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a b s t r a c t

H2 static and dynamic output-feedback control problems are investigated for linear time-invariant
uncertain systems. The goal is to minimize the averaged H2 performance in the presence of nonlinear
dependence on time-invariant probabilistic parametric uncertainties. By applying the polynomial
chaos theory, the control synthesis problem is solved using a high-dimensional expanded system
which characterizes stochastic state uncertainty propagation. Compared to existing polynomial chaos-
based control designs, the proposed approach addresses the simultaneous presence of parametric
uncertainties and white noises. The effect of truncation errors due to using finite-degree polynomial
chaos expansions is captured by time-varying norm-bounded uncertainties, and is explicitly taken into
account by adopting a guaranteed cost control approach. This feature avoids the use of high-degree
polynomial chaos expansions to alleviate the destabilizing effect of expansion truncation errors, thus
significantly reducing computational complexity. Moreover, rigorous analysis clarifies the condition
under which the stability of the high-dimensional expanded system implies the internal mean square
stability of the original system under control. Using iterations between synthesis and post-analysis, a
bisection algorithm is proposed to find the smallest bounding parameter on the effect of expansion
truncation errors such that robust closed-loop stability is guaranteed. A numerical example is used to
illustrate the effectiveness of the proposed approach.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The closed-loop stability and performance obtained by state-
nd output-feedback control systems can be sensitive to model
ncertainties, which has motivated numerous studies on the syn-
hesis of robust control insensitive to uncertainties, e.g., Ahn
t al. (2018), Chang et al. (2015), Dong and Yang (2013), Lee
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et al. (2015), Petersen and Tempo (2014), Sadabadi and Peau-
celle (2016), Salavati et al. (2019) and Rosa et al. (2018). The
static or reduced-order dynamic output-feedback control synthe-
sis problem for both nominal and uncertain systems is NP-hard,
which implies that standard linear matrix inequalities (LMIs) and
other convex optimization formulations do not exist (Sadabadi &
Peaucelle, 2016).

The majority of the output-feedback and broader control lit-
erature adopts a worst-case design strategy to ensure stability
and achieve a desired performance bound for all possible uncer-
tainties. This worst-case approach tends to produce highly con-
servative performance because the worst-case scenario may have
vanishingly low probability of occurrence. In addition, most
worst-case approaches are limited to specific uncertainty struc-
tures, such as norm-bounded, affine, polytopic, and integral
quadratic uncertainties (Petersen & Tempo, 2014). A general
nonlinear uncertainty structure cannot be effectively addressed
without introducing overbounds.

In contrast to a worst-case performance bound, the practical

interest in the performance variation or dispersion across the
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ncertainty region has motivated recent research on probabilis-
ic robustness (Petersen & Tempo, 2014). The design objectives
hen include second-moment stability (Hosoe et al., 2018), a
robability-guaranteed performance bound (Tempo et al., 2013;
in et al., 2018), or an optimal averaged performance (Boyarski
Shaked, 2005). In this line of research, literature like Hosoe

t al. (2018) assume the uncertain parameters to be independent
nd identically distributed stochastic processes. This assumption
llows arbitrarily fast parameter variations, which is not true in
ome applications. The randomized algorithm proposed in Tempo
t al. (2013) can address general nonlinear dependence on uncer-
ain parameters, but can be computationally demanding since a
arge number of samples is often needed.

The above observations have further led to robust control
esearch that aims at addressing averaged performance in the
resence of general nonlinear dependence on probabilistic time-
nvariant parametric uncertainties. Such an uncertainty descrip-
ion is commonly generated by parameter identification
echniques, but is poorly suited for any existing robust control
esign methods mentioned above. This robust control problem is
on-trivial because uncertainty propagation in such an uncertain
ystem is no longer a Markov process when accounting for the
ime invariance of uncertain parameters (Paulson et al., 2015).
s a computationally efficient non-sampling approach for quan-
ifying uncertainty propagation, polynomial chaos (PC) theory
uilds the foundation of a recent promising solution to this prob-
em (Kim et al., 2013). PC theory allows characterization of the
volution of probability distributions of the underlying stochas-
ic system states by a high-dimensional expanded deterministic
ystem describing the evolution dynamics of the polynomial
haos expansion (PCE) coefficients. Thus the control synthesis
roblem can be solved by using the PCE-transformed system.
p to now, the existing PCE-based control methods have been
pplied to stability analysis (Hover & Triantafyllou, 2006; Lucia
t al., 2017), state-feedback control (Bhattacharya, 2019; Fisher
Bhattacharya, 2009; Hsu & Bhattacharya, 2017), optimal con-

rol (Bergner & Kirches, 2018; Lefebvre et al., 2020; Nandi &
ingh, 2018; Paulson & Mesbah, 2019), and stochastic model
redictive control (Dai et al., 2015; Paulson et al., 2015). Ex-
ept for Konda et al. (2011), most of the published methods do
ot simultaneously consider time-invariant random parametric
ncertainties and time-varying stochastic external disturbances,
ecause applying PCE to compute the uncertainty propagation
f time-varying stochastic disturbances involves infinite number
f random variables as time goes to infinity. Moreover, due to
runcation errors introduced by using finite-degree PCEs, stability
nd performance derived for the PCE-transformed system may
ot be automatically achieved by the original system (Lucia
t al., 2017). Although increasing the PCE degree can alleviate
he effect of PCE truncation errors, it may result in significant
ncrease in computational complexity as the state dimension
f the PCE-transformed system factorially grows with the PCE
egree.
In this article, PCE-based H2 static and dynamic output-

eedback controls are investigated. Both nonlinear dependence
n probabilistic time-invariant parametric uncertainties and ad-
itive white noises are taken into account by the developed
CE-transformed system. Moreover, the approximation errors
ntroduced by the PCE truncations are captured by time-varying
orm-bounded uncertainties whose bound is used as a robus-
ifying tuning parameter. Based on the above PCE-transformed
ystem, a nominal H2 synthesis approach is proposed when
eglecting PCE truncation errors, while a guaranteed cost H2
ontrol is adopted to cope with PCE truncation errors. The use of
robustifying parameter enforces closed-loop stability without
esorting to a high-degree PCE, thus avoiding high computational
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complexity due to a large number of PCE terms. Moreover, rigor-
ous analysis reveals the relationship between the stability of the
PCE-transformed system and the internal mean square stability
of the original system under control. Using iterations between
synthesis and post-analysis, a bisection algorithm is proposed
to find the smallest robustifying parameter that ensures robust
closed-loop stability. In contrast, further analysis shows that the
Monte-Carlo sampling based H2 synthesis is much less compu-
tationally efficient, and converges to imposing the conservative
worst-case stability constraint as the number of samples grows
to infinity.

This journal article extends the authors’ previous conference
paper (Shen et al., 2017) in several ways including robust syn-
thesis that explicitly accounts for PCE truncation errors, dynamic
output feedback control synthesis, and providing proofs of the
theoretical results.

This paper is organized as follows. Section 2 states the prob-
abilistic robust H2 control problem. Section 3 reviews prelim-
inaries of PC theory and analyzes the effect of PCE truncation
errors. Our proposed static and dynamic output-feedback con-
trols are presented in Sections 4 and 5 , respectively. Section 6
compares our PCE-based approaches to the Monte-Carlo sampling
based synthesis. The simulation study and some conclusions are
presented in Sections 7 and 8 , respectively.

2. Problem statement

Consider the linear time-invariant (LTI) dynamical system de-
scribed by

ẋ(t, ξ) = A(ξ)x(t, ξ)+ Bw(ξ)w(t)+ B(ξ)u(t, ξ) (1a)

z(t, ξ) = Cz(ξ)x(t, ξ)+ Dzww(t)+ Dzu(t, ξ) (1b)

y(t, ξ) = C(ξ)x(t, ξ)+ Dww(t) (1c)

here x ∈ Rnx is the state, u ∈ Rnu is the control input, w ∈ Rnw

is the stochastic disturbance or noise, y ∈ Rny is the measured
output, and z ∈ Rnz is the controlled output related to the
performance of the control system. Since A, Bw, B, C, and Cz in
(1) are general nonlinear functions of a random parameter vector
ξ ∈ Rnξ , the system state x, control input u, measured output y,
and controlled output z all depend on ξ. Note that Dzw and Dz in
(1b) are assumed to be independent of ξ, for the sake of notation
simplicity. Note that Dw in (1c) is assumed to be independent of
ξ for the sake of brevity, which is explained later in Remark 3.

The uncertain parameter vector ξ lies within a bounded set Ξ ,
and its elements are assumed to be mutually independent ran-
dom variables with known probability density functions (PDFs).
The PDF of ξ can be obtained via either offline parameter iden-
tification from data, or the a priori knowledge that specifies the
relative belief/importance of the underlying system at different
points in the uncertainty region Ξ . The above assumption of
mutual independence among the elements of ξ is not restric-
tive, since linear transformation (Rosenblatt, 1952) or Karhunen–
Loève expansion (Li & Zhang, 2007) can be applied to remove
correlation among these elements. With the above time-invariant
probabilistic parametric uncertainties, the system model (1) de-
scribes a family of LTI systems associated with a probability
measure, i.e., each LTI system with a specific value of ξ is assigned
with a relative weight determined by the PDF of ξ (Fisher &
Bhattacharya, 2009; Konda et al., 2011; Piga & Benavoli, 2017).

The objective of this paper is to design

(i) a static output-feedback (SOF) controller

u(t, ξ) = Ky(t, ξ) (2)
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(ii) a dynamic output-feedback (DOF) controller

ẋK (t, ξ) = AKxK (t, ξ)+ BKy(t, ξ)
u(t, ξ) = CKxK (t, ξ)+ DKy(t, ξ)

(3)

that minimizes the H2 norm of the closed-loop system Tzw in
(1)–(3) from the noisy input w to the controlled output z. Here,
xK ∈ Rnc and nc ≤ nx. To account for the time-invariant proba-
bilistic parametric uncertainties ξ, the H2 norm of the closed-loop
system Tzw in (1)–(3) is defined as

∥Tzw∥
2
2 = Eξ

{T̂zw(ξ)
2
2

}
,T̂zw(ξ)

2
2 =

nw∑
k=1

∫
∞

0
∥zk(t, ξ)∥22 dt,

(4)

where zk(t, ξ) denotes the controlled output response over t ≥ 0
given the impulse disturbance w(t) = ekδ(t), with δ(t) represent-
ing the unit impulse and ek the kth column of an identity matrix
Inw . As shown in (4), ∥Tzw∥

2
2 can be regarded as the averaged

squared H2 norm of a collection of systems T̂zw(ξ) parameterized
by ξ. Such a time-domain characterization of the H2 norm is
related to the impulse-to-energy system gain, see Section 4.7
of Skelton et al. (1997). By interchanging the order of expectation,
summation and integration, the definition (4) can be rewritten as

∥Tzw∥
2
2 =

nw∑
k=1

∫
∞

0
Eξ{∥zk(t, ξ)∥22} dt. (5)

As the usual H2 norm, the finiteness of ∥Tzw∥
2
2 requires Dzw +

DzKDw = 0 for the SOF case and Dzw + DzDKDw = 0 for the DOF
case.

Due to its general nonlinear uncertainty structure, the above
problem cannot be effectively addressed by most existing worst-
case robust control methods without overbounding the
uncertainties. Inspired by Fisher and Bhattacharya (2009) and
references therein, the PC theory is adopted to quantify the
dependence of zk(t, ξ) on ξ in the above H2 norm ∥Tzw∥

2
2. Specifi-

cally, the substitution of state x, control input u, controlled output
z, and measured output y with their PCE approximations trans-
forms the original stochastic system (1) into a high-dimensional
expanded system describing the dynamics of PCE coefficients. The
H2 control synthesis is then solved by using the PCE-transformed
system.

The proposed approach aims at improving the existing PCE-
based control design methodology by (i) explicitly taking into
account stochastic disturbance w; (ii) proposing systematic de-
sign procedures to cope with PCE truncation errors which could
destabilize the closed-loop system if neglected.

Remark 1. For the sake of notation simplicity, the measured out-
put equation (1c) does not include direct feedthrough. With slight
modifications, our proposed PCE-based approach is applicable to
direct feedthrough in the two cases:

(i) The DOF control (3) with DK = 0 can be designed with
our proposed PCE-based approach in the presence of direct
feedthrough.

(ii) Let Kd and K represent the SOF control gains derived with
and without direct feedthrough, respectively. Consider the
case that the direct feedthrough matrix D is indepen-
dent of ξ. If I+ DK is nonsingular, the relationship Kd =

K(I + DK)−1 ensures that the above two controls result
in the same closed-loop dynamics (Fletcher, 1981). This
approach enables designing Kd in the presence of direct
feedthrough by first computing K for a system without

direct feedthrough.

3

Other cases that include direct feedthrough and are different from
the above two cannot be addressed by the PCE-based approach
proposed in this paper, and are left to future research.

3. Polynomial chaos approximation to stochastic linear sys-
tem

This section provides a brief introduction of polynomial chaos
approximation to the stochastic linear system (1) using Galerkin
projection, and then shows how the PCE truncation errors affect
the PCE-approximated closed-loop dynamics.

3.1. Polynomial chaos expansion

For a random vector ξ, a function ψ(ξ) : Rnξ → R with a finite
second-order moment admits a PCE (Xiu, 2010)

ψ(ξ) =
∞∑
i=0

ψiφi(ξ), (6)

where {ψi} denotes the expansion coefficients, and {φi(ξ)} de-
notes the multivariate PC bases in terms of ξ. By using the
Askey scheme of orthogonal polynomial bases, the above expan-
sion exponentially converges in the L2 sense, which results in
accurate approximations even with a relatively small number
of terms (Xiu, 2010). These basis functions are orthogonal with
respect to the probabilistic distribution µ(ξ) of the random vector
ξ, i.e., φ0(ξ) = 1, and⟨
φi(ξ), φj(ξ)

⟩
=

∫
Ξ

φi(ξ)φj(ξ)µ(ξ) dξ = Eξ{φi(ξ)φj(ξ)}

=

{⟨
φ2
i (ξ)

⟩
= 1 if i = j

0 otherwise,
(7)

where Ξ is the support of µ(ξ), and φi(ξ)’s are normalized such
that ⟨φ2

i (ξ)⟩ = 1.
In practical computations, a PCE with an infinite number of

terms (6) needs to be truncated to a finite degree p,

ψ(ξ) ≈ ψ̂(ξ) =
Np∑
i=0

ψiφi(ξ). (8)

The total number of terms in (8) is Np + 1 = (nξ+p)!
nξ !p!

, depend-
ing on the dimension nξ of ξ and the highest degree p of the
etained polynomials {φi(ξ)}

Np
i=0. By using Wiener–Askey orthog-

onal polynomials according to the PDF of ξ, the truncated PCE
approximation ψ̂(ξ) in (8) converges to ψ(ξ) in the mean-square
sense (Xiu, 2010; Xiu & Karniadakis, 2002). Roughly speaking, for
a function ψ(ξ) with a differentiability order md, the above PCE
approximation error is O(p−md ), which means that the conver-
gence rate is as fast as p−md (Xiu, 2010). As such, in general a
sufficiently accurate approximation does not require a very high
PCE degree.

3.2. Galerkin projection for stochastic linear system

Let si(t, ξ) denote the ith component of a vector s(t, ξ) ∈ Rns .
The scalar si(t, ξ) is expressed as

si(t, ξ) = ŝi(t, ξ)+ s̃i(t, ξ), (9)

where

ŝi(t, ξ) =
Np∑
πi,j(t)φj(ξ) (10)
j=0
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s a truncated PCE with a degree p, πi,j(t) is the expansion coef-
icient associated with the PC basis φj(ξ), and s̃i(t, ξ) represents
the truncation error. Define

ŝ(t, ξ) =
[
ŝ1(t, ξ) ŝ2(t, ξ) · · · ŝns (t, ξ)

]⊤
∈ Rns ,

s̃(t, ξ) =
[
s̃1(t, ξ) s̃2(t, ξ) · · · s̃ns (t, ξ)

]⊤
∈ Rns , (11)

π⊤i (t) =
[
πi,0(t) πi,1(t) · · · πi,Np (t)

]
∈ R1×(Np+1),

φ(ξ) =
[
φ0(ξ) φ1(ξ) · · · φNp (ξ)

]⊤
∈ RNp+1, (12)

sPCE(t) =
[
π1(t) · · · πns (t)

]
∈ R(Np+1)×ns .

Then the PCE approximation ŝi(t, ξ) in (10) can be compactly writ-
ten as ŝi(t, ξ) = π⊤i (t)φ(ξ), and the vector s(t, ξ) =[
s1(t, ξ) · · · sns (t, ξ)

]⊤ is expressed as

s(t, ξ) = ŝ(t, ξ)+ s̃(t, ξ) = s⊤PCE(t)φ(ξ)+ s̃(t, ξ)
=

(
φ⊤(ξ)⊗ Ins

)  
Φ⊤s (ξ)

vec
(
s⊤PCE(t)

)  
S(t)

+s̃(t, ξ) (13)

here ⊗ and vec(·) represent the Kronecker product and the
ectorization of a matrix, respectively. In the last equation of (13),
he property of the Kronecker product, i.e., vec(EFG) = (G⊤ ⊗
)vec(F ) is applied (Brewer, 1978). With s representing x, u, y, or
, the PCE coefficient vectors X, U, Y, and Z are defined similarly
s S in (13).
With (9)–(13), two equations

ξ{Φs(ξ)Φ⊤s (ξ)} = Ins(Np+1), Eξ{Φs(ξ)˜̇s(t, ξ)} = 0 (14)

re obtained as a result of the normalized orthogonality of the PC
ases in (7). The second equation in (14) is derived from

˙̃
i(t, ξ) =

d
dt

{
si(t, ξ)− ŝi(t, ξ)

}
=

∞∑
j=Np+1

π̇i,j(t)φj(ξ),

Eξ{φk(ξ)˙̃si(t, ξ)} = 0, k = 0, 1, . . . ,Np.

In the Galerkin projection, the PCEs of x(t, ξ) and u(t, ξ) in the
form of (13) are inserted into (1a) to give

Φ⊤x (ξ)Ẋ(t) = A(ξ)Φ⊤x (ξ)X(t)+ Bw(ξ)w(t) (15)

+ B(ξ)Φ⊤u (ξ)U(t)+ rx(t, ξ)− ˜̇x(t, ξ),

rx(t, ξ) = A(ξ)x̃(t, ξ)+ B(ξ)ũ(t, ξ), (16)

where x(t, ξ) and u(t, ξ) in (1a) are replaced byΦ⊤x (ξ)X(t)+x̃(t, ξ)
and Φ⊤u (ξ)U(t) + ũ(t, ξ), respectively. Note that the error term
rx(t, ξ)− ˜̇x(t, ξ) results from the PCE truncation errors x̃(t, ξ) and
ũ(t, ξ). Then, left multiplying (15) by Φx(ξ) gives

Φx(ξ)Φ⊤x (ξ)Ẋ(t) = Φx(ξ)A(ξ)Φ⊤x (ξ)X(t)
+Φx(ξ)Bw(ξ)w(t)+Φx(ξ)B(ξ)Φ⊤u (ξ)U(t)

+Φx(ξ)rx(t, ξ)−Φx(ξ) ˜̇x(t, ξ).

(17)

By taking the expectation with respect to ξ on both sides of (17),
it follows that the PCE-transformed system

Ẋ(t) = AX(t)+ Bww(t)+ BU(t)+ Rx(t) (18)

describes the dynamics of the PCE coefficient vector X(t), with

A = Eξ{Φx(ξ)A(ξ)Φ⊤x (ξ)}, (19a)

Bw = Eξ{Φx(ξ)Bw(ξ)}, (19b)

B = Eξ{Φx(ξ)B(ξ)Φ⊤u (ξ)}, (19c)

Rx(t) = Eξ{Φx(ξ)rx(t, ξ)}. (19d)

For deriving (18) and (19), (14) is applied. Note that A, Bw,
and B are time-invariant matrices, while R (t) is a time-varying
x

4

error term since the error term rx(t, ξ) is not orthogonal to the
low-degree PC bases in Φx(ξ).

Following similar procedures, the controlled output equation
(1b), the measured output equation (1c), the SOF controller (2),
and the DOF controller (3) can be transformed into

• the PCE-transformed controlled output equation

Z(t) = CZX(t)+ DZww(t)+ DZU(t), (20)

• the PCE-transformed measured output equation

Y(t) = CX(t)+ Dww(t)+ Ry(t), (21)

• the PCE-transformed SOF controller

U(t) = KY(t), (22)

• the PCE-transformed DOF controller
ẊK (t) = AKXK (t)+ BKY(t)
U(t) = CKXK (t)+ DKY(t),

(23)

respectively, where

CZ = Eξ{Φz(ξ)Cz(ξ)Φ⊤x (ξ)}, DZw = Eξ{Φz(ξ)Dzw}, (24a)

DZ = INp+1 ⊗ Dz, C = Eξ{Φy(ξ)C(ξ)Φ⊤x (ξ)}, (24b)

Dw = Eξ{Φy(ξ)Dw}, K = INp+1 ⊗ K, (24c)

AK = INp+1 ⊗ AK , BK = INp+1 ⊗ BK , (24d)

CK = INp+1 ⊗ CK , DK = INp+1 ⊗ DK , (24e)

Ry(t) is an error term defined as

Ry(t) = Eξ{Φy(ξ)ry(t, ξ)}, ry(t, ξ) = C(ξ)x̃(t, ξ) (25)

due to the PCE truncation errors, similar to Rx(t) in (19d). Note
that the matrices in the controlled output equation (1b), the SOF
controller (2), and the DOF controller (3) do not depend on ξ, thus
the high-degree terms of these equations satisfy Eξ{Φs(ξ)s̃(t, ξ)}
= 0, where s represents x, u, y, and z.

As the uncertain system (1) has general nonlinear uncertainty
structure depending on ξ, the matrices A, Bw, B, CZ, DZw, DZ, C,
and Dw defined in (19), (24a), (24b), and (24c) are time-invariant,
and can be obtained via numerical integration (Xiu, 2010).

3.3. Error analysis of PCE-approximated dynamics

Most existing PCE-based control design methods, e.g., Fisher
and Bhattacharya (2009), relied on the PCE-transformed system
(18)–(23) but neglected the error terms Rx(t) and Ry(t) therein. In
this case, even though the PCE-transformed system is stabilized,
the closed-loop system might be unstable due to perturbations
from the neglected error terms Rx(t) and Ry(t), as is analyzed in
next section.

Combining the PCE-transformed open-loop dynamics (18) and
the PCE-transformed SOF controller (22) gives the PCE-
transformed closed-loop system

Ẋ(t) = (A+ BKC)X(t)+ (Bw + BKDw)w(t)
+ Rx(t)+ BKRy(t)

Z(t) = (CZ + DZKC)X(t)+ (DZw + DZKDw)w(t)
+ DZKRy(t).

(26)

To facilitate the PCE-based control synthesis, the following
expressions for the two error terms Rx(t) and Ry(t) are derived,
with a proof given in Appendix A.

Proposition 1. There exist time-varying matrices Fx(t) and Fy(t)
such that

Rx(t) = Fx(t)X(t), Ry(t) = Fy(t)X(t). (27)
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Using the above notations, the PCE-transformed closed-loop
system (26) can be written as

TZw =

[
A+ BKC + Fx(t)+ BKFy(t) Bw + BKDw

CZ + DZKC + DZKFy(t) DZw + DZKDw

]
.

(28)

With similar procedures, the PCE-transformed closed-loop sys-
tem under the PCE-transformed DOF controller (23) is

T̄Zw =

⎡⎣A+ BDKC + Fx(t)+ BDKFy(t) BCK Bw + BDKDw
BKC + BKFy(t) AK BKDw

CZ + DZDKC + DZDKFy(t) DZCK DZw + DZDKDw

⎤⎦ .
(29)

In (28) and (29), the effect of the PCE truncation errors is
described by the multiplicative uncertainties Fx(t) and Fy(t).
They would destabilize the closed-loop system in certain cases if
completely neglected. How to cope with these uncertainties will
be discussed in Sections 4.2, 4.3, and 5.

4. Static output-feedback synthesis using polynomial chaos

In this section, two PCE-based H2 synthesis methods are pro-
osed for the SOF synthesis problem formulated in Section 2,
sing the PCE-transformed systems (18)–(22). The first PCE-based
ynthesis method neglects the PCE approximation errors Rx(t)
nd Ry(t) analyzed in Section 3.3, while the second PCE-based
ynthesis method explicitly copes with these error terms using
guaranteed-cost approach.

.1. H2 Static output-feedback synthesis

According to (13), the controlled output z(t, ξ) can be written
s

z(t, ξ) = Φ⊤z (ξ)Z(t)+ z̃(t, ξ),

which leads to

Eξ{∥z(t, ξ)∥22}
= Z⊤(t)Eξ{Φz(ξ)Φ⊤z (ξ)}Z(t)

+ 2Z⊤(t)Eξ{Φz(ξ)z̃(t, ξ)} + Eξ{
z̃(t, ξ)2

2}

≈ ∥Z(t)∥22 .

(30)

n the above equation, Eξ
{
Φz(ξ)Φ⊤z (ξ)

}
= Inz (Np+1) and

Eξ
{
Φz(ξ)z̃(t, ξ)

}
= 0 are used as a result of the normalized

orthogonality (7). The term Eξ
{z̃(t, ξ)2

2

}
due to the PCE trun-

cation error z̃(t, ξ) is neglected, because it converges to zero at
a fast rate, and thus could be sufficiently small without using a
high PCE degree, see explanations at the end of Section 3.1. From
(30), minimizing the H2 norm ∥Tzw∥

2
2 in (5) can be approximated

by

min
K

nw∑
k=1

∫
∞

0
∥Zk(t)∥22 dt, (31)

where Zk(t) is the PCE coefficient vector of the output response
zk(t, ξ) in (5). By doing so, the original SOF problem (5) of mini-
mizing the H2 norm ∥Tzw∥

2
2 in (5) is transformed into a standard

nominal H2 SOF problem (31) for the linear time-invariant PCE-
transformed system (18)–(22), when the error terms Rx(t) and
Ry(t) can be neglected. How to cope with nonnegligible errors
Rx(t) and Ry(t) will be discussed in Sections 4.2 and 4.3 .

The problem (31) aims at minimizing the H2 norm of the PCE-
transformed closed-loop system (28) from the disturbance w to
5

the measured output Z. Note that Fx(t) and Fy(t) in (28) are set to
zero due to neglecting PCE truncation errors, and DZw+DZKDw =
is required to obtain a finiteH2 norm. Then standard procedures
re used to convert (31) into the optimization

min
Pcs,K

trace
(
B⊤w,csPcsBw,cs

)
s.t. Pcs > 0, A⊤csPcs + PcsAcs + C⊤Z,csCZ,cs < 0

here
Acs = A+ BKC, Bw,cs = Bw + BKDw,

CZ,cs = CZ + DZKC,
(32)

nd the subscript ‘‘cs’’ indicates that all three matrices are for
he closed-loop system under SOF. The above problem can be
quivalently transformed into

min
Λcs,Qcs,K

trace (Qcs)

s.t.
[

Qcs ⋆

Bw + BKDw Λcs

]
> 0,[

He{(A+ BKC)Λcs} ⋆

(CZ + DZKC)Λcs −I

]
< 0,

(33)

sing Λcs = P−1cs , and K defined in (24c), according to the
chur complement lemma, where He{·} denotes the sum of a
quare matrix and its transpose. In the rest of this paper, within
symmetric block matrix as in (33), an off-diagonal block ⋆ at

he position (i, j) represents the transpose of the block at the
ymmetric position (j, i). As in any standard SOF problem, the
econd matrix inequality in (33) is a bilinear matrix inequality
BMI) (VanAntwerp & Braatz, 2000) due to the multiplication
etweenΛcs and K as well as the special structure of K = INp+1⊗

.
The above H2 synthesis problem extends the PCE-based lin-

ar quadratic regulation method proposed in Fisher and Bhat-
acharya (2009) to address the additive stochastic disturbance
. This formulation has the same limitation as (Fisher & Bhat-
acharya, 2009) as a result of neglecting the PCE truncation errors,
.e., the above synthesis might fail to stabilize the original dy-
amics (1a) (Lucia et al., 2017). Specifically, the accuracy of the
CE approximation degrades over time, and the perturbation
rom the neglected error terms Rx(t) and Ry(t) in the closed-loop
ystem (28) grows (Luchtenburg et al., 2014). When the control
ction does not provide sufficient compensation for such a model-
lant mismatch, the system state would diverge. Few existing
CE-based control designs explicitly address this problem (Lucia
t al., 2017). The commonly adopted remedy in literature is the
se of higher degree PCE approximations at the cost of larger
omputational burden when solving (33). As the PCE degree p
ncreases, the number of PCE terms increases factorially, and
hen the involved computational burden rapidly grows and easily
ecomes prohibitive.

.2. H2 Guaranteed cost static output-feedback synthesis

In order to explicitly compensate for PCE truncation errors
n the PCE-based synthesis, the error terms rx(t, ξ) in (16) and
y(t, ξ) in (25) are assumed to be bounded as

ξ

{
∥Φs(ξ)rs(t, ξ)∥22

}
≤ ρ2

s ∥X(t)∥
2
2 (34)

here s represents x and y, respectively. From (19d), (25) and
34), it then follows that

Rs(t)∥22 =
Eξ {Φs(ξ)rs(t, ξ)}

2
2

≤ Eξ
{
∥Φs(ξ)rs(t, ξ)∥22

}
≤ ρ2

s ∥X(t)∥
2
2 ,
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nd consequently, F⊤s (t)Fs(t) ≤ ρ2
s Inx(Np+1) according to (27).

With the above norm-bounded uncertainty description of Fx(t)
and Fy(t), the synthesis of the PCE-transformed closed-loop sys-
tem (28) is proposed below, with tuning of ρx and ρy discussed
in Section 4.3.

First, the PCE-transformed closed-loop system (28) is rewrit-
ten as

Ẋ(t) = AcsX(t)+ Gcsωcs(t)+ Bw,csw(t) (35a)

Z(t) = CZ,csX(t)+ Lcsωcs(t) (35b)

ωcs(t) =
[
∆x(t) 0

0 ∆y(t)

]
ψcs(t), (35c)

ψcs(t) =
[
ρxI
ρyI

]
X(t), (35d)

with Acs, Bw,cs, and CZ,cs defined in (32), and

Gcs =
[
I BK

]
, Lcs =

[
0 DZK

]
, (36)

∆s(t) =
Fs(t)
ρs

, ∥∆s(t)∥ ≤ 1, s presents x or y. (37)

With the same procedures in Section 4.1, the design objective (5)
is transformed into (31).

Theorem 1. The closed-loop system (35) is quadratically stable for
all ∥∆x(t)∥ ≤ 1 and

∆y(t)
 ≤ 1 if and only if there exist Pcs > 0

nd a scalar µcs > 0 such that[
A⊤csPcs + PcsAcs + µcs(ρ2

x + ρ
2
y )I ⋆

G⊤csPcs −µcsI

]
+

[
C⊤Z,cs
L⊤cs

] [
CZ,cs Lcs

]
< 0.

(38)

uppose the above statement holds, then the H2 cost function (31)
s upper bounded by trace

(
B⊤w,csPcsBw,cs

)
.

The proof is given in Appendix B.
According to Theorem 1, the robust H2 control synthesis is

ormulated as

min
Pcs,QcsK,µcs

trace (Qcs)

s.t.
[

Qcs ⋆

Pcs(Bw + BKDw) Pcs

]
> 0,⎡⎢⎣He{Pcs(A+ BKC)} + µcsρ

2I ⋆ ⋆ ⋆

Pcs −µcsI ⋆ ⋆

K⊤B⊤Pcs 0 −µcsI ⋆

CZ + DZKC 0 DZK −I

⎤⎥⎦ < 0

(39)

ith ρ2
= ρ2

x + ρ2
y . It aims at minimizing an upper bound

of the averaged squared H2 norm. In contrast, the conventional
orst-case robust approach minimizes an upper bound of the
orst-case squared H2 norm. Similarly to the second inequality

n (33), both inequalities in (39) are BMIs.

.3. Post-analysis of stability and parameter tuning

The PCE-based synthesis problem (39) relies on a PCE-
ransformed approximation (35) of the original system (1) under
ontrol (2), and explicitly takes into account the PCE approxima-
ion errors by introducing the lumped robustifying parameter ρ2.
owever, the synthesis solution to (39) might fail to stabilize the
riginal system (1), if the adopted value of ρ2 is not large enough
o ensure ρ2

≥ ρ2
x + ρ

2
y , where ρ2

x and ρ2
y are defined in (34)

to bound the PCE approximation errors. Therefore, two questions
arise:
 s

6

Q1 Under which conditions does the control gain obtained from
(39) stabilize the original system (1);

Q2 How to systematically tune the lumped robustifying param-
eter ρ2 in (39).

The following theorem answers Q1, and will be used to provide
the answer to Q2.

Theorem 2. Assume that for all ξ ∈ Ξ , (A(ξ), C(ξ)) is detectable,
nd the matrices A(ξ), B(ξ) and C(ξ) are bounded. With ρ2

x and ρ2
y

defined in (34) for PCE approximation errors, if the synthesis problem
(39) with the robustifying parameter ρ2

≥ ρ2
x + ρ

2
y is feasible, then

he obtained controller internally stabilizes the original system (1) in
he mean-square sense.

The proof is given in Appendix C.
Theorem 2 clarifies sufficient conditions for stabilizing the

riginal system (1) with the control gain obtained from (39). One
f these sufficient conditions is ρ2

≥ ρ2
x + ρ

2
y . However, it is

ifficult to determine such ρ2 before a control law is designed,
ecause the error bounds ρ2

x and ρ2
y in (34) depend on the control

ain K that is to be designed. To be specific, rx(t, ξ) and ry(t, ξ)
n (34) describe the errors of the PCE-transformed approximation
o the entire closed-loop system, hence must rely on the control
ain K. As indicated by (A.5) and (25), rx(t, ξ) has an explicit
ependence on K, and ry(t, ξ) depends on x̃(t, ξ) that is related to
x(t, ξ) and K. Even with a synthesized control gain, it would be
till extremely challenging, if not impossible, to verify (34) over
n infinite time horizon, because the expressions (A.1) and (A.5)
or x̃(t, ξ) and rx(t, ξ) cannot be directly evaluated.

Due to the reasons mentioned above, instead of checking
hether the sufficient condition ρ2

≥ ρ2
x+ρ

2
y holds, we perform a

osterior stability test after solving (39) with a selected ρ2. Since
small value of ρ2 is preferred to avoid conservatism, an iterative
uning method is developed to find the least conservative value
f ρ2 such that the controller obtained from (39) stabilizes the
ystem (1). Here, the posterior stability test is performed by
sing the probabilistic approach of Piga and Benavoli (2017). This
pproach formulates the robust stability analysis problem in the
robabilistic setting, and uses a theory-of-moments relaxation to
erive a semidefinite program that computes an upper probabil-
ty bound of instability. Using only the support information of the
robability measure of ξ in the moment relaxation problem, if the
erived upper probability bound of instability for all probability
easures with the given support is strictly smaller than 1, then

obust closed-loop stability is guaranteed according to Property 1
n Piga and Benavoli (2017).

With a selected PCE degree p, the procedure of the PCE-based
ontrol synthesis is summarized as follows. Firstly, the nominal
CE-based synthesis (33) is solved. If the posterior stability test
hows that the resulting closed-loop system is robustly stable,
stabilizing PCE-based control is found. Otherwise, the robust
CE-based synthesis (39) has to be considered. Together with the
osterior stability test, the bisection search described in Algo-
ithm 1 is developed to iteratively tune ρ2 within an interval
0, ρ2

max] until its least conservative value ρ2
min is found. Here,

2
max is the maximal value of ρ2 that ensures the feasibility of
39), which can be found by another simple bisection search
lgorithm that is omitted here due to space limit. As such, ρ2

max
as the following two properties according to Theorem 2: i)
2
max ≥ ρ

2
x + ρ

2
y holds, because Theorem 2 assumes the existence

f ρ2
≥ ρ2

x + ρ
2
y that ensures the feasibility of (39); and ii) the

olution to (39) with ρ2
= ρ2

max stabilizes the original system (1)
n the mean-square sense.

Due to the use of the robustifying parameter ρ2, certain con-

ervativeness is introduced. Such conservatism can be reduced
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d

P

Algorithm 1 Bisection search for tuning ρ2 in (39)

Initialization: ρ2
L ← 0, ρ2

U ← ρ2
max, where ρ2

max is the maximal
value of ρ2 that ensures the feasibility of (39). Set the tolerance
ϵ of the stopping criteria.
repeat
ρ2
←

1
2 (ρ

2
L + ρ

2
U )

if the posterior robust stability test shows that the solution
to (39) with ρ2 stabilizes the original system (1) then

ρ2
U ← ρ2

else
ρ2
L ← ρ2

end if
until ρ2

U − ρ
2
L ≤ ϵ

Output: ρ2
min ← ρ2

by moderately increasing the PCE degree p and accordingly re-
ucing ρ2. This is achieved at the cost of significantly higher

computational load, since the size of the synthesis problem grows
factorially with the PCE degree.

5. Dynamic output-feedback synthesis using polynomial chaos

In this section, BMI synthesis conditions are derived for the
CE-based H2 DOF controller by reducing it to a SOF problem, as

in the standard DOF synthesis approach proposed in Scherer et al.
(1997).

When neglecting the PCE truncation errors, the cost func-
tion (31) is considered in the PCE-based DOF synthesis for the
PCE-transformed closed-loop system (29), i.e.,

T̄Zw =

[
Ā+ B̄K̄C̄ B̄w + B̄K̄D̄w
C̄Z + D̄ZK̄C̄ D̄Zw + D̄ZK̄D̄w

]
=

[
Acd Bw,cd
CZ,cd 0

]
,

(40)

where

Ā =
[
A 0
0 0

]
, B̄w =

[
Bw
0

]
, B̄ =

[
B 0
0 I

]
,

C̄Z =
[
CZ 0

]
, D̄Zw = DZw, D̄Z =

[
DZ 0

]
,

C̄ =
[
C 0
0 I

]
, D̄w =

[
Dw
0

]
, K̄ =

[
DK CK
BK AK

]
,

(41)

AK , BK , CK , DK are defined in (24d) and (24e), the subscript
‘‘cd’’ indicates the closed-loop system matrices under DOF, and
D̄Zw + D̄ZK̄D̄w = 0 is required to obtain a finite H2 norm. Since
(40) and (28) are in the same form, the above PCE-based DOF
synthesis problem can be constructed similarly to the PCE-based
SOF synthesis problem (33), hence the details are omitted.

When addressing the PCE truncation errors, the PCE-
transformed closed-loop system (29) can be rewritten as

Ẋcd(t) = AcdXcd(t)+ Gcdωcd(t)+ Bw,cdw(t),
Z(t) = CZ,cdXcd(t)+ Lcdωcd(t),

ωcd(t) =
[
∆x(t) 0

0 ∆y(t)

]
ψcd(t),

ψcd(t) =
[
ρxI 0
ρyI 0

]
Xcd(t),

(42)

by applying the same procedure that derives (35) from (28), with
Xcd(t) =

[
X⊤(t) X⊤K (t)

]⊤, Acd, Bw,cd, and CZ,cd defined in (40)
and (40), ∆x(t) and ∆y(t) defined in (37), and

Gcd =

[
I BDK

]
, Lcd =

[
0 DZDK

]
.
0 BK

7

Then, the robust H2 DOF synthesis problem for (42) can be con-
structed by following Theorem 1 that is applied to the closed-loop
SOF system (35).

In the conventional output-feedback synthesis, the additional
structure in a DOF controller allows the use of congruence trans-
formation and change of variables to obtain a LMI synthesis
problem (Scherer et al., 1997). The same strategy, however, does
not work for the above PCE-based DOF synthesis problems be-
cause of the block-diagonal structure of controller parameters as
shown in (24d) and (24e). Therefore, a BMI solver is needed to
solve the PCE-based DOF synthesis problems for a full-order or
reduced-order controller.

Remark 2. All the proposed PCE-based synthesis problems in-
volve BMIs, thus are nonconvex. Global optimization algorithms
exist which are applicable to moderate-sized BMI problems with-
out requiring an initial guess (Goh et al., 1994). For a BMI problem
with a large size, a global optimization algorithm is often compu-
tationally prohibited, and the alternative are local optimization
algorithms such as PENBMI (Kočvara & Stingl, 2012). To find a
good initial guess for the local search, various LMI relaxations
or iterative LMI algorithms are available for SOF or DOF controls
in literature (Sadabadi & Peaucelle, 2016). It should be noted
that modifications have to be made to these existing methods
to account for the structures of the SOF/DOF control gains K in
(24c) and K̄ in (41). Relevant details are not included here due
to limited space. If an initial guess cannot be found by these
local search methods, the global search approach can be used
by solving a BMI feasibility problem with a higher computational
cost.

6. Comparison with Monte-Carlo sampling based H2 output-
feedback synthesis

Following Tempo et al. (2013), a Monte-Carlo sampling based
method is briefly reviewed here, to compare with the PCE-based
synthesis proposed in the previous sections. For the sake of
brevity, only the SOF case is discussed, and similar conclusions
are applicable to the DOF case.

When applying the standard H2 synthesis conditions, the av-
eraged H2 SOF problem stated in Section 2 can be formulated as

min
P(ξ),K

Eξ
{
trace

(
B⊤w,c(ξ)P(ξ)Bw,c(ξ)

)}
s.t. P(ξ) > 0, Eξ

{
x⊤(t, ξ)Υ (ξ)x(t, ξ)

}
< 0,

(43)

where P(ξ) ∈ Rnx×nx is a predefined function of ξ, and

Ac(ξ) = A(ξ)+ B(ξ)KC(ξ),
Bw,c(ξ) = Bw(ξ)+ B(ξ)KDw,

Cz,c(ξ) = Cz(ξ)+ DzKC(ξ),

Υ (ξ) = A⊤c (ξ)P(ξ)+ P(ξ)Ac(ξ)+ C⊤z,c(ξ)Cz,c(ξ). (44)

The Monte-Carlo sampling based approach uses a finite number
of realizations of ξ to recast the above problem as

min
Λ1,...,ΛN ,
Q1,...,QN ,K

1
N

N∑
i=1

trace(Qi) (45a)

s.t.
[
ΛiA⊤c (ξi)+ Ac(ξi)Λi ⋆

Cz,c(ξi)Λi −I

]
< 0, (45b)

[
Qi ⋆

Bw,c(ξi) Λi

]
> 0, Λi > 0, i = 1, . . . ,N,

where {ξi} are sampled from the probability distribution of ξ, N
is the number of samples, and each pair of Λ and Q is applied
i i
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o a different sample. The inequalities in (45) are converted from
⊤
w,c(ξi)PiBw,c(ξi) < Qi and Υ (ξi) < 0 by using Λi = P−1i , with

Υ (ξi) defined in (44).
To achieve a satisfactory approximation to the original prob-

lem (43), a large number of samples are necessary, as analyzed
in Sections 8.3 and 10.3 of Tempo et al. (2013). This leads to
heavy computational load when solving the problem (45), as
illustrated later by a numerical example in Section 7. In contrast,
the PCE approximation exponentially converges with its degree
increasing, thus usually a relatively small degree is needed. As
a result, solving the PCE-based synthesis problems derived in
Sections 4 and 5 can be much more efficient. Even when a small
PCE degree results in PCE truncation errors to be accounted for,
not only the PCE degree p but also the robustifying parameter
ρ introduced in Sections 4.2 and 5 are available to enhance
our proposed PCE-based design without significantly increasing
computational complexity.

Another limitation of the Monte-Carlo sampling based ap-
proach lies in replacing the stochastic stability condition
Eξ

{
x⊤(t, ξ)Υ (ξ)x(t, ξ)

}
< 0 in (43) by (45a). This is conser-

ative, because (45a) converges to a worst-case robust stability
onstraint as the sample size increases.

. Numerical simulations

Consider a system of the form (1) whose parameters are

A(ξ ) =
[

0.2+ 0.3ξ 3 −0.4
0.1 0.5

]
, Bw =

[
0.6 0
0 1

]
,

B =
[
0.5 0.1
0.2 1

]
, Cz =

[
I2

02×2

]
, Dz =

1
√
3

[
02×2
I2

]
,

C =
[
0.8 0.4

]
, Dw = 01×2, Dzw = 04×2,

(46)

ith the uncertain parameter ξ being uniformly distributed over
he interval [−1, 1].

Firstly, four H2 SOF control synthesis methods are imple-
ented for comparisons: (i) a worst-case robust SOF synthesis

hat exploits the polytopic uncertainty ξ 3 ∈ [−1, 1] to over-
ound the polynomial parametric uncertainty in (46) (Geromel
t al., 2007); (ii) our proposed PCE-based nominal SOF synthesis
33); (iii) our proposed PCE-based guaranteed cost SOF synthesis
39); (iv) a Monte-Carlo sampling based SOF synthesis. With the
mplemented SOF controls, the H2 norms

T̂zw(ξ)

2 defined in

(4) vary with ξ, as depicted in Fig. 1. Both the worst-case robust
SOF control and the 10-degree PCE-based nominal SOF control
succeed in stabilizing the closed-loop system, whilst the 2-degree
PCE-based nominal SOF control fails. It can be also seen that
compared to the worst-case robust SOF control, although the 10-
degree PCE-based nominal SOF control gives a larger worst-case
H2 norm for ξ = −1, it indeed achieves a smaller averaged H2
orm.
In order to illustrate the benefit of the PCE-based guaranteed

ost SOF control synthesis (39), a 2-degree PCE is adopted to
ntroduce relatively larger PCE truncation errors on purpose. The
isection method in Algorithm 1 is applied to find the minimal
obustifying parameter ρmin that results in a robustly stabilizing
ontrol gain. First, the lower bound ρL and the upper bound ρU
are chosen as ρL = 0 and ρU = 9.5 × 10−2, respectively.
fter 11 bisection iterations, the gap between ρL and ρU becomes

smaller than 5 × 10−5. Then Algorithm 1 terminates, and the
minimal robustifying parameter ρmin is 2.8 × 10−2. As a result,
the obtained SOF gain is

[
−21.86 16.36

]⊤. When performing
the posterior stability analysis, the moment relaxation problem
of Piga and Benavoli (2017) is formulated with the support infor-
mation [−1, 1] and the first four orders of moments. The obtained
upper probability bound of instability for all probability measures
8

Fig. 1. Variations of the H2 norm
T̂zw(ξ)


2 generated by different SOF controls.

with the same support [−1, 1] is 0.00003%, thus robust closed-
loop stability is guaranteed according to Property 1 of Piga and
Benavoli (2017). In Fig. 1, the 10-degree PCE-based nominal SOF
control achieves an averaged H2 norm 7.7 and a worst-case H2
norm 21.9. In comparison, the 2-degree PCE-based guaranteed
cost SOF control synthesis with ρ = 2.8×10−2 results in a similar
averaged H2 norm 8.1, although it obtains a much larger worst-
case H2 norm 289.6. With the robustifying parameter increased
to ρ = 6.8× 10−2, the achieved worst-case H2 norm is reduced
to 12.9, which is almost the same as that of the worst-case robust
SOF control, while its averaged H2 norm has a minor increase to
9.2.

In terms of computational cost, the proposed PCE-based SOF
synthesis problems (33) and (39) are compared with the Monte-
Carlo sampling based synthesis (45). As shown in Fig. 2, the
solution to the Monte-Carlo sampling based formulation (45)
converges to Kmc = [ −19.6 14.9 ]⊤ with 104 samples. The number
of involved decision variables is 60004. In contrast, both two
PCE-based synthesis problems (33) and (39) have a significantly
reduced problem size. To be specific, the 10-degree PCE-based
nominal SOF synthesis (33) produces almost the same control
gain KPCE = [ −19.5 14.8 ]⊤ as Kmc, which involves only 508 de-
cision variables. In the 2-degree PCE-based guaranteed cost SOF
synthesis (39), the number of decision variables further reduces
to 45.

Similarly to the performance comparison of four H2 SOF con-
trols, the corresponding H2 DOF controls are also implemented.
As depicted in Fig. 3, the results are very similar to Fig. 1. It can
be seen again that the 2-degree PCE-based guaranteed cost DOF
synthesis with ρ = 2.5 × 10−2 produces almost the same H2
performance as the 5-degree PCE-based nominal DOF synthesis,
but it has a much larger H2 norm as ξ approaches -1. By increas-
ing ρ to 6.8×10−2, the 2-degree PCE-based guaranteed cost DOF
synthesis achieves a slightly smaller worst-caseH2 norm than the
worst-case DOF synthesis result. This is due to the conservatism
introduced by using polytopic uncertainty description to over-
bound the polynomial parametric uncertainty in the simulation
example (46).

8. Conclusions

Polynomial chaos based H2 static and dynamic output-
feedback control synthesis methods are presented for systems
subject to time-invariant probabilistic parametric uncertainties
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Fig. 2. The dependence of both components of the SOF controller on the number
f Monte-Carlo samples (circles: the average of 100 trials with different samples
f ξ ; error bars: the range of 100 trials). The control gain converges when using
04 samples.

Fig. 3. Variations of the H2 norm
T̂zw(ξ)


2 generated by different DOF controls.

and white noises. The effect of polynomial chaos expansion trun-
cation errors is captured by time-varying norm-bounded uncer-
tainties, and explicitly taken into account by adopting a guaran-
teed cost control approach. This strategy further leads to rigorous
analysis of the condition under which the stability of the PCE-
transformed system ensures the closed-loop stability of the orig-
inal system, which has not been achieved by existing PCE-based
controls. Instead of using high-degree expansions to alleviate the
effect of truncation errors, our proposed polynomial chaos based
synthesis allows the use of relatively low-degree expansions
by tuning a robustifying parameter, which significantly reduces
computational cost.

Appendix A. Proof of Proposition 1

Between the PCE truncation error x̃(t, ξ) and the PCE ap-
proximation Φ⊤x (ξ)X(t), there exists a non-unique transformation
matrix M(t, ξ) ∈ Rnx×nx such that

x̃(t, ξ) = M(t, ξ)Φ⊤x (ξ)X(t) (A.1)

holds for all t . Then, it can be derived from (25) and (A.1) that

R (t) = E {Φ (ξ)C(ξ)x̃(t, ξ)} = F (t)X(t)
y ξ y y (A.2) s

9

with Fy(t) = Eξ{Φy(ξ)C(ξ)M(t, ξ)Φ⊤x (ξ)}.
From (13), (21), (22), and (24c), the truncation error ũ(t, ξ) =

u(t, ξ)−Φ⊤u (ξ)U(t) can be expressed as

ũ(t, ξ) = Ky(t, ξ)−Φ⊤u (ξ)KY(t)
= KC(ξ)

(
Φ⊤x (ξ)X(t)+ x̃(t, ξ)

)
+ KDww(t)

−Φ⊤u (ξ)K
(
CX(t)+ Dww(t)+ Ry(t)

)
= KC(ξ)x̃(t, ξ)− KΦ⊤y (ξ)Ry(t)

+ K
(
C(ξ)Φ⊤x (ξ)−Φ⊤y (ξ)C

)
X(t).

(A.3)

Note that the third equation in (A.3) leverages

Φ⊤u (ξ)K = KΦ⊤y (ξ), KDw = Φ
⊤

u (ξ)KDw (A.4)

which are derived by using the definitions of Φ⊤u (ξ), Φ⊤y (ξ), K,
and Dw in (13) and (24c) as well as the orthogonality in (7):

Φ⊤s (ξ) =
[
Ins φ1(ξ)Ins · · · φNp (ξ)Ins

]
,

Dw = Eξ
{(
φ⊤(ξ)⊗ Iny

)
Dw

}
=

[
D⊤w 0nyNp×ny

]⊤
,

where s represents u or y. By substituting (A.2), (A.3), and (A.4)
into (16), it follows that

rx(t, ξ) = Acl(ξ)x̃(t, ξ)− B(ξ)KΦ⊤y (ξ)Fy(t)X(t)
+ B(ξ)K

(
C(ξ)Φ⊤x (ξ)−Φ⊤y (ξ)C

)
X(t)

(A.5)

with Acl(ξ) = A(ξ)+ B(ξ)KC(ξ). From the above derivations, Rx(t)
in (19d) can be rewritten as

Rx(t) = Eξ{Φx(ξ)rx(t, ξ)} = Fx(t)X(t)

with

Fx(t) = Eξ
{
Φx(ξ)Acl(ξ)M(t, ξ)Φ⊤x (ξ)

−Φx(ξ)B(ξ)KΦ⊤y (ξ)Fy(t)

+Φx(ξ)B(ξ)K
(
C(ξ)Φ⊤x (ξ)−Φ⊤y (ξ)C

)}
.

(A.6)

Remark 3. The independence of Dw on ξ is used for deriving
(A.4). Without such an assumption, Rx(t) = Fx(t)X(t) + Fww(t)
is then derived with

Fw = Eξ
{
Φx(ξ)B(ξ)

(
KDw(ξ)−Φ⊤u (ξ)KDw

)}
,

where Dw(ξ) depends on ξ. In this case, the basic idea for the PCE-
based synthesis method in Sections 4.2 and 4.3 is still applicable,
except that minor modifications are needed to cope with the
additional uncertainty Fww(t). Derivations for this case are not
included for the sake of brevity.

Appendix B. Proof of Theorem 1

A sketch of the proof is as follows, and please refer to Section
4.7 in Skelton et al. (1997) for more details. By multiplying (38)
with

[
X⊤(t) ω⊤cs(t)

]
to its left and with

[
X⊤(t) ω⊤cs(t)

]⊤ to its
right, we can derive

V̇ (X(t)) < −Z⊤(t)Z(t)
+ µcs

(
ω⊤cs(t)ωcs(t)− ψ⊤cs(t)ψcs(t)

)
.

(B.1)

from (35), where V (X(t)) is the quadratic Lyapunov function
defined as V (X(t)) = 1

2X
⊤(t)PcsX(t). Since ∥∆x(t)∥ ≤ 1 and

∆y(t)
 ≤ 1, we also have

⊤

cs(t)ωcs(t)− ψ⊤cs(t)ψcs(t) ≤ 0. (B.2)

hen, it is easy to see V̇ (X(t)) < 0 from (B.1) and (B.2), which
roves the sufficient condition for quadratic stability.
Now, we prove the necessity condition implied by quadratic

tability. According to the concept of quadratic stability, there
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e
xists a Lyapunov function V1(X(t)) = 1
2X
⊤(t)P1X(t) with P1 > 0

such that V̇1(X(t)) < 0 holds. Then, using V̇1(X(t)) < 0 and (B.2),
there exist sufficiently small positive scalars ε1 and ε2 such that

V̇1(X(t))+ ε1
(
ψ⊤cs(t)ψcs(t)− ω

⊤

cs(t)ωcs(t)
)

+ ε2Z⊤(t)Z(t) < 0.
(B.3)

Dividing both sides of (B.3) by ε2, and define Pcs = ε−12 P1 and
µcs = ε1ε

−1
2 , we can derive the necessary condition (38) from

(B.3) by using (35).
Next, we derive an upper bound for the H2 cost function (31)

by using (B.1) that is obtained from (38). Let Xk(t), Zk(t), ψcs,k(t),
and ωcs,k(t) denote the impulse responses to the unit-impulse
input w(t) = ekδ(t) in the kth coordinate of w. Integrating both
sides of (B.1) from t = 0 to∞ leads to

V (Xk(0)) = V (Xk(0))− V (Xk(∞))

>

∫
∞

0
∥Zk(t)∥22 dt

+ µcs

∫
∞

0

ψcs,k(t)
2
2 −

ωcs,k(t)
2
2 dt

≥

∫
∞

0
∥Zk(t)∥22 dt,

In the above derivation, the first equality is due to V (Xk(∞)) = 0
implied by the quadratic stability, while the second inequality
comes from

ψcs,k(t)
2
2 ≥

ωcs,k(t)
2
2 according to (35c) and (37).

Since the impulse response to the unit-impulse w(t) = ekδ(t) is
equivalent to the initial state response under the initial condition
Xk(0) = Bw,cek, the upper bound of the H2 cost function (31) is
nw∑
k=0

∫
∞

0
∥Zk(t)∥2 dt <

nw∑
k=0

V (Xk(0))

=

nw∑
k=0

(Bw,csek)⊤PcsBw,csek

= trace{B⊤w,csPsBw,cs}. □

Appendix C. Proof of Theorem 2

For internal stability analysis, the additive noise w(t) is set
to zero. According to Theorem 1, the solution to (39) stabi-
lizes the PCE-transformed closed-loop system (28), thus we have
X(∞) = 0. This implies that the PCE-transformed approximated
state x̂(t, ξ) = Φ⊤x (ξ)X(t) goes to zero as time goes to infinity.
To show the internal mean square stability of the original system
(1) under the synthesized SOF control, the PCE truncation error
x̃(t, ξ) needs to be discussed in the following.

For any normalized orthogonal PCE bases, the first basis func-
tion φ0(ξ) in (12) is equal to 1 (Xiu, 2010). Therefore, using the
definition of Φs(ξ) in (13), (34) implies

Eξ{∥rs(t, ξ)∥22} ≤
Np∑
i=0

Eξ
{
φ2
i (ξ) ∥rs(t, ξ)∥

2
2

}
= Eξ

{
∥Φs(ξ)rs(t, ξ)∥22

}
≤ ρ2

s ∥X(t)∥
2
2 .

(C.1)

As such, combining (25), (A.5) and (C.1) gives

Eξ{
Acl(ξ)x̃(∞, ξ)

2
2} = 0, Eξ{

C(ξ)x̃(∞, ξ)2
2} = 0,

which can be further expressed as

Eξ

{[
Acl(ξ)
C(ξ)

]
x̃(∞, ξ)

2
}
= 0. (C.2)
2

10
Since the detectability of (A(ξ), C(ξ)) for any ξ ∈ Ξ implies that[
A⊤(ξ) C⊤(ξ)

]⊤ has full column rank (see Theorem 3.4 in Zhou
et al., 1996), the matrix[
Acl(ξ)
C(ξ)

]
=

[
I B(ξ)K
0 I

][
A(ξ)
C(ξ)

]
is also of full column rank for any ξ ∈ Ξ . Consequently, (C.2)
leads to

Eξ
{x̃(∞, ξ)2

2

}
= 0,

which further implies

Eξ
{
∥x(∞, ξ)∥22

}
= Eξ

{Φ⊤x (ξ)X(∞)+ x̃(∞, ξ)
2
2

}
= Eξ

{x̃(∞, ξ)2
2

}
= 0

due to X(∞) = 0.
All the above analysis shows that under the condition specified

in Theorem 2, the stability of the PCE-transformed closed-loop
system (28) indeed ensures Eξ

{
∥x(∞, ξ)∥22

}
= 0, i.e., the internal

mean square stability of the original system (1) under control.
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