predictions and the true dynamics of the bat-
tery is commonly referred to as the model uncertainty. An efficient
approach to address model uncertainty is to introduce stochasticity
or randomness in Algorithm 1 that accounts for all the Li-ion bat-
tery dynamics not captured by the P2D model.

In this section, the procedure to reformulate the P2D model
simulation in Algorithm 1 into a set of discrete-time stochastic non-
linear state-space and algebraic equations is discussed. This refor-
mulation not only accounts for model uncertainty, but also yields a
representation that enables application of the proposed simulation
model in real-time estimation, control and optimization. This is
done as follows. For i¼ {p,s,n}, define the five classes of variables: (i)

xlt;i≡½xl;1t;i ; x
l;2
t;i �T ¼ ½ce;iðtÞ; cs;iðtÞ�T are states that evolve linearly in

time (ii); xa1t;i≡½x
a1 ;1
t;i ; xa1;2t;i �T ¼ ½Fs;iðtÞ; ie;iðtÞ�T and xa2t;i≡c

�
s;iðtÞ are

linear algebraic states (iii); xa3t;i≡Fe;iðtÞ are nonlinear algebraic states
(iv); xnt;i≡jiðtÞ are nonlinear algebraic states; and (v) ut ≡ I(t) is the

exogenous input (or manipulated variable). With this new notation,
the P2D model simulation discussed in Section 3.1 can be repre-
sented as follows:
Xl
t;i ¼

�
Ac;i 0
0 I

	
Xl
t�1;i þ

�
Bc;i
Bavg;i

	
5Xn

t;i þ ε
l
t;i; (9a)

Xa1
t;i ¼ AF;i X

n
t;i þ BF;i ut þ ε

a1
t;i; (9b)

Xa2
t;i ¼ ½0 I �Xl

t;i þ Bsurf ;i X
n
t;i þ ε

a2
t;i; (9c)
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Xa3
t;i ¼ FF

�
Xl
t;i;X

n
t;i

�
þ ε

a3
t;i; (9d)

Xn
t;i ¼ F j

�
Xl
t;i;X

a1
t;i ;X

a2
t;i ;X

a3
t;i

�
þ ε

n
t;i; (9e)

for all i ¼ {p,s,n}. The notation 5 is the Kronecker product, and
ε
l
t;i; ε

a1
t;i ; ε

a2
t;i ; ε

a3
t;i , and ε

n
t;i are independent multivariate Gaussian

random noise sequences. These noise sequences model the un-
certainty in the dynamics of the states e Xl

t;i, X
a1
t;i , X

a2
t;i , X

a3
t;i , and Xn

t;i.
The states are stochastic and defined as sequences of random var-
iables. It is important to highlight that while the state Xl

t;i in (9a) is a
first-order Markov process in the time direction (recall that a first-
order temporal discretization of (M1), and (M2) is used, see (2) and
(5)), the states Xa1

t;i , X
a2
t;i , X

a3
t;i , and Xn

t;i in (9b) through (9e) evolve
algebraically in the time direction, but are Markov processes in the
spatial direction; wherein, Xa1

t;i and Xa3
t;i are first-order Markov

processes, and Xa2
t;i and Xn

t;i are zeroth-order Markov processes. In a
typical Li-ion battery, the measurements for the states in (9) are
generally not available. In other words, the states in (9) are unob-
served or latent. The variables that are typically measured for a
battery are the current and voltage. Assuming voltage measure-
ments across the battery are available.

Yt ¼ Xa1;1
t;p ð1Þ � Xa1;1

t;n ðNnÞ þ ε
y
t ; (10)

where Yt2ℝ is the voltage across the battery, εyt2ℝ is a random

Gaussian sensor noise, and Xa1 ;1
t;p ð1Þ and Xa1;1

t;n ð1Þ are in vectors

Xa1 ;1
t;p ≡½Xa1 ;1

t;p ð1Þ;Xa1;1
t;p ð2Þ;…;Xa1;1

t;p ðNpÞ�T and Xa1;1
t;n ≡½Xa1;1

t;n ð1Þ;
Xa1;1
t;n ð2Þ;…;Xa1 ;1

t;n ðNnÞ�T, respectively. Together, Equations (9aee)
and (10) represent a stochastic nonlinear P2D state-space model.
Assuming: ε

l
t;i � Nð0;Sl

t;iÞ; ε
a1
t;i � Nð0;Sa1

t;iÞ; ε
a2
t;i � Nð0;Sa2

t;iÞ;
ε
a3
t;i � Nð0;Sa3

t;iÞ; ε
n
t;i � Nð0;Sn

t;iÞ; and ε
y
t � Nð0;Sy

t Þ are perfectly

known in their distribution class, (9) and (10) can be compactly
represented as a probabilistic model defined as follows:

Xl
t;ij
�
xlt�1;i; x

n
t;i

�
� N

�
0;Sl

t;i

�
; (11a)

Xa1
t;i j
�
xnt;i;ut

�
� N

�
0;Sa1

t;i

�
; (11b)

Xa2
t;i j
�
xlt;i; x

n
t;i

�
� N

�
0;Sa2

t;i

�
; (11c)

Xa3
t;i j
�
xlt;i; x

n
t;i

�
� N

�
0;Sa3

t;i

�
; (11d)

Xn
t;ij
�
xlt;i; x

a1
t;i ; x

a2
t;i ; x

a3
t;i

�
� N

�
0;Sn

t;i

�
; (11e)

Yt j
�
xlt;pð1Þ; xlt;nðNnÞ

�
� N �0;Sy

t
�
; (11f)

for all i ¼ {p,s,n} and t ¼ 1,2,…,M. The zero mean of the multivariate
Gaussian distribution in (11) is generically denoted as a vector 0.
Note that the vector 0 in (11) is of appropriate dimension as defined
based on the state and the section of the battery. In (11), the lower-
case variables denote random realizations of the states. Finally,
Algorithm 2 gives the pseudocode for simulating the stochastic P2D
model in (9a) through (9e).

Example 2. (Stochastic P2D Model Simulation) In this simulation
example, Example 1 is reconsidered, but under stochastic settings.
The stochastic P2D model is obtained by adding zero mean
Gaussian noise sequences in (9a) through (9e). The covariances for
the Gaussian noise added to the stochastic model are:

Sl
t;i ¼

�
0:012 0
0 2:02

	
; (12a)

S
a1
t;i ¼

�
0:022 0
0 0:22

	
; (12b)

S
a2
t;i ¼ 22; (12c)

S
a3
t;i ¼ 0:00202; (12d)

Sn
t;i ¼ 4� 10�14; (12e)

S
y
t ¼ 0:12; (12f)

for all i ¼ {p,s,n} and t ¼ 1,2,…,M. The covariances in (12a) through
(12f) are set based on the absolute values of the states during a
standard discharge cycle. This allows to maintain a high signal-to-
noise ratio, which is crucial for efficient state estimation (dis-
cussed in Section 5).

Algorithm 2 is used to simulate the stochastic P2D model. Fig. 5
shows the simulation of the stochastic P2D model. The concen-
tration of the electrolyte, electrical potential in the electrolyte,
current in the electrolyte, and the lithium ion flux are shown in
Fig. 5(a) through 5(d). In contrast to the deterministic P2D simu-
lation in Fig. 3, the stochastic case in Fig. 5 is relatively non-smooth,
but captures the overall dynamics inside the Li-ion battery. For
instance, Fig. 5(a) indicates that during a discharge cycle the con-
centration of electrolyte in the positive electrode decreases while
the concentration on the negative electrode increases. Also,
Fig. 5(b) through 5(d) conform to the typical behavior of other in-
ternal states of the Li-ion battery during a discharge cycle. The
simulation of the electrolyte potential in solid particles and average
lithium ion concentration in solid particles under the stochastic
case are not shown here for the sake of brevity. The stochastic
simulation is performed to ensure that the boundary conditions are
satisfied. For instance, in Fig. 5(c), (d) the electrolyte current and
the lithium ion flux in the separator are zero, as required by the
boundary conditions. Finally, Fig. 6 shows the discharge curve at 1C
for the stochastic P2D model. Similar discharge curves were ob-
tained for higher discharge rates.

5. Decentralized state estimation

A recursive approach to estimate the latent states in the sto-
chastic P2D model is discussed in this section. This is commonly
referred to as the state estimation problem. Computing the latent
states in (9a) through (9e) and (10) in real-time is a nontrivial
problem, and is challenged due to the nonlinear, implicit, and
complex relations between the unmeasured states. This problem is
further exacerbated due to the lack of sufficient measurements. The
only measurements available are the current (ut) and voltage (yt).
Representing the states in (9a) through (9e) as

Xt;i ¼
h
Xl
t;i;X

a1
t;i ;X

a2
t;i ;X

a3
t;i ;X

n
t;i

iT
; (13)

for all i ¼ {p,s,n}, the objective is to estimate Xt,i given z1:t, where
z1:t ¼ fðu1; y1Þ; ðu2; y2Þ;…; ðut ; ytÞg is a sequence of input and
output measurements until time t. A nonlinear state estimation
problem is typically solved in the Bayesian framework by



Fig. 5. Simulation of the stochastic P2D model using Algorithm 2. The subfigures show the dynamics of (a) concentration of electrolyte; (b) electrical potential in electrolyte; (c)
current in the electrolyte; and (d) lithium ion flux at different times along the length of the battery. The ticks along the battery length correspond to the length of the positive
electrode, separator and negative electrode.
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formulating it as a filtering problem. For example, if bxt;i denote an
estimate of Xt,i, then in the Bayesian framework, bxt;i is calculated as
Fig. 6. Discharge curve at 1C for Stochastic P2D model.
the mean (or median, mode) of Xt;i


z1:t � pðxt;i



z1:tÞ for all
t ¼ 1,2,…,M and i¼{p,s,n}. Here pðxt;i



z1:tÞ is referred to as the
posterior or filtering density. A posterior density encapsulates any
statistical information on Xt,i given z1:t. The posterior density is
computed using a class of methods called filters. While the Bayes'
theorem provides an approach to recursively compute pðxt;i



z1:tÞ, it
does not lend itself to a closed form solution for nonlinear systems.
In other words, an optimal nonlinear filter that solves pðxt;i



z1:tÞ
exactly for the stochastic P2D model is not tractable in finite
computational time. Many advanced nonlinaer filtering methods
exist to approximate the optimal nonlinear filter. The quality of the
state estimates obtained with these approximate nonlinear filters
depends on the underlying numerical and statistical approximation
techniques used in their designs. The idea of Bayesian nonlinear
filteringmethods is well established, and for the sake of brevity it is
not discussed here, but can be found discussed in Refs. [36,37,38]
and the references cited therein.

For state estimation in the stochastic P2Dmodel, the objective is
to recursively compute Xt;i



z1:t � pðxt;i


z1:tÞ, where Xt,i has a

dimension 7Ni (see (9a) through (9e)). Now for a fine spatial dis-
cretization mesh (i.e., for a relatively large Ni), computing pðxt;i



z1:tÞ
becomes nontrivial. Generally, most of the nonlinear filters are



Table 3
Decentralized state estimation in stochastic P2D model.

Density Filtet Type Dimension

Full Reduced

(D1) pðxlt;i



xnt;i; z1:tÞ Temporal 2N 2N

(D2) pðxa1t;i



xnt;i; z1:tÞ Spatial 2N 2

(D3) pðxa2t;i



xlt;i; xnt;i; z1:tÞ Spatial N 1

(D4) pðxa3t;i



xlt;i; xnt;i; z1:tÞ Spatial N 1

(D5) pðxnt;i



z1:tÞ Spatial N 1
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inefficient in high-dimensional spaces. This is due to the problem
commonly referred to as the curse of dimensionality. A common
approach to beat the curse of dimensionality is to perform state
estimation on a reduced dimensional space instead. While existing
nonlinear filters are efficient in a lowdimensional space, computing
the reduced space for complex systems, including the stochastic
P2Dmodel is nontrivial, and is a subject of discussion in this section.

An inspection of the structure of the stochastic P2D model in
(9a) through (9e) indicates that the latent states are dependent on
each other in a particular fashion that makes it possible to split the
state estimation problem into lower dimensional problems. This is
done by using the law of conditional probability, and rewriting
pðxt;i



z1:tÞ as
p
�
xt;i


z1:t� ¼ p

�
xa1t;i



xa2t;i ; xa3t;i ; xlt;i; xnt;i; z1:t�p�xa2t;i


xa3t;i ;xlt;i; xnt;i; z1:t�

�p
�
xa3t;i



xlt;i; xnt;i; z1:t�p�xlt;i


xnt;i; z1:t�p�xnt;i


z1:t�:

(14)

In (14), the posterior density is decomposed into a product of
five conditional density functions. It is possible to further simplify
(14) by observing that the conditional density

pðxa1t;i



xa2t;i ; xa3t;i ; xlt;i; xnt;i; z1:tÞ ¼ pðxa1t;i




xnt;i; z1:tÞ (see (9b)). Similarly,

(9c) yields the relation pðxa2t;i



xa3t;i ; xlt;i; xnt;i; z1:tÞ ¼ pðxa2t;i




xlt;i; xnt;i; z1:tÞ.
Substituting them back into (14) yields

p
�
xt;i


z1:t� ¼ p

�
xlt;i



xnt;i; z1:t�p�xa1t;i


xnt;i; z1:t��

p
�
xa2t;i



xlt;i; xnt;i; z1:t�p�xa3t;i 


xlt;i;xnt;i; z1:t�p�xnt;i


z1:t�; (15)

where Xl
t;i




ðxnt;i;z1:tÞ�pðxlt;i



xnt;i;z1:tÞ, Xa1

t;i




ðxnt;i;z1:tÞ� pðxa1t;i



xnt;i; z1:tÞ,

Xa2
t;i




ðxlt;i;xnt;i;z1:tÞ� pðxa2t;i



xlt;i;xnt;i;z1:tÞ, Xa3

t;i




ðxlt;i;xnt;i;z1:tÞ� pðxa3t;i



xlt;i;

xnt;i;z1:tÞ and Xn
t;i




z1:t � pðxnt;i



z1:tÞ are conditional states of di-

mensions 2Ni, 2Ni, Ni, Ni, and Ni, respectively. With the conditional
states and their densities defined in (15), standard nonlinear filters
can be used for state estimation in the reduced space. The pro-
cedure of estimating states in the reduced space is called decen-

tralized state estimation in this article. Recall that since Xl
t;i in (9a) is

a first-order Markov process in the temporal direction, a temporal

filter can be used to compute pðxlt;i



xnt;i;z1:tÞ in (15). This temporal

filter performs a 2Ni-dimensional temporal sweep. Similarly, since
Xa1
t;i , X

a2
t;i , X

a3
t;i , and Xn

t;i in (9b) through (9e) are Markov processes in

the spatial direction, a spatial filter can be used to compute the
conditional densities in (15).

It is possible to further reduce the dimension of the conditional
densities in (15) in the spatial direction. Observe that the charge
conservation equations (C1), (C2), and (C3) in Table 1 only have
spatial derivatives. This fact is exploited to further reduce the
dimension of the density functions in (15) in the spatial direction. For
instance, at any given time t, the conditional density pðxa1t;i




xnt;i; z1:tÞ is
p
�
xa1t;i



xnt;i; z1:t� ¼ p

�
xa1t;ið1Þ; xa1t;ið2Þ;…; xa1t;iðNiÞ

�


xnt;i; z1:t� (16)

Using the law of conditional probability, (16) is given by

p
�
xa1t;i



xnt;i; z1:t� ¼ p

�
xa1t;ið1Þ




xa1t;ið2Þ;…; xa1t;iðNiÞ;xnt;i; z1:t
�

�p
�
xa1t;ið2Þ




xa1t;ið3Þ…; xa1t;iðNiÞ; xnt;i; z1:t
�
�…

�p
�
xa1t;iðNiÞ




xnt;i; z1:t�:
(17)

Using the first-order Markov property of Xa1
t;i in the spatial
direction, (17) can be further simplified and written as

p
�
xa1t;i



xnt;i; z1:t� ¼ p

�
xa1t;iðNiÞ




xnt;i; z1:t�
�
YNi�1

k¼1

p
�
xa1t;iðkÞ




xa1t;iðkþ 1Þ;xnt;i; z1:t
�
:

(18)

Observe that in (18), the conditional density is defined for a 2-
dimensional stateXa1

t;i ðkÞ. As compared to thedensitypðxa1t;i



xnt;i; z1:tÞ in

(15), the decomposition in (18) reduces the dimension for state esti-
mation from 2Ni to 2. Now using similar arguments, as in (18), other
densities in (15) can be reduced in the spatial direction to obtain:

(a) conditional density for Xa2
t;i




ðxa3t;i ; xlt;i; xnt;i; z1:tÞ �
p
�
xa2t;i



xa3t;i ; xlt;i;xnt;i; z1:t� ¼YNi

k¼1

p
�
xa2t;iðkÞ




xa3t;i ; xlt;i; xnt;i; z1:t�; (19)




(b) conditional density for Xa3

t;i


ðxlt;i; xnt;i; z1:tÞ �

p
�
xa3t;i



xlt;i; xnt;i; z1:t� ¼ p

�
xa3t;iðNiÞ




xlt;i;xnt;i; z1:t�
�
YNi�1

k¼1

p
�
xa3t;iðkÞ




xa3t;iðkþ 1Þ; xlt;i;xnt;i; z1:t
�
;

(20)




(c) conditional density for Xn

t;i


ðz1:tÞ �

p
�
xnt;i



z1:t� ¼

YNi

k¼1

p
�
xnt;iðkÞ




z1:t�: (21)

The conditional densities in (15), and further dimension reduction
in the spatial direction in (18) though (21) dramatically reduce the
dimension of the problem for state estimation. Table 3 gives a list of
density functions to be approximated using a filter. For instance (D2),
is a two-dimensional density function that is approximated through a
spatialfilter sweep. Further, fromTable3 it is clear that ascompared to
the original problem defined in dimension 7Ni the proposed decen-
tralizedmethodreduces thedimension to2Niþ5. This leads to ahuge
improvement in the overall state estimation problem formulation. In
thenext section, a nonlinearfilteringmethod is discussed to compute
the conditional densities given in Table 3.
6. Particle methods for state estimation

In a linear stochastic models, the state posterior density is typi-
cally Gaussian and can be exactly represented by the Kalman filter
(KF) using a finite number of moments (e.g., mean, variance). In
nonlinear stochastic systems, the posterior density is typically non-
Gaussian, and at least in theory, an infinite number of moments
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are required for the exact representation of the density [39]. Thus,
with finite computing capabilities, an optimal state filter for
nonlinear systems, including the stochastic P2D model in (9a)
through (9e) is not realizable. In the last few decades, several
approximate nonlinear state filters based on statistical and analytical
approximations of the optimal nonlinear filter have been developed
for state estimation in nonlinear systems [40,41,42]. Most of these
nonlinear filters can be classified as either Kalman-based filters or
sequential Monte-Carlo (SMC)-based filters [43]. Both the Kalman
and SMC-based nonlinear filters are tractable in finite computational
time and can be used for state estimation in general or specific types
of nonlinear systems. A detailed exposition of nonlinear filtering
methods and related approximations is not included here, but can be
found in the handbook on nonlinear filtering [44].

The class of SMC-based filtering methods, popularly referred to
as particle filters is an importance class of filtering methods for
nonlinear systems. The basic idea behind particle filters is to
approximate the posterior density by generating random samples
(or particles) from it. Since generating direct random particles
distributed according to the posterior density is nontrivial for
nonlinear systems, an importance density is emploued that is
easier to generate particles from. Once particles are generated from
the importance density, appropriate particle weights are assigned
based on the how likely it is for the particle to be classified as a
particle from the posterior density. Some of the popular particle
filtering algorithms, include sampling importance resampling (SIR)
filter, auxiliary SIR (ASIR) filter, and Rao-Blackwellized particle filter
(RBPF). The rest of this section assumes a familiarity with the
theory and implementation of particles filters due to space limi-
tations and because many well-written publications on particle
filters are available in the open literature. Readers not familiar with
the subject are referred to [45] and the references cited therein.

Anattractive featureof particlefilters is that theposteriordensity
approximation can be made arbitrarily accurate by simply
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increasing the number of particles. The traditional particle filtering
algorithms are based on the standard temporal first-order Markov
state-space model assumption; however, as discussed in Section 4,
the stochastic P2D model in (9a)e(9e) includes implicit nonlinear
equations that leads to states that are Markov processes in either
temporal or spatial direction. In fact themodel in (9a)e(9e) includes
both zero and first order Markov processes in the spatial direction,
whichmakes any direct use of particle filters a challenging problem.
Further, in standard state space models, the states are calculated at
each time step with only one iteration per time step; however, the
optimization step in Algorithm 2 to simulate the stochastic P2D
model may require numerous iterations at each time step to solve
the implicit nonlinear equations. A standard particle filtering
method will therefore, require performing these iterations on each
particle. Hence, a straightforward application of particle filtering
algorithm,while technically feasible, is computationally prohibitive.

6.1. Tethered particle filters

As discussed in Sections 5 and 6, in addition to the challenges
posed by the large dimensionality of the states in the stochastic P2D
model in (9a) through (9e), some of the states are implicitly related
and therefore, can not be simply propagated to a future time. From
Algorithm 2, it is clear that the states have to be estimated by
solving an optimization routine that requires solving a set of im-
plicit equations at each time. Under this setting, a standard particle
filter algorithm would require solving the implicit equations for
propagating each particle to a future time, thereby increasing the
computational burden dramatically.

To mitigate the computational complexity of this naive
approach, the flux particles from pðxnt;ijz1:tÞ are not propagated
forward; and instead, the estimate of the flux, denoted by bxn

t;i for
t ¼ 1,2,…,M and for i2{p,s,n}, is propagated to the next time step.
The estimate of the flux, bxn

t;i, is called a tethered particle, and the
filter is called a tethered particle filter. Once the flux particles
are tethered around bxn

t;i, only one iteration is required to solve the
implicit equations, which reduces the computational cost. Further,
to ensure that the generated particles satisfy the boundary condi-
tions exactly at each time, the choice of a importance density
function is crucial. In tethered particle filter, a Dirac delta impor-
tance function is chosen at the boundary conditions so that the
Fig. 7. State estimation in stochastic P2D model using Algorithm 4. The subfigures show
electrolyte at different times along the length of the battery. The ticks along the batter
electrode.
particles collapse to the exact boundary condition. A pseudocode
for the tethered particle filter based state estimation in stochastic
P2D model is given in Algorithm 3.

Example 3. (State Estimation) In this example the efficacy of
the proposed tethered particle filter based state estimation is
discussed for the stochastic P2D model is demonstrated.
Consider the simulation scenario in Example 2. The objective is
to estimate the states using Algorithm 3. Here Algorithm 3 is
implemented with P¼2000 particles. Fig. 7 gives the error in
estimating the electrical potential and current in the electrolyte
using Algorithm 3. The error in estimating the electrical poten-
tial in the electrolyte (see Fig. 7(a)) is in the order of magnitude
10�3 while the error in estimating the current in the electrolyte
(see Fig. 7(b)) is within the same order of magnitude for all
sampling times, and along the entire length of the battery. Other
latent states were also accurately estimated; however, for the
sake of brevity the results are not shown here. Fig. 8(a) shows
the estimated discharge curve compared against the true
discharge curve. It is evident that Algorithm 3 is successful in
filtering out excessive sensor noise in the measurements, while
keeping track of the underlying true discharge curve. All in all,
Figs. 7 and 8(a) suggest that Algorithm 3 is efficient in esti-
mating the latent states of the stochastic P2D model and the
discharge curve.

7. State-of-Charge

The state-of-charge (SOC) is an important notion that quantifies
the residual amount of charge in a battery based on the concen-
tration of lithium ions in the solid particles in each electrode. For
example, if cmax

p is the maximum possible concentration of lithium
ions in the solid particles in the positive electrode, then the bulk
SOC is defined as

SpðtÞ≡ 1
lpcmax

p

Zlp
0

cs;pðt; xÞdx; (29)

where Sp2ℝþ is the bulk SOC in the positive electrode. During a
discharge cycle, as the average lithium ion concentration in the
solid particles in the positive electrode, denoted by cs;p in (29),
the error in estimating (a) electrical potential in electrolyte, and (b) current in the
y length correspond to the length of the positive electrode, separator and negative



Fig. 8. (a) Discharge curve at 1C for Stochastic P2D model. (b) Estimated expected bulk SOC in the positive and negative electrodes.
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increases, Sp increases as well. The SOC in the negative electrode,
denoted by Sn can be defined likewise using cmax

n and the average
lithium ion concentration in the solid particles in the negative
electrode, cs;n. During a discharge cycle, Sn decreases as a function
of time as cs;n decreases in the negative electrode. The SOC in the
separator is zero as the average lithium ion concentration in the
solid particles in the separator is zero. The typical behavior of the
average lithium ion concentration in the solid particles in the
positive and negative electrodes during a discharge cycle is given in
Fig. 3(b).

While (29) gives an expression to compute SOC in the positive
electrode, it does not lend itself to a closed form solution. This is
because as discussed in Section 3, there is no closed form solution
for cs;p. From the numerical solution in Section 3, the SOC in (29)
can be written as

SpðtÞ ¼ 1
lpcmax

p

XNp

m¼1

cs;pðt;mÞDxp; (30a)

¼ Dxp
lpcmax

p

XNp

m¼1

cs;pðt;mÞ; (30b)

where Sp is an approximation of Sp in (29), which can also be
written as

SpðtÞ ¼ Dxp
lpcmax

p

XNp

m¼1

Xl;2
t;pðmÞ: (31)

The SOC, Sp in (31) is a random variable since it is a function of

Xl;2
t;p. Further, recall from Section 4, that Xl;2

t;p is a latent state. In other

words, Sp in (31) is also a latent state, that needs to be estimated
using available measurements. Interestingly, the bulk SOC can be
estimated from an estimate of lithium ion concentration in the
active material and no other estimates are directly required. This
observation is used to simplify SOC estimation. First, a good mea-
sure of (31) is its expected value, which is

E
h
SpðtÞ

i
¼ E

"
Dxp

lpcmax
p

XNp

m¼1

Xl;2
t;pðmÞ

#
; (32)

where E½SpðtÞ� is the expected bulk SOC, with expectation defined

over pðxl;2t;p



xnt;p; z1:tÞ, such that
E
h
SpðtÞ

i
¼ Dxp

lpcmax
p

Z "XNp

m¼1

xl;2t;pðmÞ
#
p
�
dxl;2t;p




xnt;p; z1:t�; (33)

where pðdxl;2t;p



xnt;p; z1:tÞ≡pðxl;2t;p


xnt;p; z1:tÞdxl;2t;p. Equation (33) can be

further simplified and written as follows

E
h
SpðtÞ

i

¼ Dxp
lpcmax

p

XNp

m¼1

Z
xl;2t;pðmÞp

�
dxl;2t;p




xnt;p; z1:t�; (34a)

¼ Dxp
lpcmax

p

XNp

m¼1

Z
xl;2t;pðmÞp

�
dxl;2t;pðmÞ




xnt;p; z1:t�: (34b)

Observe that the integral in (34b) is with respect to the condi-

tional density pðxl;2t;pðmÞ



xnt;p; z1:tÞ. A Monte-Carlo method to

approximate the integral in (34b) requires a set of random particles

from the density pðxl;2t;pðmÞ



xnt;p; z1:tÞ. A procedure to compute

pðxl;2t;pðmÞ



xnt;p; z1:tÞ using the proposed tethered particle filter is

discussed in Algorithm 3. Assuming fXl;2;i
t;p ðmÞgP

i¼1

� pðxl;2t;pðmÞ



xnt;p; z1:tÞ represents a pool of P random particles

approximately distributed according to pðxl;2t;pðmÞ



xnt;p; z1:tÞ, and ob-

tained from Algorithm 3, then pðdxl;2t;pðmÞ



xnt;p; z1:tÞ is represented as

p
�
dxl;2t;pðmÞ




xnt;p; z1:t� ¼ 1
P

XP
i¼1

dXl;2;i
t;p ðmÞ

�
dxl;2t;pðmÞ

�
; (35)

where dXl;2;i
t;p ðmÞð$Þ is a Dirac delta measure at particle location

Xl;2;i
t;p ðmÞ. Now substituting (35) into (34b) yields

E
h
SpðtÞ

i

z
Dxp

Plpcmax
p

XNp

m¼1

Z
xl;2t;pðmÞ

XP
i¼1

dXl;2;i
t;p ðmÞ

�
dxl;2t;pðmÞ

�
; (36a)
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¼ Dxp
Plpcmax

p

XNp

m¼1

XP
i¼1

Xl;2;i
t;p ðmÞ; (36b)

where (36b) is a P-particle Monte-Carlo approximation of (34b).
The expected bulk SOC in the negative electrode can be similarly
approximated and computed as:

E
h
SnðtÞ

i
z

Dxn
Plncmax

n

XNn

m¼1

XP
i¼1

Xl;2;i
t;n ðmÞ; (37)

where fXl;2;i
t;n ðmÞgP

i¼1
� pðxl;2t;nðmÞ




xnt;n; z1:tÞ represents a pool of P
random particles approximately distributed according to
pðxl;2t;nðmÞ




xnt;n; z1:tÞ and obtained from Algorithm 3. Finally, as dis-
cussed in Section 6, the quality of the expected SOC in the positive
and negative electodes computed in (36b) and (37), respectively,
depend on the number of particles used, and can be made arbi-
trarily accurate by simply increasing P.

Example 4. (State-of-Charge Estimation) This example deals with
the SOC estimation in a Li-ion battery using the ideas discussed in
this section. The particles required to compute the expected bulk
SOC in the positive and negative electrodes are computed using the
tethered particle filters discussed in Algorithm 3. Fig. 8(b) shows
the estimated expected bulk SOC in the positive and negative
electrodes as a function of time. As one would expect, the expected
bulk SOC increases in the positive electrode as the average lithium
ion concentration in solid particles increases on the positive side
during a discharge cycle. Similarly, as the average lithium ion
concentration in solid particles depletes in the negative electrode,
the expected bulk SOC in the negative electrode drops. Fig. 8(b)
demonstrates that the proposed method is efficient in accurately
estimating the expected bulk SOC both in the positive and negative
electrodes of a Li-ion battery.

8. Conclusions

The complex nonlinear PDEs that define the dynamics of a
standard Li-ion battery are discretized and reformulated as a large
dimensional state-space model. The state of charge and other
battery properties that depend on unmeasured state variables such
as concentrations and potentials are estimated using a modified
particle filtering algorithm. The algorithm uses a novel technique
called ‘tethering’ to reduce computational complexity. A simulation
example shows that the proposed algorithm provides accurate
estimation of the state of charge in the presence of significant state
and measurement noise. The P2D model as described in this article
is one of the more sophisticated models, however, it does not ac-
count for the health of the battery as it changes with charge and
discharge cycles. The proposed algorithm can be easily adapted to
integrate state of health equations into the P2D model.
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