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a b s t r a c t 

This paper considers fault detection of uncertain linear parameter varying systems that have polynomial 

dependence on parametric uncertainties. A conventional set-membership (SM) approach is able to en- 

sure zero false alarm rate (FAR) by using conservative threshold sets, but usually results in a high missed 

detection rate (MDR) due to equally treating all uncertainty realizations without distinguishing between 

high and low probability of occurrence. To address this limitation, a probabilistic SM parity relation ap- 

proach is proposed to exploit probabilistic information on the parametric uncertainties, which results in 

a reduced MDR by admitting an acceptable FAR. The parity relation is first polynomially parameterized 

with respect to uncertain parameters. Then, Gaussian mixtures are adopted to efficiently compute un- 

certainty propagation from stochastic uncertainties to the residual distribution. To achieve an acceptable 

FAR, a non-convex confidence set of residuals – represented by a union of ellipsoids – is determined for 

the consistency test. The effectiveness of the proposed approach is illustrated using a continuous stirred 

tank reactor example including performance comparisons with a deterministic zonotope-based method. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

The inherent nonlinearity of practical safety-critical systems has

otivated recent research interest in nonlinear fault detection (FD)

1–3] . Linear parameter varying (LPV) models effectively represent

 wide range of nonlinear systems while preserving a (quasi-)linear

tructure, which has motivated their use in the design of nonlin-

ar FD methods [1,4] . As in other FD methods, a key challenge for

n LPV FD algorithm is to ensure robustness to inevitable model

ncertainties to achieve a low false alarm rate (FAR), while simul-

aneously obtaining a low missed detection rate (MDR). 

The existing robust LPV methods can be classified into two

ain categories. The first category relies on an LPV observer or a

arity relation to generate residuals or fault estimates, and uses a

orm-based threshold to indicate the occurrence of faults [5–11] .

n the other hand, the second category of robust methods, known
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s set membership (SM), performs a more flexible set-based con-

istency test via a set-valued observer [12–14] or an SM parity re-

ation [15,16] . For tractable online computation in set-theoretic un-

ertainty propagation, convex outer approximations using intervals,

llipsoids, or zonotopes are often adopted, which compromises the

DR. A parity relation is a receding horizon input-output (I/O)

odel decoupled from the unknown initial states by using a so-

alled parity matrix or vector [11,17] . To effectively address mul-

iplicative uncertainties, the parity relation approach has been re-

ised in the SM framework [15,16] . The derived SM parity relation

s parameterized by uncertain parameters, in contrast to a single

arity relation as used in [11,17] . 

The above robust approaches are developed in the determin-

stic setting, and aim at ensuring zero false alarms even in the

orst case. The resulting MDR is high with such methods, because

onservative detection thresholds or sets must be adopted to ac-

ount for the worst case that rarely occurs. In order to reduce this

onservatism, probabilistic robust approaches have been recently

roposed that exploit the richer information represented by prob-

bility distribution of model uncertainties. One line of research

ormulates a probabilistic relaxation for the norm-based threshold

https://doi.org/10.1016/j.jprocont.2019.12.010
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computation [18–21] , while the other line employs probabilis-

tic set approximation for the set-based consistency test [22] .

The latter approach achieves better FD performance by adopt-

ing less conservative polynomial level sets, but requires solving

chance-constrained optimization online via a computationally

expensive randomized algorithm. To address the presence of both

bounded deterministic parametric uncertainties and additive Gaus-

sian noises, a zonotopic Kalman filter is proposed in [23,24] by

merging SM and probabilistic paradigms. 

This paper investigates the FD problem for uncertain LPV sys-

tems with polynomial dependence on probabilistic parametric un-

certainties. A probabilistic SM parity relation approach is proposed

to reduce the MDR while ensuring an acceptable FAR. The poly-

nomially parametrized parity relation is first derived, and then re-

structured as a linear time-varying (LTV) transformation of an un-

certainty vector whose elements are polynomials of uncertain pa-

rameters and stochastic noises. Considering non-Gaussian uncer-

tainties, Gaussian mixtures (GMs) are adopted to efficiently com-

pute stochastic uncertainty propagation from the above uncer-

tainty vector to the residual distribution. The confidence set of the

residual GM distribution is used in the consistency test to achieve

an acceptable FAR. Such a confidence set is represented by a union

of ellipsoids, which is a less conservative approximation of a non-

convex region than the convex approximation used in [15,16] . The

proposed approach is a nontrivial extension of the authors’ previ-

ous work for uncertain linear time-invariant systems in [25,26] to

LPV systems including both parametric uncertainties and imprecise

scheduling parameters. 

The paper is organized as follows. Sections 2 and 3 state

the probabilistic FD problem and the main idea, respectively.

Section 4 constructs a polynomial parity matrix. The residual un-

certainty quantification for the consistency test is discussed in

Section 5 . The simulation results using a continuous stirred tank

reactor example are presented in Section 6 , and the main conclu-

sions are drawn in Section 7 . 

2. Problem statement 

Consider the fault-free uncertain discrete-time LPV system 

x k +1 = A ( ̃  θ, ˜ ρk ) x k + B ( ̃  θ, ˜ ρk ) u k + 

˜ w k , 

y k = C( ̃  θ, ˜ ρk ) x k + D ( ̃  θ, ˜ ρk ) u k + ̃

 v k , (1)

where u k ∈ R 

n u , y k ∈ R 

n y , x k ∈ R 

n x , ˜ w k , and 

˜ v k are the system

input, measured output, state, process noise, and measurement

noise, respectively. The system parameters ˜ θ ∈ R 

n θ are unknown.

The vector ˜ ρk ∈ R 

n ρ contains the scheduling parameters. The mea-

surement of ˜ ρk is denoted as 

ρk = ˜ ρk + ˜ ηk , (2)

which is corrupted by a measurement noise ˜ ηk . 

Assumption 1. All the system matrices A ( ̃  θ, ˜ ρk ) , B ( ̃  θ, ˜ ρk ) , C( ̃  θ, ˜ ρk )

and D ( ̃  θ, ˜ ρk ) in (1) have polynomial dependence on both 

˜ θ and ˜ ρk .

Assumption 2. The uncertain parameter vector ˜ θ is time invariant

(TI), belongs to a bounded set �, and is described by TI random

variables with known probability density function (PDF) f θ . 

Assumption 3. Noises ˜ w k , ˜ v k in (1) and ˜ ηk in (2) are of zero-mean

white nature with known PDFs f w 

, f v , and f η , respectively; and 

˜ θ,

˜ w , ˜ v and ˜ η are mutually independent. 

Assumption 1 is not restrictive because any nonpolynomial non-

linear dependence on 

˜ θ and ˜ ρk can be adequately approximated

by polynomials or piecewise polynomials [27] . The approximation

error can be made arbitrarily small as long as the approximating

polynomial has a sufficiently large degree [28] . Therefore, the ap-

proximation error is assumed negligible in this paper. Otherwise,
nother uncertain variable should be introduced to fully account

or this approximation error, which often leads to an increased

DR. 

In Assumption 2 , time invariance of ˜ θ can be justified because

hysical parameters generally have slow variations, and are usually

onsidered as TI over a finite-time horizon [16] . The PDF of ˜ θ can

e obtained by either offline identification from data [29–31] , or a

riori knowledge that specifies the relative importance of different

oints in the uncertainty region �. The PDFs of ˜ θ, ˜ w , ˜ v and ˜ η can

e non-Gaussian, which is not restricted by Assumption 3 . 

For the sake of brevity, let A ( ̃  θ, ˜ ρk ) , B ( ̃  θ, ˜ ρk ) , C( ̃  θ, ˜ ρk ) and

 ( ̃  θ, ˜ ρk ) be denoted by A k , B k , C k , and D k , respectively. From

1) and (2) , the stacked system equations over a time window

 k − h + 1 , k ] of length h can be expressed as 

 k,h = O( ̃  ξk ) x k −h +1 + H u ( ̃  ξk ) u k,h + H w 

( ̃  ξk ) ̃  w k,h + ̃  v k,h , (3a)

k,h = ˜ ρk,h + ˜ ηk,h , (3b)

here 

y k,h = 

⎡ 

⎢ ⎢ ⎣ 

y k −h +1 

y k −h +2 

. . . 
y k 

⎤ 

⎥ ⎥ ⎦ 

, ˜ ξk = 

[
˜ θ

˜ ρk,h 

]
, O( ̃  ξk ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C k −h +1 

C k −h +2 A k −h +1 

. . . 

C k 
h −1 ∏ 

i =1 

A k −i 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

H u ( ̃  ξk )= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

D k −h +1 0 · · · 0 

C k −h +2 B k −h +1 D k −h +2 

. . . 
. . . 

. . . 
. . . 

. . . 0 

C k 
h −2 ∏ 

i =1 

A k −i B k −h +1 C k 
h −3 ∏ 

i =1 

A k −i B k −h +2 · · · D k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(4)

 k,h , ˜ ρk,h , ˜ w k,h , ˜ v k,h , and ˜ ηk,h are defined similarly to y k,h , and

 w 

( ̃  ξk ) is defined similarly to H u ( ̃  ξk ) . 

In an SM FD method, the detection of faults relies on invali-

ating a fault-free model [14,23] . Specifically, a fault alarm is re-

orted as long as the measured output y k cannot be generated by

he fault-free model (1) and its associated uncertainty descriptions,

iven the system input u k and the measured scheduling parame-

er ρk . Such an invalidation approach does not require any fault

odel, thus is not restricted to any particular fault type [14,23] .

he conventional deterministic SM approach adopts the unknown-

ut-bounded uncertainty description [14,23] . In contrast, this paper

ims at exploiting the probabilistic information of uncertainties to

urther reduce the MDR by admitting an acceptable FAR. 

. Overview of probabilistic SM parity relation approach 

The main idea of the proposed approach is explained in this

ection. 

According to (3), the observability matrix O( ̃  ξk ) polynomially

epends on 

˜ ξk which itself includes the unknown parameter ˜ θ

nd the scheduling parameters ˜ ρk,h . Therefore, O( ̃  ξk ) is unknown

nd time-varying, which does not allow the use of a conventional

ime-invariant parity matrix to decouple the unknown initial state

 k −h +1 in (3a) . Alternatively, a polynomial parity matrix V ( ̃  ξk ) is

rst constructed in Section 4 to satisfy 

 ( ̃  ξk ) O( ̃  ξk ) = 0 for any ˜ ξk , (5)

o that the premultiplication of (3) by V ( ̃  ξk ) decouples the un-

nown initial term O( ̃  ξk ) x k −h +1 and generates the parity relation

 ( ̃  ξk ) 
(

y k,h − H u ( ̃  ξk ) u k,h − H w 

( ̃  ξk ) ̃  w k,h − ˜ v k,h 

)
= 0 . (6)
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In the parity relation (6) , the true parameter ˜ ξk and noises ˜ w k,h ,

˜  k,h , and ˜ ηk,h are unavailable. Let θ , w k,h , v k,h , and ηk,h represent

andom realizations of ˜ θ, ˜ w k,h , ˜ v k,h , and ˜ ηk,h , respectively. Then,

y defining the parameter vector 

k = 

[
θ� ( ρk,h − ηk,h ) 

� ]� 
(7) 

ccording to (3b) , a residual can be expressed as a function of the

onsidered uncertainties, i.e., 

 k ( ξ, w , v ) = V ( ξk )(y k,h − H u ( ξk ) u k,h − H w 

( ξk ) w k,h − v k,h ) 

= G( ξk ) z k,h − J ( ξk ) n k,h , (8) 

ith 

G( ξk ) = 

[
V ( ξk ) −V ( ξk ) H u ( ξk ) 

]
, z k,h = 

[
y � 

k,h 
u 

� 
k,h 

]� 
, 

 ( ξk ) = 

[
V ( ξk ) V ( ξk ) H w 

( ξk ) 
]
, n k,h = 

[
v � 

k,h 
w 

� 
k,h 

]� 
. (9) 

ote that the residual r k is random, since it is computed by us-

ng random samples of uncertain variables ξ, w, v . Accordingly, a

onfidence set �k with a confidence level γ for r k , i.e., 

r { r k ( ξ, w , v ) ∈ �k | θ ∼ f θ , w k ∼ f w 

, v k ∼ f v , ηk ∼ f η} ≥ γ , (10)

s constructed in Section 5 by exploiting the distributional informa-

ion of considered uncertainties, where Pr{ · } represents the prob-

bility of the associated event. 

With the above derivations, the following FD logic is adopted:

0 ∈ �k ⇒ the monitored system is fault-free 
0 / ∈ �k ⇒ the monitored system is faulty . 

(11) 

Note that 0 in (11) is a zero vector whose dimension is the

ame as r k . 

Although this FD logic seems similar to the deterministic SM

pproaches in [15,16] , there exists a significant difference: the de-

erministic SM approaches rely on an overbounding convex set to

nsure zero FAR, while the confidence set �k used in (11) is ob-

ained via stochastic uncertainty propagation and could be non-

onvex as discussed in Section 5 . 

. Computing a polynomial parity matrix 

This section presents a method for computing the polynomial

arity matrix V ( ̃  ξk ) , and discusses how the non-uniqueness of

 ( ̃  ξk ) affects FD performance. 

For the ease of understanding, first we consider the case with

nly a scalar ˜ θ and no scheduling parameter ˜ ρk . In this case, the

ystem matrices are A ( ̃  θ ) and C( ̃  θ ) , and the corresponding ob-

ervability matrix becomes O( ̃  θ ) . Let the degrees of the polyno-

ial matrices A ( ̃  θ ) and C( ̃  θ ) be denoted by d A and d C , respectively.

hen the observability matrix O( ̃  θ ) can be expressed as 

( ̃  θ ) = 

d O ∑ 

j=0 

O j ̃
 θ j 

ith degree 

 O = d C + (h − 1) d A . (12)

hen a polynomial parity matrix 

M = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

O 0 O 1 · · · O d V −1 O d V · · ·
0 O 0 O 1 · · · O d V −1 · · · O
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

0 · · · 0 O 0 O 1 · · · O d

0 · · · · · · 0 O 0 · · · O
 ( ̃  θ ) = 

d V ∑ 

i =0 

V i ̃
 θ i (13)

s selected with degree d V , (5) becomes 

 ( ̃  θ ) O( ̃  θ ) = 

( 

d V ∑ 

i =0 

V i ̃
 θ i 

) ( 

d O ∑ 

j=0 

O j ̃
 θ j 

) 

= 0 . (14)

he multiplication on the left-hand side of (14) is a polyno-

ial with degree d V + d O , whose monomial with degree i is
 i 
j=0 V j O i − j ̃

 θ i . All of its monomial coefficients need to be zero, i.e.,
 i 
j=0 V j O i − j = 0 , so that (14) holds for any ˜ θ . Therefore, (14) is

quivalent to 

M = 0 , with (15a) 

 = 

[
V 0 V 1 · · · V d V 

]
, (15b) 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

O 0 O 1 · · · O d O 
0 · · · · · · 0 · · · 0 

0 O 0 · · · O d O −1 O d O 
0 · · · 0 · · · 0 

. 

. 

. 
. . . 

. . . 
. 
. 
. 

. 

. 

. 
. . . 

. . . 
. 
. 
. 

. . . 
. 
. 
. 

0 · · · 0 O 0 O 1 · · · O d O 
0 · · · 0 

0 · · · 0 0 O 0 · · · O d O −1 O d O 
· · · 0 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

. . . 
. . . 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

0 · · · 0 0 · · · 0 O 0 O 1 · · · O d O 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 if d V ≥ d O , (15c)

0 · · · · · · 0 

O d O 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

1 O d O −d V +2 · · · O d O 0 

 

O d O −d V +1 · · · O d O −1 O d O 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 0 

if d V < d O . (15d)

The multiplication between V and the i th block-column of M
orresponds to the coefficient of the monomial basis with de-

ree i − 1 in V ( ̃  θ ) O( ̃  θ ) . Hence, the size of M is m M 

× n M 

, where

 M 

= (d V + 1) hn y , and n M 

= (d V + d O + 1) n x is determined by the

egree of V ( ̃  θ ) O( ̃  θ ) . The solution V to (15a) can be expressed by

19) that will be explained later on. The block-columns { V i } of V
re then used to construct the polynomial parity matrix V ( ̃  θ ) ac-

ording to (13) . 

Next, we proceed with the general case that includes both

ulti-dimensional ˜ θ and scheduling parameters ˜ ρk,h . In this case,

he dimension of ˜ ξk defined in (4) is n ξ = n θ + hn ρ . Let ˜ ξk,i de-

ote the i th element of ˜ ξk , and 

˜ ξ
	 

k a monomial ˜ ξ
	 1 

k, 1 
˜ ξ
	 2 

k, 2 
· · · ˜ ξ

	 n ξ

k,n ξ
,

here ϖi is a nonnegative integer, and 	 = 

[
	 

� 
1 	 

� 
2 · · · , 	 

� 
n ξ

]� 

s the multivariate monomial exponent. Then, any polynomial ma-

rix M( ̃  ξk ) can be expressed as 

( ̃  ξk ) = 

∑ 

	∈ π
(

M( ̃ ξk ) 
)M [ 	 ] ̃

 ξ
	 

k , 

here M [ ϖ] is the coefficient matrix for the monomial ˜ ξ	 

k 
, and(

M( ̃  ξk ) 
)

represents the set of all monomial exponents in-

luded in M( ̃  ξk ) . The degree of a monomial ˜ ξ
	 

k is defined by
 n ξ
i =1 

	 i , while the degree of a polynomial matrix M( ̃  ξk ) is de-

ermined by the maximal degree of the included monomials, i.e.,
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	∈ π(M( ̃ ξk )) 

∑ n ξ
i =1 

	 i . If the degree of M( ̃  ξk ) is d M 

, the maximum

number of monomial terms in M( ̃  ξk ) is 

g(d M 

, n ξ ) = 

(d M 

+ n ξ )! 

d M 

! n ξ ! 
. (16)

Based on these definitions, (5) can be expressed as ⎛ 

⎜ ⎝ 

∑ 

	∈ π
(

V ( ̃ ξk ) 
)V [ 	 ] ̃

 ξ
	 

k 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

∑ 

ϕ∈ π
(
O( ̃ ξk ) 

)O [ ϕ] ̃
 ξ
ϕ 

k 

⎞ 

⎟ ⎠ 

= 0 . (17)

Since each monomial coefficient matrix on the left-hand side of

(5) is null, (17) is equivalent to ∑ 

	∈ π
(

V ( ̃ ξk ) 
)V [ 	 ] O [ σ−	 ] = 0 , σ ∈ π

(
V ( ̃  ξk ) O( ̃  ξk ) 

)
. 

From this equation, VM = 0 can be constructed similarly to (15) as

follows. Each block in V is V [ ϖ] . Each block-column of M includes

the coefficients { 

O [ σ−	 ] , 	 ∈ π
(

V ( ̃  ξk ) 
)} 

of monomials { ̃  ξσ−� 

k 
} in O( ̃  ξk ) , and its multiplication with V pro-

duces the monomial coefficient of ˜ ξ
σ

k in V ( ̃  ξk ) O( ̃  ξk ) . The size of M
is m M 

× n M 

, with m M 

= g(d V , n ξ ) hn y and n M 

= g(d V + d O , n ξ ) n x . 

The existence of a solution to VM = 0 is equivalent to the ex-

istence of a left nullspace of M . It can be guaranteed by a suffi-

cient condition g(d V , n ξ ) hn y > g(d V + d O , n ξ ) n x , i.e., the matrix M
has more rows than columns. Using (16) , this sufficient condition

can be rewritten as 
n ξ∏ 

i =1 

(
1 − d O 

d V + d O + i 

)
> 

n x 

hn y 
. (18)

Since the left-hand side of (18) is smaller than 1, the inequality

hn y > n x is a necessary condition for (18) to hold. For a fixed hori-

zon length h , the existence of a polynomial parity matrix V ( ̃  ξk )

is guaranteed by selecting a sufficiently high degree d V . Increasing

either h or d V results in higher computational cost for both offline

design and online residual evaluation. Therefore, the shortest hori-

zon length h and the lowest degree d V are sought by iteratively in-

creasing either h or d V by one until a solution to VM = 0 is found.

Let r M 

represent the rank of M . Let M ⊥ ∈ R 

m M 

×(m M 

−r M 

) de-

note the orthogonal basis of the left nullspace of M , i.e., M 

� 
⊥ M =

0 and M 

� 
⊥ M ⊥ = I, and it can be computed via singular value de-

composition [32] . Then, the solution to VM = 0 is expressed as 

V = M 

� 
⊥ , (19)

where  ∈ R 

n r ×(m M 

−r M 

) has to be determined. Without loss of

generality,  is assumed to be full row rank. As will be presented

by the following propositions, any nonsingular matrix  results in

the same FAR and FDR, and gives a better FD performance than

using a column-rank deficient matrix . 

Define V � = M 

� 
⊥ , then the corresponding polynomial parity ma-

trix and generated residual are denoted as V 

� ( ξ) and r � 
k 
, respec-

tively, where r � 
k 

is defined as in (8) by replacing V ( ξk ) with V 

� ( ξk ).

Define a closed confidence set �� 
k 

for r � 
k 

by following (10) . Assume

that this closed set �� 
k 

is described by �� 
k 

= { r � 
k 
| μ(r � 

k 
) ≤ 0 } , where

μ : R 

n r 
→ R 

q is a continuous vector-valued function. 

Proposition 1. If  is nonsingular, the achieved FAR and MDR do not

depend on the selection of . 

Proof. With the chosen , we have V = V � , V ( ξk ) = V � ( ξk ) ,

and r k = r � 
k 

according to (8) and (19) . Therefore, the confi-

dence sets �� 
k 

= { r � 
k 
| μ(r � 

k 
) ≤ 0 } and �k = { r k | μ(−1 r k ) ≤ 0 } give
he same FAR and MDR, because μ(r � 
k 
) = μ(−1 r k ) holds in any

ase. �

roposition 2. If  is column-rank deficient, the resulting parity re-

ation achieves a lower FAR but a higher MDR, compared to the selec-

ion V � = M 

� 
⊥ . 

roof. According to (8) , the residual r � 
k 
( ξ, w , v ) generated by using

 

� can be rewritten as 

 

� 
k ( ξ, w , v ) = r̄ � k ( ξ, w , v ) + V 

� ( ξk ) f k , (20)

here r̄ � 
k 

is the fault-free part, and f k describes the contribution

f latent faults. When using V = V � to generate a residual r k ( ξ,

, v ), r k = r � 
k 

holds. Then it follows from (20) that r k can be

imilarly decomposed as r k = r̄ � 
k 

+ V � ( ξk ) f k . Since  is column-

ank deficient, there might exist ξk such that the set of unde-

ectable faults { f k | V � ( ξk ) f k = 0 } is not null, thus increasing the

DR achieved by using V = V � . For the same reason, it is possi-

le in the fault-free case that a residual r̄ � 
k 

giving a false alarm lies

n the null space of , which reduces the FAR achieved by r k . �

emark 1. The Cayley–Hamilton theorem was exploited in [33] to

onstruct a polynomial parity vector for linear time-invariant sys-

ems with parametric uncertainties, which is not applicable for the

ncertain LPV systems considered in this paper. 

emark 2. How the FD performance of the proposed approach de-

ends on the horizon length h and the degree d V is illustrated in

ection 6.3 via Monte Carlo simulations. It can be observed that

I) the MDR becomes higher when d V is larger than its minimal

alue, and (II) the MDR decreases as h increases. A rigorous proof

or these observations is left to future work. 

emark 3. For the iteration from h to h + 1 or from d V to d V + 1 ,

here exist methods to incrementally update M ⊥ , without com-

uting it from scratch. As h or d V increases by one, additional rows

nd columns are inserted into M , according to (15c), (15d) , and

17) . This feature allows incrementally updating the SVD of M , see

34] as an example. 

. Computing the residual distribution and its confidence set 

Since the FD logic (11) requires the confidence set �k defined

n (10) , the residual distribution has to be quantified. In this sec-

ion, the residual (8) is first structured as an LTV transformation of

n uncertainty vector. Then, the residual distribution and its confi-

ence set �k defined in (10) are computed using a GM approach. 

.1. Residual in an LTV structure 

According to Assumption 1 , G( ξk ) and J ( ξk ) defined in (9) are

olynomial matrices depending on θ , ηk,h , and ρk,h . Hence G( ξk )

nd J ( ξk ) can be expressed as 

G( ξk ) = 

N ∑ 

i =0 

G i (θ, ηk,h ) ψ i ( ρk,h ) , 

 ( ξk ) = 

N ∑ 

i =0 

J i (θ, ηk,h ) ψ i ( ρk,h ) , (21)

hich are regarded as polynomials in terms of ρk,h : { ψ i ( ρk,h )}

re the monomial bases, and { G i ( θ , ηk,h )} and { J i ( θ , ηk,h )} are the

orresponding coefficients. The number N of the monomial bases

 ψ i ( ρk,h )} is determined by the dimension of ρk,h as well as the

ighest degree of ρk,h in { G i ( θ , ηk,h )} and { J i ( θ , ηk,h )}. As long as

he polynomial matrices G( ξk ) and J ( ξk ) are obtained, { G i ( θ , ηk,h )}

nd { J i ( θ , ηk,h )} can be determined according to their polynomial
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tructure. For instance, 

θ + ηρ2 

2 + η2 ρ

]
= 

[
θ
2 

]
+ 

[
0 

η2 

]
ρ + 

[
η
0 

]
ρ2 . 

Let n r be the dimension of the residual vector, � represent the

ronecker product, and vec( ·) denote the vectorization of a matrix

y stacking its columns into a single column vector. Then, using

21) , the residual in (8) can be rewritten into an LTV form 

 k ( ξ, w , v ) = 

N ∑ 

i =0 

{
G i (θ, ηk,h ) z k,h ψ i ( ρk,h ) − J i (θ, ηk,h ) n k,h ψ i ( ρk,h ) 

}
= 

N ∑ 

i =0 

{
L i,k vec 

(
G i (θ, ηk,h ) 

)
− S i,k J i (θ, ηk,h ) n k,h 

}
= 

[
L k −S k 

]︸ ︷︷ ︸ 
�k 

[
λL (θ, ηk,h ) 

λS (θ, ηk,h , n k,h ) 

]
︸ ︷︷ ︸ 

λ(θ, ηk,h , n k,h ) 

, (22) 

ith 

 i,k = 

(
z � k,h ψ i ( ρk,h ) 

)
� I n r , S i,k = ψ i ( ρk,h ) � I n r , (23)

 k = 

[
L 0 ,k L 1 ,k · · · L N,k 

]
, S k = 

[
S 0 ,k S 1 ,k · · · S N,k 

]
, 

(24) 

λL 

(
θ, ηk,h 

)
= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

vec 
(
G 0 (θ, ηk,h ) 

)
vec 

(
G 1 (θ, ηk,h ) 

)
. . . 

vec 
(
G N (θ, ηk,h ) 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

, 

S 

(
θ, ηk,h , n k,h 

)
= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

J 0 (θ, ηk,h ) n k,h 

J 1 (θ, ηk,h ) n k,h 

. . . 
J N (θ, ηk,h ) n k,h 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (25) 

he second equation in (22) is derived from the property that 

ec (X 1 X 2 X 3 ) = (X 

� 
3 � X 1 ) vec (X 2 ) 

olds for matrices X 1 , X 2 , and X 3 . 

With the above derivations, the residual in (22) is expressed as

 multiplication between the coefficient matrix �k and the uncer-

ainty vector λ. The coefficient matrix �k in (22) is time-varying,

nd can be computed with the online data z k,h and ρk,h accord-

ng to (23) and (24) . The uncertainty vector λ is random, and

ection 5.2 will present how to compute its PDF by exploiting the

DFs of the unknown parameter θ , the measurement noise ηk,h of

cheduling parameters, and n k,h representing the process noise and

utput measurement noise. 

.2. Residual distribution and its confidence set 

To construct the FD logic (11) , this subsection presents the com-

utation of the residual distribution and its confidence set. Due to

ts polynomial dependence on uncertain variables, the uncertainty

ector λ is non-Gaussian distributed. Hence the residual generated

y (22) is also non-Gaussian. To enable efficient online computa-

ion of the residual distribution, a GM approach is proposed by ex-

loiting GM approximations to the distributions of the uncertainty

ector λ and the residual r . The details are as follows. 
k 
Since λ( θ , ηk,h , n k,h ) in (22) has TI polynomial dependence on

tochastic uncertainties θ , ηk,h , and n k,h , it is a stochastic vector

hose PDF is also TI and can be approximated offline by a mixture

f Gaussians, i.e., 

p( λ) = 

K ∑ 

j=1 

π j N 

(
λ;μ( j) 

λ
, �( j) 

λ

)
, (26)

here K is the number of Gaussian components, the mixing co-

fficients { π j } satisfy 0 ≤π j ≤ 1 and 

∑ K 
j=1 π j = 1 , and μ( j) 

λ
and

( j) 
λ

represent the mean and covariance matrix of each Gaus-

ian component, respectively. The offline procedure for construct-

ng the GM distribution (26) is: (I) generate a sufficient number of

amples { θ (i ) , η(i ) 
k,h 

, n 

(i ) 
k,h 

} , and compute λ(i ) = λ(θ (i ) , η(i ) 
k,h 

, n 

(i ) 
k,h 

) ac-

ording to (22) and (25) ; and (II) determine the GM parameters

 π j , μ
( j) 
λ

, �( j) 
λ

} in (26) by solving the maximum likelihood estima-

ion problem 

max 
 π j ,μ

( j) 
λ

, �( j) 
λ

} 

N λ∑ 

i =1 

ln 

{ 

K ∑ 

j=1 

π j N 

(
λ(i ) ;μ( j) 

λ
, �( j) 

λ

)} 

ith the expectation-maximization (EM) algorithm [35] , where N λ

epresents the number of samples. The K can be determined by

omparing multiple models with different K ’s using the Akaike in-

ormation criterion [35] . 

As in the EM algorithm, the subsequent analysis relies on for-

ulating GMs in (26) in terms of a discrete latent variable ω [35] .

et ω denote a K -dimensional binary random vector with each el-

ment ω j satisfying ω j ∈ {0, 1} and 

∑ K 
j=1 ω j = 1 , i.e., a particular

lement ω j is equal to 1 and all the other elements are null. In or-

er to express the GM distribution p ( λ) as a marginal distribution

btained from the joint distribution p ( λ, ω), define the marginal

istribution p ( ω) and the conditional distribution p ( λ| ω) as p(ω j =
) = π j and p( λ| ω j = 1) = N ( λ;μ( j) 

λ
, �( j) 

λ
) , respectively. There-

ore, the joint distribution is given by p( λ, ω ) = p( ω ) p( λ| ω ) ,

nd the GM distribution p ( λ) in (26) is then equivalently

xpressed as 

p( λ) = 

∑ 

ω 

p( ω ) p 
(
λ| ω 

)
= 

K ∑ 

j=1 

p(ω j = 1) p 
(
λ| ω j = 1 

)
. 

his expression explicitly associates every realization of λ with a

iscrete value of ω, i.e., a realization of λ is generated from a con-

itional Gaussian distribution p( λ| ω j = 1) . This point of view is

seful for constructing the residual distribution online. 

For the EM algorithm to produce a reliable GM approximation,

he number of data samples should be sufficiently large compared

o the number of free GM parameters, i.e., 

(K − 1) + K n λ + 

1 

2 

K n λ(n λ − 1) , 

here n λ denotes the dimension of λ, K − 1 , Kn λ, and 

1 
2 Kn λ(n λ −

) are respectively the number of free parameters in the mix-

ng coefficients { π ( j ) }, the means { μ( j) 
λ

} , and the covariance ma-

rices { �( j) 
λ

} . This requirement can be demanding from the com-

utation perspective if n λ is large. Actually, λ would have a rather

igh dimension as the window length h grows or the degree d V 
f the polynomial parity matrix increases, according to the defini-

ion of λ in (22) and (25) . In addition, in such a high dimensional

ase, the EM algorithm is prone to numerical ill-conditioning [36] .

n one hand, the estimated covariance matrix �( j) 
λ

is more likely

o be singular, since the number of samples involved in comput-

ng �( j) 
λ

is small compared to the dimension of �( j) 
λ

[36] . On the

ther hand, since the elements of λ have polynomial dependence

f rather different degrees on uncertain variables, their numerical
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values could differ by orders of magnitude, which might also re-

sults in an ill-conditioned covariance estimate. 

Two remedies are adopted in this paper to address the above

issue. Firstly, zero elements may be present in λ due to the

zero elements of G i ( θ , ηk,h ) and J i ( θ , ηk,h ), thus they are re-

moved without any information loss. Secondly, the GM model-

ing step is performed on the intrinsic low-dimensional subspace

of λ by first conducting dimensional reduction as a preprocess-

ing step. As a popular method for dimension reduction, princi-

pal component analysis (PCA) is used here. Let 
 denote the

data matrix consisting of the sampled uncertainty vector λ( i ) , i.e.,


 = 

[
λ(1) λ(2) · · · λ(N λ) 

]
. Its singular value decomposition

is 
 = USV � . By selecting the largest n c singular values that cap-

ture a significant portion (e.g., 95%) of total variance of 
, the

approximated data matrix is ˆ 
 = U 1 S 1 V � 1 
, where U 1 and V 1 con-

sist of the corresponding singular vectors within U and V, respec-

tively, and S 1 represents a diagonal matrix with its diagonal en-

tries being the largest n c singular values. After dimensional reduc-

tion, the GM modeling step is carried out for V � 
1 

, which is in a

reduced subspace of dimension n c , and its estimated GM parame-

ters are denoted by { ̂  π j , ˆ μ( j) , ˆ �( j) } . Accordingly, the GM parame-

ters { π j , μ
( j) 
λ

, �( j) 
λ

} for λ are obtained as π j = ˆ π j , μ
( j) 
λ

= U 1 S 1 ̂  μ( j) ,

�( j) 
λ

= U 1 S 1 ̂  �( j) S � 
1 
U � 

1 
. 

Remark 4. With the introduced dimensional reduction, the GM

model is constructed for ˆ 
 instead of the original sampled data

matrix 
. Since a small portion of total variance in 
 is lost in

the dimension reduction, ˆ 
 in the reduced space, hence its corre-

sponding GM model, cannot capture some uncertain variations un-

der the fault-free condition. This implies that some fault-free varia-

tions are not represented by the GM approximation of the residual

distribution, which could lead to false alarms in FD, as will be il-

lustrated by the simulation study in Section 6.3 . 

Remark 5. Other approaches reviewed in [36] can be also utilized

for the high-dimensional GM modeling, but they are not the focus

of this paper. 

Remark 6. To validate the GM approximation, the well-known

Kolmogorov-Smirnov distance 

sup 

λ∈ R n λ
| F n ( λ) − ˆ F ( λ) | 

can be used to evaluate the goodness-of-fit between the empirical

cumulative distribution function (CDF) F n ( λ) of the samples { λ( i ) }

and the CDF of the GM approximation 

ˆ F ( λ) [37] , with n λ denoting

the dimension of λ. Computing the above distance for multivariate

distributions is non-trivial, and interested readers are referred to

[37] for more details. 

From the online measurements { u k,h , y k,h , ρk,h }, L i,k , S i,k , L k , S k ,
and �k can be computed according to their definitions in (22) –

(24) . With ω j = 1 , the conditional distribution of the residual r k 
is then derived as 

p(r k | ω j = 1) = N 

(
r k ;μ( j) 

r,k 
, �( j) 

r,k 

)
, 

μ( j) 
r,k 

= �k μ
( j) 
λ

, �( j) 
r,k 

= �k �
( j) 
λ

�� 
k , (27)

by performing a linear transformation (22) on the conditional

Gaussian component p( λ| ω j = 1) . Hence, the distribution of the

residual can be also approximated by a Gaussian mixture 

p(r k ) = 

K ∑ 

j=1 

π j N 

(
r k ;μ( j) 

r,k 
, �( j) 

r,k 

)
. (28)

Next, the confidence set �k for the random residual r k ( ξ, w, v )

is determined such that (10) holds. 
heorem 3. Given the GM distribution (28) of the random residual

 k , Pr{ r k ∈ �k } ≥γ holds if the confidence set �k is constructed as 

k = 

K ⋃ 

j=1 

�( j) 
k 

, (29)

here 

( j) 
k 

= 

{ 

r k 

∣∣∣(r k − μ( j) 
r,k 

)� (
�( j) 

r,k 

)−1 (
r k − μ( j) 

r,k 

)
≤ χ2 

n r 
(γ ) 

} 

, (30)

s an ellipsoidal confidence set defined for the j th Gaussian component

p(r k | ω j = 1) , and χ2 
n r 

(γ ) ∈ R represents the value whose cumulative

robability under the χ2 distribution with n r degrees of freedom is

pecified by γ . 

roof. With ω j = 1 , r k follows the conditional Gaussian distribu-

ion p(r k | ω j = 1) , and Pr { r k ∈ �k | ω j = 1 } ≥ Pr { r k ∈ �( j) 
k 

| ω j = 1 } ≥
holds for �k and �( j) 

k 
defined in (29) and (30) . Then it follows

hat 

r { r k ∈ �k } = 

K ∑ 

j=1 

Pr 
{

r k ∈ �k | ω j = 1 

}
Pr { ω j = 1 } 

≥
K ∑ 

j=1 

Pr 
{

r k ∈ �( j) 
k 

| ω j = 1 

}
Pr { ω j = 1 } 

≥ γ
K ∑ 

j=1 

Pr { ω j = 1 } = γ . 

�

emark 7. Due to the possible overlaps among the confidence sets

 �( j) 
k 

} , the actually achieved probability Pr{ r k ∈ �k } can be larger

han the predefined confidence level γ . 

With the confidence set �k defined in (29) and (30) , the

D logic (11) amounts to checking whether there exists at least

ne confidence ellipsoid �( j) 
k 

such that 0 ∈ �( j) 
k 

, or equivalently,

(μ( j) 
r,k 

) � (�( j) 
r,k 

) −1 (μ( j) 
r,k 

) ≤ χ2 
n r 

(γ ) , holds. This FD logic can be fur-

her compactly expressed as 

νk ≤ 1 ⇒ the monitored system is fault-free 
νk > 1 ⇒ the monitored system is faulty 

(31)

ith 

k = min 

1 ≤ j≤K 

(
μ( j) 

r,k 

)� (
�( j) 

r,k 

)−1 (
μ( j) 

r,k 

)
χ2 

n r (γ ) 
. (32)

The proposed FD approach is summarized in Algorithm 1 . 

. Case study 

.1. Simulation setting and model description 

In the case study, a well-mixed non-isothermal continuous

tirred tank reactor is considered. It includes three parallel irre-

ersible elementary exothermic reactions A → B, A → U, and A → R,

here A is the reactant species, B is the desired product, and U

nd R are undesired byproducts. The reactant A is fed to the reac-

or at a flow rate F , concentration C Af , and temperature T Af . To re-

ove heat from the reactor, a cooling stream at a flow rate F c and
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Algorithm 1 Probability-guaranteed SM parity relation based FD. 

Offline procedures: 

1. Select a horizon length h and a degree d V . Compute the poly- 

nomial parity matrix V ( ξk ) by following Section 4. 

2. Determine the monomial bases { ψ i ( ρk,h ) , i = 0 , · · · , N} and the 

polynomial matrices { G i (θ, ηk,h ) , J i (θ, ηk,h ) } in (21). Note that 

specific values of θ , ρk,h , and ηk,h are not required in this step. 

3. Generate a sufficient number of samples { θ (i ) , η(i ) 
k,h 

, n 

(i ) 
k,h 

} , com- 

pute λ(i ) = λ(θ (i ) , η(i ) 
k,h 

, n 

(i ) 
k,h 

) according to (22) and (25); deter- 

mine the GM approximation (26) to the sample distribution of 

{ λ(i ) } using the EM algorithm. 

4. Select the confidence level γ in (10). 

Online procedures: 

Initialization with k = h . 

5. Construct u k,h , y k,h , ρk,h over the horizon [ k − h + 1 , k ] . 

6. Compute L i,k and S i,k in (23), L k and S k in (24), �k in (22). 

7. Compute { μ( j) 
r,k 

, �( j) 
r,k 

} in (27) for each Gaussian component of 

the residual distribution. 

8. Compute νk in (32), and determine the fault presence according 

to (31). 

9. k ← k + 1 , go to Step 5. 

T
cf

(K
)

Fig. 1. Profile of coolant temperature T cf . 
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Table 1 

System parameters. 

Parameter Description Value Unit 

F Inlet flow rate 83.3 L/min 

F c Flow rate of cooling stream 50 L/min 

V Tank volume 1000 L 

V c Volume of cooling jacket 100 L 

�H 1 Enthalpy of A → B −5 × 10 4 J/mol 

�H 2 Enthalpy of A → U −5 . 2 × 10 4 J/mol 

�H 3 Enthalpy of A → R −5 . 4 × 10 4 J/mol 

UA Heat transfer coefficient 9.01 × 10 5 J/(min · K) 

k 1 Pre-exponential constant of A → B 5 × 10 4 min 
−1 

k 2 Pre-exponential constant of A → U 5 × 10 3 min 
−1 

k 3 Pre-exponential constant of A → R 5 × 10 3 min 
−1 

E 1 Activation energy of A → B 5 × 10 4 J/mol 

E 2 Activation energy of A → U 7.53 × 10 4 J/mol 

E 3 Activation energy of A → R 7.53 × 10 4 J/mol 

R Gas constant 8.314 J/(mol · K) 

ρ Fluid density in reactor 1000 g/L 

c p Fluid heat capacity in reactor 0.231 J/(g · K) 

ρc Fluid density in cooling jacket 1000 g/L 

c pc Fluid heat capacity in cooling jacket 4.2 J/(g · K) 

Fig. 2. System outputs from 100 fault-free Monte Carlo simulations with and with- 

out parametric uncertainties. 
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at T = 22 L/min for t ≥ 15 s. 
emperature T cf goes into the equipped cooling jacket. The process

ynamics takes the form [38] : 

˙ 
 A (t) = 

F 

V 

(C Af − C A (t)) −
3 ∑ 

i =1 

κi (t) C A (t) , 

˙ 
 B (t) = − F 

V 

C B (t) + κ1 (t ) C A (t ) , 

˙ T (t) = 

F 

V 

(T Af − T (t)) + 

3 ∑ 

i =1 

(−�H i + δH i ) 

ρc p 
κi (t) C A (t) 

− UA + δUA 

ρc p V 

(T (t) − T c (t)) , 

˙ T c (t) = 

F c 

V c 
( T cf (t) − T c (t) ) + 

UA + δUA 

ρc c pc V c 
(T (t) − T c (t)) , (33) 

here κ i ( t ) is defined as 

i (t) = k i exp 

( −E i 
RT (t) 

)
, (34) 

 A and C B denote concentrations of the species A and B in the re-

ctor, T and T c denotes temperatures of the reactor and the cool-

ng jacket. The feed concentration and temperature are fixed at

 Af = 4 mol / L and T Af = 360 K, respectively. The initial condition is

 A (0) = 3 . 5 mol/L , C B (0) = 0 mol/L , T (0) = T c (0) = 360 K , which is

nknown regarding the FD problem. The cooling stream temper-

ture T cf varies as depicted in Fig. 1 . With a sampling interval

 s = 0 . 1 s , the sensor outputs C m 

B 
, T m , and T m 

c are the measure-

ents of the reactor concentration C , the reactor temperatures
B 
 and the cooling jacket temperature T c , with zero-mean Gaus-

ian white noises v C B , v T , and v T c , whose standard deviations are

.01 mol/L, 0.1 K, and 0.1 K, respectively. 

The system parameters are described in Table 1 . As shown in

33) , the enthalpies { �H i } and the heat transfer coefficient UA are

ubject to probabilistic time-invariant uncertainties represented

y { δH i 
} and δUA , respectively. In this simulation, { δH i 

} are uni-

ormly distributed over the interval [ −100 , 100] J/mol, while δUA 

ollows a truncated Gaussian distribution which is truncated over

 −1 × 10 5 , 1 × 10 5 ] J/(min · K) from a conventional Gaussian distri-

ution with zero mean and standard deviation 1 × 10 5 J/(min · K).

ig. 2 depicts the sensor outputs C m 

B 
(t) and T m ( t ) from 100 fault-

ree Monte Carlo simulations with and without the above uncer-

ain parameters. The clear difference between fault-free output be-

aviors in the above two cases implies that neglecting parametric

ncertainties would result in severe false alarms. 

The following two fault scenarios are considered: 

• Sensor bias: the reactor temperature sensor output T m ( t )

becomes biased by 1.7 K, i.e., T m (t) = T (t) + 1 . 7 + v T (t) for

t ≥ 15 s. 
• Valve stuck: the flow valve of the cooling stream gets stuck
cf 
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Fig. 3. 2-dimensional projections of the sampled λ and its GM approximation 

within the reduced subspace. The blue dots represent the 50 0 0 random samples. 

Each red circle and ellipse indicate the mean and 99% confidence set of the corre- 

sponding Gaussian component, respectively. 
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To account for the nonlinear dependence of { κ i ( t )} in (34) on T ,

{ κ i ( t )} over the operation range T ∈ [345, 365] K are approximated

by polynomials g 1 ( T k ), g 2 ( T k ), and g 3 ( T k ) with degrees 5, 4, and 4,

whose maximum absolute approximation errors are 1 . 05 × 10 −10 ,

3 . 06 × 10 −12 , and 3 . 06 × 10 −12 , respectively. By applying the Eu-

ler method and replacing { κ i } in (34) with polynomials { g i ( T )}, the

continuous-time system (33) with parameters in Table 1 is trans-

formed into the following discrete-time LPV form whose schedul-

ing parameter is the reactor temperature T k , i.e., 

x k +1 = A (T k ) x k + Bu k + B w 

w 0 k , 

y k = Cx k + D v v 0 k , (35)

where 

x k = 

[
C A,k C B,k T k T c,k 

]� 
, u k = 

[
C Af T Af T cf ,k 

]� 
, 

y k = 

[
C m 

B,k 
T m 

k 
T m 

c,k 

]� 
, 

A (T k ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 . 9917 − 0 . 1 
∑ 3 

i =1 g i (T k ) 0 0 0 

0 . 1 g 1 (T k ) 0 . 9917 0 0 ∑ 3 
i =1 (αi + β1 δ

0 
H i 

) g i (T k ) 0 0 . 6017 − β2 δ
0 
UA 0 . 3900 + β2 δ

0 
UA 

0 0 0 . 2145 + β3 δ
0 
UA 0 . 7355 − β3 δ

0 
UA 

⎤ 

⎥ ⎥ ⎥ ⎦ 

,

α1 = 21 . 6450 , α2 = 22 . 5108 , α3 = 23 . 3766 , 

β1 = 0 . 0433 , β2 = 0 . 0390 , β3 = 0 . 0214 , 

B = 

⎡ 

⎣ 

0 . 0083 0 0 
0 0 0 
0 0 . 0083 0 
0 0 0 . 0500 

⎤ 

⎦ , B w = 

⎡ 

⎢ ⎣ 

10 −6 0 0 0 
0 10 −6 0 0 
0 0 10 −5 0 
0 0 0 10 −5 

⎤ 

⎥ ⎦ 

, 

D v = 

[ 
0 . 01 0 0 

0 0 . 1 0 
0 0 0 . 1 

] 
, 

δ0 
H i 

and δ0 
UA 

are scaled from δH i 
and δUA to lie within [ −1 , 1] , and

w 0 k and v 0 k follow standard normal distribution to account for dis-

cretization errors and measurement noises, respectively. 

6.2. Implemented algorithms 

Both the proposed Algorithm 1 and the zonotope-based parity

relation in [15] are implemented for comparisons. In the offline

procedures of Algorithm 1, the horizon length h is set to 3, and

the obtained polynomial parity matrix V ( T k , δ
0 ) is 2 × 9 with de-

gree 1, where δ0 represents 
[
δ0 

H 1 
δ0 

H 2 
δ0 

H 3 
δ0 

UA 

]
. To account

for the additive noise 0.1 v 0 k, T of the measured temperature T m 

k 
,

T m 

k 
− 0 . 1 v 0 k,T is used to replace T k in the parity matrix V ( T k , δ

0 ),

hence V (T m 

k 
− 0 . 1 v 0 k,T , δ

0 ) is used instead. Then, the uncertainty

vector λ defined in (22) includes 98 nonzero entries, each of which

is a polynomial in terms of δ0 , w 0 k , and v 0 k . For the offline GM

modeling, 50 0 0 samples { λ( i ) } of λ are generated to construct a

sampled data matrix 
. To avoid ill-conditioning, dimension reduc-

tion via PCA is applied to the sampled data matrix 
 such that the

data variance in a reduced subspace of dimension 7 can captures

99% of the total variance. The corresponding PDF of the sampled

data in this reduced subspace is approximated by a GM with 2

components. As illustrated in Fig. 3 , the non-Gaussian distribution

of samples in the reduced subspace is well approximated by the

obtained GM. The selected confidence level γ is 99%. In the online

procedures of Algorithm 1, steps 5–7 are followed to compute the

GM parameters of the residual distribution, and the FD decision is

made by following step 8. 

As for the zonotope-based method in [15] , a zonotope 

Z = { p + E ε : ε ∈ B 

n ε } (36)

is constructed offline such that it contains 99% of the sampled un-

certainty vectors { λ( i ) }, where n ε is equal to the rank of the sam-

pled data matrix 
, and B 

n ε ∈ R 

n ε×1 is a unitary box composed

of n ε unitary intervals B = [ −1 , 1] . In this particular example, the

dimensions of p, E , and ε are p ∈ R 

98 , E ∈ R 

98 ×8 , and ε ∈ R 

8 ×1 , re-

spectively. Please refer to [15] for more details of computing the
enter p and the shape matrix E of the zonotope Z . The associ-

ted FD decision depends on checking whether the origin lies in

he residual confidence zonotope { �k p + �k E ε : ε ∈ B 

n ε } computed

rom (22) and (36) . This corresponds to the FD logic [15] 

νzono ,k ≤ 1 ⇒ the monitored system is fault-free 
νzono ,k > 1 ⇒ the monitored system is faulty 

(37)

here νzono, k is the solution to the linear program 

min 

ε,νzono ,k 

νzono ,k 

s.t. �k p + �k E ε = 0 , 

−νzono ,k ≤ εi ≤ νzono ,k , 1 ≤ i ≤ n ε, 

νzono ,k ≥ 0 (38)

ith ε i denoting the i th element of ε. Two cases of the solution

o (37) imply the detection of faults: (I) a feasible solution with

zono, k > 1; and (II) no feasible solution exists. In the latter case,

zono, k can be set to any value larger than 1 for the FD purpose.

ote that the zonotope-based method in [15] relies on an LPV

esidual generator similar to the form of (22) , but does not derive

he polynomial parity matrix used in this paper. 

.3. Performance evaluations and comparisons 

The FD results of one simulation run in the considered two

ault scenarios are shown in Fig. 4 . The “residual evaluation” in

ig. 4 refers to νk in (32) and νzono, k in (38) . Compared to the

onotope-based method, in both two fault scenarios, our proposed

pproach is more sensitive to faults, and achieves much fewer

umber of missed detections after fault injection at 15 s, while giv-

ng only one false alarm before fault injection. 

In order to evaluate the statistical FD performance, Monte Carlo

imulations are performed for N mc times, and the performance

etrics are defined by 

FAR = 

total number of false alarms for t ∈ [0 , 15] 

( number of samples for t ∈ [0 , 15] ) × N mc 
× 100% , 

DR = 

total number of miss detections for t ∈ (15 , 30] 

( number of samples for t ∈ (15 , 30] ) × N mc 
× 100% .

The effect of parametric uncertainty bounds on the FD perfor-

ance is evaluated by the minimal fault magnitude that is de-

ected with an MDR less than 5% in 100 Monte Carlo runs. As

hown in Table 2 , when using the tuning parameters described in

ection 6.2 , as the bound of δUA grows, there is always an increase

n the minimal sensor fault magnitude detected with an MDR less

han 5%. 

How the statistical FD performance depends on tuning parame-

ers is analyzed by performing Monte Carlo runs, and illustrated in

able 3 and Fig. 5 . It can be seen from Table 3 that 
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Fig. 4. Residual evaluation and detection results of one simulation run in the con- 

sidered two fault scenarios. In the lower two plots of each subfigure, at each time 

instant, “1” indicates an alarm from the detector, while “0” represents no reported 

alarm. 

Table 2 

For different uncertainty ranges of δUA , minimal magnitudes of reactor tempera- 

ture sensor bias that are detected with an MDR less than 5% in 100 Monte Carlo 

runs. The tuning parameters of our proposed algorithm are fixed as described in 

Section 6.2 . 

Range of δUA [ −1 , 1] [ −5 , 5] [ −9 , 9] [ −13 , 13] 

(J/min · K) × 10 4 × 10 4 × 10 4 × 10 4 

Minimal fault magnitude (K) 1.42 1.44 1.50 1.62 

Table 3 

FAR and MDR when tuning the reduced dimension n c and the confidence level γ . 

The number of Gaussian components is fixed to 2. The simulated fault is a constant 

bias 1.4 K on the reactor temperature sensor. 

Tuning Horizon Degree Reduced Confidence FAR MDR 

case length d V dimension level (%) (%) 

h n c for λ γ (%) 

1 3 1 6 95 5.56 2.41 

2 3 1 7 95 4.15 3.03 

3 3 1 7 99 0.97 9.19 

4 3 1 8 99 0.86 11.67 

Fig. 5. FAR and MDR for different choices of the horizon length h and the degree 

d V . The number of Gaussian components is fixed to 2. The simulated fault is a con- 

stant bias 1.4 K on the reactor temperature sensor. 

 

 

 

 

 

l  

s  

p  

c  

d  

f

 

u  

c  

s  

t  

δ  

t  

g  

d  

δ

7

 

f  

p  

l  

c  

d  

u  

s  

p  

c  

A  

c

• increasing the reduced dimension n c results in a lower FAR

and a higher MDR, due to less information loss in the di-

mensional reduction step as explained in Remark 4 ; 
• by setting a larger confidence level γ , the achieved FAR de-

creases while the MDR increases, which is consistent with

our expectation. 

Fig. 5 illustrates how the FAR and MDR vary with the horizon

ength h and the degree d V . For each choice of ( h, d V ), the dimen-

ion reduction step captures 99% of the total variance of the sam-

led data matrix of λ. In Fig. 5 , the FAR remains below 5% in all

ases. It is also observed that (I) the MDR becomes higher when

 V is larger than its minimal value 1; and (II) for each fixed degree

rom 1 to 4, the MDR decreases as h increases. 

To show the benefit of exploiting distributional information of

ncertain parameters, the PDF of δUA is changed from the trun-

ated Gaussian distribution to the uniform distribution over the

ame uncertainty range. Compared to case 5 of Table 3 , the same

uning parameters are applied under the uniformly distributed

UA , then the obtained FAR 4.17% almost remains unchanged, and

he achieved MDR increases to 5.01%. This is due to not distin-

uishing high and low probability of occurrence in the uniformly

istributed δUA , compared to the truncated Gaussian distributed

UA . 

. Conclusions 

This paper presents a probabilistic SM parity relation approach

or LPV systems with polynomial dependence on probabilistic

arametric uncertainties. A polynomially parameterized parity re-

ation is constructed, and GMs are used to efficiently compute un-

ertain propagation from stochastic uncertainties to the residual

istribution. To achieve an acceptable FAR, the consistency test

ses the residual confidence set in the form of a union of ellip-

oids. Guidelines for tuning parameters are discussed. The pro-

osed approach is effective for a simulation example, which in-

ludes performance comparisons with a zonotope-based method.

 comprehensive solution to fault isolation for the considered un-

ertain LPV system will be a focus of future research. 
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