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a b s t r a c t

This paper is concerned with the issues of feasibility, stability and robustness on the switched model
predictive control (MPC) of a class of discrete-time switched linear systems with mode-dependent dwell
time (MDT). The concept of conventional MDT in the literature of switched systems is extended to the
stage MDT of lengths that vary with the stages of the switching. By computing the steps over which all
the reachable sets of a starting region are contained into a targeting region, the minimum admissible
MDT is offline determined so as to guarantee the persistent feasibility of MPC design. Then, conditions
stronger than the criteria for persistent feasibility are explored to ensure the asymptotic stability. A
concept of the extended controllable set is further proposed, by which the complete feasible region for
given constant MDT can be determined such that the switched MPC law can be persistently solved and
the resulting closed-loop system is asymptotically stable. The techniques developed for nominal systems
lay a foundation for the same issues on systems with bounded additive disturbance, and the switched
tube-based MPCmethodology is established. A required ‘‘switched’’ tube in the form of mode-dependent
cross section is determined by computing amode-dependent generalized robust positive invariant set for
each error subsystem between nominal subsystem and disturbed subsystem. The theoretical results are
testified via an illustrative example of a population ecological system.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background and related work

Switched systems are commonly used to model multiple-mode
plants or hybrid control systems that use a family of controllers.
Switching signals can be categorized as state-dependent or time-
dependent in terms of how a switching is generated (Liberzon,
2003). Control problems that have been studied for switched
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systems with both classes of switching include stability analysis,
control synthesis, and the design of switching signals to ensure
the stability of the resulting closed-loop system, see, e.g., Branicky
(1998), De Persis, De Santis, and Morse (2003), Ferrari-Trecate,
Cuzzola, Mignone, and Morari (2002), Hespanha (2004), Liberzon
(2003) and Zhao andHill (2008). In particular, an important subject
on properties of switching signals is to determine minimum
admissible dwell time such that the resulting switched system
is (asymptotically) stable, see, e.g., Chesi, Colaneri, Geromel,
Middleton, and Shorten (2012) and Geromel and Colaneri (2006).

The model predictive control (MPC) of switched systems is
of interest, as constraints are frequently encountered in practice.
For state-dependent switching, MPC of a class of piecewise affine
systems—which is also termed hybrid MPC in the literature—
has been extensively investigated, e.g., Borrelli, Mato Baotic,
Bemporad, and Morari (2005) and Lazar (2006). In this type of
systems, switching among different system modes occurs when
the system state hits a certain switching surface; consequently,
the mode variations during the prediction horizon are known
a priori for the MPC optimization at each step. As for time-
dependent switching, if the switching sequence consisting of both
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switching instants and switching indices is exactly prescribed,
then the results of the hybrid MPC literature can be directly used.
In many practical systems, the switching instants are unknown
a priori, such as occurs in systems that encounter faults during
their operation (Chiang, Russell, & Braatz, 2001). In this case, an
MPC algorithm would not have a priori knowledge of the mode
changes over the prediction horizon, and so there would not
be any single known predicted trajectory, even in the case of
no model uncertainties, unlike what is commonly assumed in
the hybrid MPC literature. This lack of knowledge motivates the
design of the MPC algorithm to be individually configured for
each subsystem. In this scenario, some works have considered
system stability (Colaneri & Scattolini, 2007; Franco, Sacone, &
Parisini, 2004; Gorges, Izak, & Liu, 2011) by applying the classical
multiple Lyapunov-like functions (MLFs) approach (Branicky,
1998) commonly used for switched systems.

In addition to the stability requirement, a more predominated
issue is the persistent feasibility of the MPC synthesis for the
switched systems with unknown switching instants. In Muller,
Martius, and Allgower (2012), persistent feasibility has been
explicitly addressed for a class of continuous-time switched
nonlinear systems with average dwell time (ADT) switching. Once
the MPC algorithm for each subsystem is designed, an admissible
ADT ensuring the system stability can be specified and the feasible
region estimated. Although ADT switching is flexible, as the
running time sometimes can be shorter than the required ADT,
a resulting drawback is that the feasible region will shrink, as a
state may not be steered to the feasible region of another system
mode if the running time is short. A more fundamental problem
in MPC for switched systems with unknown switching instants,
i.e., determining the admissible dwell time to guarantee both
persistent feasibility and system stability, has even not been fully
solved. In addition, for given dwell time, how to determine the
complete feasible region for the switched systems is also largely
open, even when the subsystems are linear.

Turning to the robust MPC synthesis for the switched systems
with uncertainties, the subject is more significant as uncertainties
are unavoidable in practice; but it has also almost not been
investigated unlike in the area of robust MPC of non-switched
systems (Rawlings & Mayne, 2009) or piecewise affine systems
(Lazar, 2006). Recent years havewitnessed rapid progress in robust
MPC based on diverse methodologies including open-loop and
closed-loop min–max MPC (Alamo, Munoz de la Pena, Limon, &
Camacho, 2005; Limon, Alamo, Salas, & Camacho, 2006) and tube-
based MPC (Mayne, Seron, & Raković, 2005; Raković, Kouvaritakis,
Cannon, Panos, & Findeisen, 2011). As a method that employs
finite-dimensional optimization in robustMPC synthesis, the tube-
based MPC law presents a concise separate control policy, which
consists of a conventional MPC for the nominal systems and a
local feedback control law that steers the states of the uncertain
systems to be, for all time, within a tube centered on the nominal
trajectory. The tube can be determined allowing for the cross
sections to be constant or time-varying, computed online or offline.
In the presence of switching dynamics, however, it is challenging
to determine the tube (even with constant cross section) such
that the persistent feasibility within each subsystem and at
switching instants can be both ensured. The aforesaid two issues,
i.e., determining the admissible dwell time and feasible region for
given dwell time, for uncertain switched systems aremore difficult
and so far, not addressed up to the authors’ knowledge.

1.2. Objectives and contributions

This paper investigates the switched MPC of a class of
discrete-time switched linear systems with mode-dependent
dwell time (MDT). Three key issues including feasibility, stability
and robustness will be addressed. The nominal systems are
first studied, upon which is built a basis for the scenario of
systems involved with bounded additive disturbance. The detailed
objectives are as below.
A. Nominal systems

(i) The first objective of the paper is to determine the minimum
admissible dwell time for nominal switched systems, in which the
switching is autonomouswith switching times unknown a priori, in
ensuring both the system (asymptotic) stability and the persistent
feasibility ofMPCdesign. (ii)With the problem in the first objective
being solved, the feasible region of the switched systems for given
dwell time (less than the minimum admissible ones computed in
(i)) needs to be determined. The developments of corresponding
algorithms to obtain a complete feasible region for the underlying
systems form the second objective.
B. Systems with bounded additive disturbance

The above two objectives involve much more difficulties
for practical switched systems in the presence of uncertainties.
Allowing for the bounded additive disturbance to the systems
in the paper, the specific objectives in this part are twofold
paralleling the ones for nominal systems. (i) The determination
of the minimum admissible dwell time for disturbed systems, as
the third objective, entails the computation of a ‘‘switched’’ tube in
order to establish the switched tube-based MPC methodology, in
addition to the techniques developed for nominal systems. (ii) The
final objective of the paper is to further the algorithms explored
for the second objective to determine a complete feasible region
of the disturbed switched systems on the basis of the solution to
the problem in the third objective.

Towards these goals, the contributions of the paper are
highlighted as follows.

(i) The stage MDT of lengths varying with the stages of the
switching is proposed. By computing the steps over which all the
reachable sets of a starting region are contained into a targeting
region, theminimumadmissibleMDT is offline determined so as to
guarantee the persistent feasibility of MPC design. Then, stronger
conditions are also developed to ensure asymptotic stability. (ii) A
concept of the extended controllable set (ECS) is proposed. For a
targeting region, by determining its ECS that can cover the states
at the switching instants, the obtained stageMDT can be shortened
allowing for them to be further state-dependent. The pros and
cons of non-state-dependent and state-dependent MDTs are also
presented analytically and testified via an illustrative example of
a population ecological system. (iii) Further, via the ECS approach,
the complete feasible region for given constantMDT is determined
such that the switched MPC law can be persistently solved and
the resulting closed-loop system is asymptotically stable. (iv) As
for the systems with bounded additive disturbance, the switched
tube-based MPC methodology is established to address the two
issues of determination of minimum admissible stage MDT and
the feasible region for given constant MDT. A required ‘‘switched’’
tube in the formofmode-dependent cross section is determined by
computing a generalized robust positive invariant set for each error
subsystem between nominal subsystem and disturbed subsystem.

Note that compared with (Zhang & Braatz, 2013) (the confer-
ence version of the paper), the paper not only further addresses
the case of the disturbed systems, but also generalizes the MDT to
the stage ones, obtains the complete feasible region based on the
ECS proposed in this paper, and develops the criteria ensuring the
asymptotic stability.

1.3. Notation

Notation: The superscript ‘‘T’’ stands for matrix transpose;
Rn denotes the n-dimensional Euclidean space; ∥·∥ refers to
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the Euclidean vector norm; the R+ and Z+ denote the sets of
non-negative real numbers integers, respectively; and Z≥s1 and
Z[s1,s2] denote the sets {k ∈ Z+ |k ≥ s1 } and {k ∈ Z+ |s1 ≤ k ≤ s2 },
respectively, for some s1, s2 ∈ Z+. The spectral radius of matrix
A is denoted by ρ(A). A real-valued scalar function α : R+ →
R+ that is continuous, strictly increasing, and has α(0) = 0 is
said to be of class K . For any real λ ≥ 0 and set P ⊂ Rn,
the set λP is defined as λP , {x ∈ Rn |x = λyfor some y ∈ P }.
The Pontryagin difference, Minkowski sum of two arbitrary sets
P1 ⊂ Rn, P2 ⊂ Rn, are denoted as P1 ⊖ P2 and P1 ⊕ P2,
respectively; co{P } denotes the convex-hull of P . The cardinality
of set1 is denoted as card{1}. For two sets1 , {∆1, ∆2, . . . , ∆M}

and η , {η1, η2, . . . , ηM}, ∆i, ηi ∈ Z+, i ∈ Z[1,M], 1[±z](η) stands
for the set {∆[±z]1 , ∆

[±z]
2 , . . . , ∆

[±z]
M |∆

[±z]
i ≥ ηi,

M
i=1 ∆

[±z]
i =

(
M

i=1 ∆i)± z}, z ∈ Z+.

2. Nominal systems

2.1. Preliminaries and problem formulation

Consider the class of discrete-time switched linear systems:

(Ωσ(k)) : xk+1 = Aσ(k)xk + Bσ(k)uk (1)

where xk ∈ Rnx is the state, and uk ∈ Rnu is the control input;
σ(k) is a switching signal that is a piecewise constant function of
time k, continuous from the right everywhere, and takes values at
the sampling times in a finite set I = {1, . . . ,M}, where M > 1
is the number of subsystems. The switching is supposed to be
autonomous, and the switching sequences S , {k0, k1, . . . , kl, . . .}
are unknown a priori, but are known instantly,where the switching
instant is denoted as kl−1, l ∈ Z≥1. When k ∈ [kl−1, kl), the
σ(kl−1)th subsystem (or system mode) is said to be activated and
the length of the current running time of the subsystem is kl−kl−1.

As commonly considered in the literature of switched linear
systems (e.g., Branicky, 1998, Chesi et al., 2012, Geromel &
Colaneri, 2006, Hespanha, 2004 and Liberzon, 2003), the individual
subsystems are assumed to have the origin as the common
equilibrium. In addition, generally the switching in a discrete-time
switched system does not necessarily take place exactly at the
sampling instants. This work is based on the following assumption
in the context of discrete-time switched systems.

Assumption 1. The switching instants are assumed to exactly be
the sampling instants of system (1).

Both the system state and control input are subject to mode-
dependent constraints, i.e., ∀σ(k) = m ∈ I,

xk ∈ Xm ⊆ Rnx , uk ∈ Um ⊆ Rnu (2)

where both Xm and Um are compact polyhedral sets that contain
the origin in their interior.

The switching signals are considered to have mode-dependent
dwell time property that is defined as below.

Definition 1. Consider system (1) and switching instants k0,
k1, . . . , kl, . . . with k0 = 0. A positive constant τm is said to be
mode-dependent dwell time(MDT) associated with subsystem Ωm,
if kl − kl−1 ≥ τm when σ(k) = m for k ∈ [kl−1, kl), l ∈ Z≥1.

Note that the MDT in Definition 1 is constant, regardless of the
lth switching of the switched system, l ∈ Z≥1. The concept can be
generalized to the following stage MDT that is of variable lengths,
in the sense of the lth stage of switching (the stage begins with the
lth switching at kl−1, and ends with the (l + 1)th switching of the
switched systems at kl).
Fig. 1. Stage MDT τ
(l)
m , l ∈ Z≥1, m ∈ I.

Definition 2. Consider system (1) and switching instants
k0, k1, . . . , kl, . . . with k0 = 0 and the lth switching occurring at
kl−1, l ∈ Z≥1. A positive constant τ

(l)
m is said to be the lth stage

MDT associated with subsystem Ωm (xk+1 = Amxk + Bmuk), if
kl − kl−1 ≥ τ

(l)
m when σ(k) = m for k ∈ [kl−1, kl), l ∈ Z≥1.

An illustration about the stage MDT1 is given in Fig. 1.
The control input uk is designed based on the current subsystem

model, allowing for the switching times to be unknown a priori.
Once a switching is detected, the model for the control design is
switched. A regular model predictive control (MPC) strategy for
each subsystem is adopted, and accordingly a mode-dependent
MPC optimization is solved at each sampling time k. More
specifically, ∀σ(k) = m ∈ I, let Nm denote the prediction horizon
for subsystem Ωm, for the given system state xk, the following
optimization problem

min
uk

Jm(xk,uk) , Tm(xNm/k)+

Nm−1
i=0

Lm(xi/k, ui/k)

subject to xi+1/k = Amxi/k + Bmui/k, x0/k = xk,

xi/k ∈ Xm, ui/k ∈ Um, ∀i ∈ Z[0,Nm−1], xNm/k ∈ Tm (3)

is solved at time k, where xi/k, i = 1, . . . ,Nm denotes the state
predicted through subsystem Ωm by applying the input sequence
uk , (u0/k, u1/k, . . . , uNm−1/k), the terminal set Tm is mode-
dependent, and the cost function Jm(xk, uk) consists of stage cost
Lm(xi/k, ui/k) and terminal cost Tm(xNm/k) that are also both mode-
dependent mappings with Lm : Rnx × Rnu → R+, Lm(0, 0) = 0,
and Tm : Rnx → R+, Tm(0) = 0.

A state xk ∈ Xm is said to be feasible for the optimization
problem (3) if

Um
Nm

(xk) ,

ui/k ∈ Um

 xi/k ∈ Xm, xNm/k ∈ Tm,

xi+1/k = Amxi/k + Bmui/k, x0/k = xk,

∀i ∈ Z[0,Nm−1]

≠ ∅.

Denoting the optimal sequence of controls solving the above
optimization as u∗k , (u∗0/k, u

∗

1/k, . . . , u∗Nm−1/k), the MPC law is
defined as

uMPC (Ωm, xk) , u∗0/k. (4)

Let Xm
Nm

denote the set of all of the feasible states for subsystem
Ωm, and Vm

Nm
: Xm

Nm
→ R+ denote the value function, i.e., the

infimum of the cost function, i.e., Vm
Nm

(xk) = Jm(xk,u∗k).
The control input at each k ∈ [kl−1, kl), l ∈ Z≥1, is

uk = uMPC (Ωσ(k), xk), which can be obtained by solving (3)
that implicitly gives (4). Also, uk can be explicitly solved in
certain scenarios particularly if the cost function is quadratic, each
subsystem is linear, and both control and state constraints are
polyhedra (cf. Page 484 in Rawlings & Mayne, 2009).

The following definitions of the positive invariant set and
control invariant set are needed.

1 Unless specifically stated, the term MDT will be slightly abused in later
developments to serve both Definitions 1 and 2, and when necessary, the
superscript ‘‘(l)’’ will be used to indicate the MDT be a stage one.
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Definition 3 (Rawlings & Mayne, 2009). A set O ⊆ X ⊆ Rnx is said
to be, respectively, a positive invariant set for autonomous system
xk+1 = f (xk), xk ∈ X, if xk ∈ O implies xt ∈ O, t ∈ Z≥k+1; a
control invariant set for controlled system xk+1 = f (xk, uk), xk ∈
X, uk ∈ U ⊆ Rnu , if xk ∈ O implies there exists uk ∈ U such that
xt ∈ O, t ∈ Z≥k+1.

LetB denote the closed unit ball inRnx . The asymptotic stability
in a region of attraction for a constrained system is defined as
below.

Definition 4 (Rawlings & Mayne, 2009, Definition B.9). Suppose
X ⊆ Rnx is positive invariant set for xk+1 = f (xk). The systemorigin
is (i) stable in X if for each ε > 0, there exists a δ > 0 such that for
all x0 ∈ X∩ δB implies that ∥xk∥ ≤ ε for all k ≥ 0. (ii) attractive in
X if ∥xk∥ → 0 as k→ ∞ for all x0 ∈ X. (iii) asymptotically stable
with a region of attraction X if it is stable in X and attractive in X.

The objectives of this section include: (i) Determine the
admissible MDT such that the resulting switched system (1)–(4) is
asymptotically stable in the sense of Definition 4, with such MDT
concisely denoted as AS-MDT; (ii) Given MDT, find the feasible
region (the set of all feasible states) such that (4) can bepersistently
solved and the resulting switched system (1)–(4) is asymptotically
stable, likewise, the feasible region is denoted as AS-FR.

Since one special switching is that the system stays at one
of subsystems, the above objectives require that each subsystem
Ωm, m ∈ I, in closed-loop with MPC law (4) is asymptotically
stable, which is ensured by the following assumption that is
standard in the MPC literature, see, e.g., Lazar (2006), Muller et al.
(2012) and Rawlings and Mayne (2009).

Assumption 2. There exist αm,i ∈ K, i = 1, 2, ∀σ(k) = m ∈ I
and a feedback control law Km(·) such that Tm is a control invariant
set for subsystem Ωm in closed-loop with uk = Km(xk) and (i)
Lm(x, u) ≥ αm,1(∥x∥), ∀x ∈ Xm

Nm
, ∀u ∈ Um. (ii) Tm(x) ≤

αm,2(∥x∥), ∀x ∈ Tm (iii) 1Tm(x) + Lm(x, Km(x)) ≤ 0, ∀x ∈ Tm,
where 1Tm(x) , Tm (Amx+ BmKm(x))− Tm(x).

Remark 1. Note that Assumption 2 is comparable to the typical
assumption in the area of switched systems that each subsystem in
closed-loop via a stabilizing linear state feedback is asymptotically
stable. With Assumption 2, it can be concluded from Rawlings and
Mayne (2009, see Page 119) that Xm

Nm
is the region of attraction for

subsystem Ωm in closed-loop with (4) and is positively invariant,
as Tm is a control invariant set for subsystem Ωm.

2.2. Determination of AS-MDT

This subsection first determines the admissible MDT such that
the MPC design for switched system (1)–(4) is persistently feasible
(denoted as F -MDT), the underlying system is attractive besides
the persistent feasibility (F A-MDT), and furthers the results
to AS-MDT case. The logic relation among the criteria to be
developed in this subsection and later (sub)sections can be seen
in Appendix B.

To determine the admissible AS-MDT, before ensuring the
stability and attractivity of closed-loop switched system (1)–(4),
persistent feasibility (aka recursive feasibility, cf. Page 111 in
Rawlings & Mayne, 2009) of solving the controller (4) needs to
be first guaranteed. The persistent feasibility means that the MPC
optimization is persistently feasible at all sampling times, i.e., both
within each subsystem and at switching instants. By Assumption 2,
Tm is a control invariant set for each subsystem Ωm; then the
persistent feasibility within each subsystem is ensured (cf. Page
111 in Rawlings & Mayne, 2009).
To guarantee persistent feasibility at the switching instants, it
intuitively suffices that, for σ(kl−1) = m and σ(kl) = n, ∀n ≠ m ∈
I, the running time of Ωm, Hm , kl − kl−1, l ∈ Z≥1, belongs to

Hm,n ,

H ∈ Z+

xks+H ∈ Xn
Nn

, ∀xks ∈ Xm
Nm


. (5)

However, since the feasible region Xn
Nn

of the next subsystem Ωn
is generally not an invariant set for the current subsystem Ωm, a
state entering Xn

Nn
at some sampling time may leave the set at a

later sampling time; this means that Hm,n may be a set consisting
of dispersed values of admissible running time.

Therefore, even if there are no extra requirements in ensuring
(asymptotic) stability, to obtain the set Hm,n in (5) for a state
will not offer an explicit criterion for each subsystem how long
the admissible MDT should be. To overcome such a problem, in
what follows, the positive invariance of reachable sets of a system
controlled by MPC will be utilized to determine the F -MDT.

For subsystemΩm : xk+1 = Amxk+Bmuk, where uk is the control
input designed by the MPC law, the one-step reachable set from
X ⊆ Xm

Nm
along subsystem Ωm is denoted as

Reach(X, Ωm) ,

x ∈ Rn

|x0 ∈ X,

x = Amx0 + BmuMPC (Ωm, x0)


(6)

and the H-step reachable set, Rm
H (X) is defined as

Rm
y+1(X) , Reach


Rm

y (X), Ωm

, y ∈ Z[0,H−1],

Rm
0 (X) = X.

(7)

Theorem 1. Consider system (1)–(4) with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

the MPC design for system (1)–(4) is persistently feasible with admis-
sible MDT τ

(l)
m , l ∈ Z≥1, if τ

(1)
m satisfies

Rm
τ
(1)
m

(Xm
Nm

) ⊆

n∈I

Xn
Nn

(8)

and ∀σ(kl−1) = m ∈ I, l ∈ Z≥2, τ
(l)
σ (kl−1)

satisfies

Υ (τ
(l)
σ (kl−1)

) ⊆

n∈I

Xn
Nn

(9)

where Υ (τ
(l)
σ (kl−1)

) ,
τ

(1)
σ (kl−1)

−τ
(l)
σ (kl−1)

i=0


σ(kl−2)∈I
R

σ(kl−1)

τ
(l)
σ (kl−1)

+i

(R̂∪ (τ
(l−1)
σ (kl−2)

)) with R̂∪(τ
(l−1)
σ (kl−2)

) , R
σ(k0)

τ
(1)
σ (k0)

(X
σ(k0)
Nσ(k0)

), l = 2 and

R̂∪(τ
(l−1)
σ (kl−2)

) ,


σ(kl−3)∈I
R

σ(kl−2)

τ
(l−1)
σ (kl−2)

(R̂∪(τ
(l−2)
σ (kl−3)

)), l ∈ Z≥3.

Proof. If Assumption 2 holds, the feasible region Xm
Nm

is positively
invariant, which implies that Rm

1 (Xm
Nm

) ⊆ Xm
Nm

. By the geometric
condition for invariance (cf. Dorea & Hennet, 1999), Rm

1(X
m
Nm

) is
also positively invariant for Ωm, and so is Rm

H(X
m
Nm

), ∀H ∈ Z≥2.
Consider l = 1 (the 1st stage of switching) and σ(k0) = m, due to
R̂∪(τ

(1)
σ (k0)

) = Rm
τ
(1)
m

(Xm
Nm

) ⊆


n∈I Xn
Nn

((8)) and the fact that the

running time k1 − k0 is not less than τ
(1)
m , then Rm

k1−k0
(Xm

Nm
) ⊆

Rm
τ
(1)
m

(Xm
Nm

) ⊆ Xn
Nn

, ∀n ∈ I, n ≠ m, that is, the system trajectory

in Rm
k1−k0

(Xm
Nm

) will stay inside Rm
τ
(1)
m

(Xm
Nm

) ⊆


n∈I Xn
Nn

until

the second switching occurs. Suppose at l = v (the vth stage
of switching), R̃v ⊆


n∈I Xn

Nn
where R̃v denotes the region

evolved from X
σ(k0)
Nσ(k0)

after v − 1 stages according to the concrete
switching sequence of the system, i.e., the system trajectory falls
into


n∈I Xn

Nn
after running time kv−1 − kv−2. Bear in mind that
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τ
(v)

σ (kv−1)
≤ kv − kv−1. Then, at l = v + 1 (the (v + 1)th stage of

switching), it follows from the requirement in (9) on τ
(l)
σ (kl−1)

, l ∈

Z≥2 that R̃v+1 = R
σ(kv−1)
kv−kv−1

(R̃v) ⊆


n∈I Xn
Nn
. Therefore, the MDT

τ
(l)
m satisfying (8) and (9) is admissible for the system in terms of
persistent feasibility. �

In Theorem 1, τ
(l)
m needs to be computed at each stage of

switching, thus for a switching signal with infinite switching
sequences, it is not practical to determine the admissible F -
MDT based on Theorem 1. The following two corollaries avoid the
problem.

Corollary 1. Consider system (1)–(4)with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

the MPC design for system (1)–(4) is persistently feasible with admis-
sible MDT τ

(l)
m , l ∈ Z≥1, if τ

(1)
m satisfies (8) and τ

(l)
m ≡ τ

(2)
m , l ∈ Z≥2

where τ
(2)
m satisfies

τ
(1)
m −τ

(2)
m

i=0

Rm
τ
(2)
m +i


n∈I

Xn
Nn


⊆


n∈I

Xn
Nn

. (10)

Proof. By Theorem 1, τ
(1)
m is admissible. For any l ∈ Z≥2, τ

(l)
m

satisfying (10) will be no less than the one satisfying (9) due to
R̂∪(τ

(l−1)
σ (kl−2)

) ⊆


n∈I Xn
Nn
. �

Corollary 2. Consider system (1)–(4)with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

the MPC design for system (1)–(4) is persistently feasible with admis-
sible MDT τ

(l)
m , l ∈ Z≥1, if τ

(l)
m ≡ τm where τm satisfies

Rm
τm

(Xm
Nm

) ⊆

n∈I

Xn
Nn

. (11)

Proof. The proof is straightforward from Corollary 1 as


n∈I Xn
Nn

⊆ Xm
Nm

,m ∈ I. �

Based on Theorem 1, Corollary 1, and Corollary 2, the
corresponding minimum admissible F -MDT can be obtained by
solving the minimization procedures

τ (l)
m , min{τ (l)

m }, for τ (l)
m ∈ Z+ subject to (8)–(9) (or

(8) and (10), or (11)). (12)

The algorithms for solving for τ
(l)
m are trivial, which can be

developed by iterations of increasing τ
(l)
m by one in the left-hand

side of (8)–(9) (or (8) and (10), or (11)).
Note that in Theorem 1, Corollary 1, and Corollary 2, the

persistent feasibility is ensured, but the system trajectory may
not converge, i.e., the system state at the switching instants may
just stay close to the margin of


n∈I Xn

Nn
. Stronger conditions

are needed to determine the F A-MDT, i.e., the admissible MDT
such that the underlying system is attractive besides the persistent
feasibility.

Theorem 2. Consider system (1)–(4) with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

system (1)–(4) is attractive in


n∈I Xn
Nn

with admissible MDT
τ

(l)
m , l ∈ Z≥1, if τ

(1)
m satisfies (8) and ∀σ(kl−1) = m ∈ I, l ∈

Z≥2, τ
(l)
σ (kl−1)

satisfies

Υ (τ
(l)
σ (kl−1)

) ⊆

n∈I

Rn
l−1(X

n
Nn

) (13)

where Υ (τ
(l)
σ (kl−1)

) is denoted in (9).
Proof. (i) Persistent feasibility. It suffices to consider the cases
when l ∈ Z≥2, as τ

(1)
m satisfies (8). Since


n∈I Rn

l−1(X
n
Nn

) ⊆
n∈I Xn

Nn
, ∀l ∈ Z≥2, then the MDT satisfying (13) is no less than

the one satisfying (9) and thus admissible in terms of persistent
feasibility. (ii) Attractivity. Since


n∈I Rn

l−1(X
n
Nn

) → {0} as l →
∞,

xkl → 0 and V n
Nn

(xkl) → 0 as l → ∞ (Note that
n∈I Rn

l−1(X
n
Nn

) 9 {0} will contradict with the fact, ensured by
Assumption 2, that each state can be steered to the origin within
each subsystem). By Assumption 2 and Lem. 2.19 in Rawlings and
Mayne (2009), Vm

Nm
(xk+1) − Vm

Nm
(xk) ≤ −αm(∥xk∥). Since I is a

finite set, then α ∈ K can be chosen independent of m such that
Vm
Nm

(xk+1)−Vm
Nm

(xk) ≤ −α(∥xk∥). Hence,∀k ∈ [kl−1, kl), ∥xk∥ → 0
due to ∥xk∥ ≤ α−1(Vm

Nm
(xk)) ≤ α−1(Vm

Nm
(xkl−1)). �

A direct result extended from Theorem 2 is given as below,
paralleling the extension from Theorem 1 to Corollary 1. The proof
can be done by referring to the proof for Corollary 1 and omitted.

Corollary 3. Consider system (1)–(4)with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

system (1)–(4) is attractive in


n∈I Xn
Nn

with admissible MDT τ
(l)
m , if

τ
(1)
m satisfies (8) and τ

(l)
m , l ∈ Z≥2 satisfies

τ
(1)
m −τ

(2)
m

i=0

Rm
τ
(2)
m +i


n∈I

Rn
l−2(X

n
Nn

)


⊆


n∈I

Rn
l−1(X

n
Nn

). (14)

Remark 2. The admissible τ
(l)
m , l ∈ Z≥1 in Theorem 2 and

Corollary 3 is required to steer a starting region to targeting
region


n∈I Rn

l−1(X
n
Nn

). As l → l + 1,


n∈I Rn
l−1(X

n
Nn

) becomes
n∈I Rn

l (X
n
Nn

), i.e., it contracts innerly ‘‘every one step’’ to ensure
the convergence of system trajectory. In fact, the convergence
pace can be changed to any others that can ensure convergence,
e.g., ‘‘every two steps’’ or even contract innerly but sometimes
expand outerly, but contract in a whole trend.

Though the F A-MDT can be determined by Theorem 2 or
Corollary 3, it is unknown that the system stability can be ensured
in terms of Definition 4 (the system trajectory can always approach
to zero but may break through a ball with an arbitrarily-given
radius ε). In addition, in both Theorem 2 and Corollary 3, τ (l)

m needs
to be computed at each stage of switching. Therefore, if a switching
sequence is infinite, the infinite times of computation will make
Theorem 2 and Corollary 3 impractical for determining F A-MDT.
However, since each subsystem is linear, then if the stage cost is
quadratic and the terminal cost Tm(x) is set to be the value function
of the unconstrained infinite horizon optimal quadratic control
problem (denoted as VUC

∞
(Ωm, x) and the associated controller

gain is denoted as Km), which is common in linear MPC field,
then an interesting property (cf. Chapter 2.5 in Rawlings & Mayne,
2009), i.e., uMPC (Ωm, x) ≡ Kmx, ∀x ∈ Tm, where Tm is a
control invariant set for subsystem xk+1 = (Am + BmKm)xk,
can be utilized to determine admissible F A-MDT by finite times
of computation. The stability of underlying system will be also
ensured in Theorem 3 as shown below; the resulting admissible
F A-MDT will be therefore the required AS-MDT.

To proceed, let the set of MDT τm’s be denoted by τ ,
{τ1, τ2, . . . , τM}, and the admissible MDT switching sequence with
set τ until time k by Sτ(k) , {k0, k1, . . . , ks, . . . , k − 1} (the
switching instants in Sτ(k) are required to satisfy Definition 1),
the definition of contractive set for the underlying switched linear
systems is needed.
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Definition 5 (Dehghan & Ong, 2012a). Consider the constrained
unforced switched linear system

xk+1 = Âσ(k)xk, xk ∈ X (15)

where X is a compact polytope and ρ(Âm) < 1, ∀σ(k) = m ∈ I. A
set Ω ⊆ X is said to be a [λ, τ]-contractive set of system (15) with
MDT τm, if x0 ∈ Ω implies xt ∈ X, ∀t ∈ Z[1,k] and ÂSτ (k)x0 ∈ λΩ ,
where the contraction factor λ ∈ (0, 1) and ÂSτ (k) ,

k−1
s=0 Âσ(s).

Under a certain MDT set 1, the existence of the contractive
set is ensured since each subsystem in (15) is required to
be asymptotically stable, cf., Dehghan and Ong (2012a) and
Dehghan and Ong (2013). Then, the two following criteria present
sufficient conditions to determine AS-MDT based on the property
uMPC (Ωm, x) ≡ Kmx, ∀x ∈ Tm when setting Tm(x) = VUC

∞
(Ωm, x).

Theorem 3. Consider system (1)–(4) with the feasible region of sub-
systemΩm being Xm

Nm
, ∀m ∈ I. Suppose that Assumptions 1–2 hold,

the stage cost is quadratic, Tm(x) = VUC
∞

(Ωm, x) and the asso-
ciated controller gain within Tm is Km. If under a MDT set 1 ,
{∆1, ∆2, . . . , ∆M}, a [λ, 1]-contractive set Oλ

∞
exists for system

xk+1 = Âσ(k)xk, xk ∈

m∈I

Tm (16)

where Âσ(k) , Aσ(k) + Bσ(k)Kσ(k), then system (1)–(4) is
asymptotically stable with a region of attraction


n∈I Xn

Nn
under

admissible τ
(l)
m , if τ

(1)
m satisfies (8), τ (l)

m satisfies (14), l ∈ Z[2,v], and
τ

(l)
m = ∆m, l ∈ Z≥v+1, where v satisfies
n∈I

Rn
v−1(X

n
Nn

) ⊆ Oλ
∞

. (17)

Proof. Suppose under 1 , {∆1, ∆2, . . . , ∆M}, the [λ, 1]-
contractive set Oλ

∞
⊆


m∈I Tm ⊆


n∈I Xn
Nn

exists for system
(16). As demonstrated in Theorem 2,


n∈I Rn

l−1(X
n
Nn

) → {0}
as l → ∞, then there must exist a v ∈ Z≥2 such that

n∈I Rn
v−1(X

n
Nn

) ⊆ Oλ
∞
. (i) Persistent feasibility. It follows from

Theorem 1 and Corollary 3 that τ
(l)
m , l ∈ Z[2,v] is admissible in

terms of persistent feasibility. Also, τ (l)
m = ∆m, l ∈ Z≥v+1 will be

admissible since system trajectory will remain inside


m∈I Tm ⊆
n∈I Xn

Nn
. (ii) Stability. Due to Tm(x) = VUC

∞
(Ωm, x), the system

(1)–(4) reduces to (16) within


m∈I Tm. Since


m∈I Tm contains
the origin in its interior, then there exist ε1 and δ1 such that the
following fact holds

δ1B ⊆ Oλ
∞
⊆


m∈I

Tm ⊆ ε1B. (18)

Then if a given ε ≥ ε1, let δ ∈ (0, δ1], then since Oλ
∞

is MDT
contractivewithin the constraint


m∈I Tm, it follows that ∥x0∥ ≤ δ

implies that xk ∈


m∈I Tm ⊆ ε1B ⊆ εB, which is ∥xk∥ ≤ ε. On
the other hand, if ε < ε1, then there must exist a N ∈ Z≥1 such
that λNε1 ≤ ε. Due to (18), for a η > 0, we have ηδ1B ⊆ ηOλ

∞
⊆

η


m∈I Tm ⊆ ηε1B. Then, consider constraint λN 
m∈I Tm, it

holds that λNOλ
∞

will be a contractive set within λN 
m∈I Tm

under the same 1, i.e., all the xk ∈ λN 
m∈I Tm. Let δ ∈ (0, λNδ1],

it follows that ∥x0∥ ≤ δ implies that xk ∈ λN 
m∈I Tm ⊆ λNε1B ⊆

εB, i.e., ∥xk∥ ≤ ε. In sum, for each ε > 0, there exists a δ > 0 such
that ∥x0∥ ≤ δ ⇒ ∥xk∥ ≤ ε. (iii) Attractivity. First, under τ

(l)
m , l ∈

Z[1,v], the system trajectory converges to Oλ
∞

at switching instant
kv by Theorem 1 and Corollary 3. After kv , with τ

(l)
m = ∆m, l ∈

Z≥v+1, it follows that, for any xkv ∈ Oλ
∞

, xk = ÂS1(k)xkv ∈ λMOλ
∞

holds, where M is the number of switching after kv till k. Since
λ ∈ (0, 1), thenM →∞ as k→∞, which ensures ∥xk∥ → 0. �
Corollary 4. Consider system (1)–(4) with the feasible region of
subsystem Ωm being Xm

Nm
, ∀m ∈ I. Suppose that Assump-

tions 1–2 hold, the stage cost is quadratic, Tm(x) = VUC
∞

(Ωm, x)
and the associated controller gain within Tm is Km. If under a MDT
set 1 , {∆1, ∆2, . . . , ∆M}, a [λ, 1]-contractive set Oλ

∞
exists for

system (16), then system (1)–(4) is asymptotically stable with a re-
gion of attraction


n∈I Xn

Nn
under admissible MDT τ

(l)
m , l ∈ Z≥1,if

τ
(l)
m ≡ ∆m, ∀l ∈ Z≥2 and τ

(1)
m satisfies

Rm
τ
(1)
m

(Xm
Nm

) ⊆ Oλ
∞

. (19)

In (19), a longer τ
(1)
m is required such that the system trajectory

can enter Oλ
∞

in one stage. The proof of Corollary 4 is similar to the
one for Theorem 3 and omitted here.

Remark 3. The determination of AS-MDT by Theorem 3 and
Corollary 4 relies on the computation of Oλ

∞
. An algorithm to

determine Oλ
∞

for given λ and 1 is given in the Appendix
(Algorithm A1) by combining the Algorithm 1 in Dehghan and Ong
(2012a) and Algorithm 1 in Dehghan and Ong (2013), where it is
noted that the constrained switched system is (16). In addition, the
minimum MDT can be found to ensure the existence of Oλ

∞
for a

given λ, and the minimumMDT set can be many (Dehghan & Ong,
2013). For the purpose that the system trajectory converges in the
shortest time, theminimumMDTwith both the smallest ∥1∥1 and
the smallest variance of 1.

The minimum F A-MDT and AS-MDT can be also determined
by a minimization procedure similar to (12).

2.3. Discussions on conservatism and computability, and testification

So far, the admissible F -MDT, F A-MDT and AS-MDT have
been obtained by using the concept of reachable sets. Two direct
questions can be raised as follows.

(i) The first question would be the conservatism of the criteria
derived above, since it can be seen that τ

(l)
m , l ∈ Z≥1, is computed

despite where the state at switching instant xkl−1 is. For instance,
if xkl−1 is close to


n∈I Xn

Nn
, it will be probably conservative for

the currently active subsystem to dwell for τ (l)
m to ensure persistent

feasibility. One can even argue that in the framework ofMPCdesign
(if state-feedback), the state is measurable, then it can be online
checked if xk ∈


n∈I Xn

Nn
. If yes, the switching can occur, then it

seems that the determination of admissibleF -MDT,F A-MDT and
AS-MDT are not needed and k − kl−1 in such cases should be the
shortest required stage MDT.

To answer this question, attention shall be first turned to the
determination of admissible state-dependent MDT (denoted as
τ

(l)
m (xkl−1), cf. the state-dependent dwell time concept defined in
De Persis et al., 2003), where the ‘‘state’’ is meant to the state at a
switching instant. To this end, a concept of extended controllable
set (ECS) for a system controlled by MPC is needed, for which the
definition of controllable sets is first given as follows.

Similar to (6) and (7), for subsystem Ωm : xk+1 = Amxk +
Bmuk, where uk is the control input designed by the MPC law, the
one-step controllable set from X ⊆ Xm

Nm
along subsystem Ωm is

denoted as

P re(X, Ωm) ,

x ∈ Xm

Nm

 Amx+ BmuMPC (Ωm, x) ⊆ X


(20)

and the H-step controllable set, Pm
H (X) is defined as

Pm
y+1(X) , P re


Pm

y (X), Ωm

, y ∈ Z[0,H−1],

Pm
0 (X) = X.

(21)
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Table 1
Π in (23) for determining state-dependent MDT.

Π (F -MDT)

Theorem 1
Xm

Nm
∩ Cm

g+(R̂
∪(τ (l)

m )), l = 1
R̂∪(τ

(l−1)
σ (kl−2)) ∩ Cm

g+(R̂
∪(τ (l)

m )), l ∈ Z≥2, τ (l)
m s.t. (9)

Corollary 1
Xm

Nm
∩ Cm

g+(


n∈I
Xn

Nn
), l = 1

(


n∈I
Xn

Nn
) ∩ Cm

g+(


n∈I
Xn

Nn
), l ∈ Z≥2

Corollary 2 Xm
Nm
∩ Cm

g+ (


n∈I Xn
Nn

), l ∈ Z≥1

Π (F A-MDT)

Thm.2
Xm

Nm
∩ Cm

g+(R̂
∪(τ (l)

m )), l = 1
R̂∪(τ

(l−1)
σ (kl−2)) ∩ Cm

g+(R̂
∪(τ (l)

m )), l ∈ Z≥2, τ (l)
m s.t. (13)

Corollary 3
Xm

Nm
∩ Cm

g+ (


n∈I
Rn

l−1(X
n
Nn

)), l = 1
n∈I

Rn
l−2(X

n
Nn

) ∩ Cm
g+ (


n∈I

Rn
l−1(X

n
Nn

)), l ∈ Z≥2

Π (AS-MDT)

Theorem 3
Xm

Nm
∩ Cm

g+(


n∈I
Rn

l−1(X
n
Nn

)), l = 1
n∈I

Rn
l−2(X

n
Nn

) ∩ Cm
g+(


n∈I
Rn

l−1(X
n
Nn

)), l ∈ Z[2,v]
λl−v−1Oλ

∞
∩ Cm

g+ (λl−vOλ
∞

), l ∈ Z≥v+1

Corollary 4
Xm

Nm
∩ Cm

g+(O
λ
∞

), l = 1
λl−2Oλ

∞
∩ Cm

g+(λ
l−1Oλ

∞
), l ∈ Z≥2

Then by (20) and (21), for a given H and a set X ⊆ Xm
Nm

, let

Cm
H+(X) ,


t∈Z
[H,Hsup

m ]

Pm
t (X) (22)

denote the extended controllable set (ECS) from which the system
state can be steered toX inH steps andwill not leaveX anymore,
where Hsup

m , max

H,min


t ∈ Z+

Rm
t (Xm

Nm
) ⊆ X


.

Based on the definition of Cm
H+(X), the state-dependent F -

MDT, F A-MDT and AS-MDT can be determined as

τ (l)
m (xkl−1) , min


g ∈ Z+

xkl−1 ∈ Π


(23)

where Π is denoted in Table 1 for different criteria obtained
above.

The state-dependent MDT indicates how long it will take for
the state xkl−1 at switching instants to ensure the feasibility,
attractivity and asymptotic stability. It can be seen from (23)
that state-dependent F -MDT requires online judgement for the
states at switching instants and offline computation of ECSs of
either R̂∪(τ

(l)
m ) or


n∈I Xn

Nn
as a targeting region. For state-

dependent F A-MDT or AS-MDT, the targeting region should
be a set contracting at each stage of switching. An additional
online record on switching stages is therefore also required. These
requirements will cause additional operation burden and may not
be desirable for some practical applications with shorter sampling
interval. Besides, even though the conservatism of non-state-
dependent MDT are reduced, i.e., the required dwell time for each
stage of switching can be shorter, the resulting system behavior
may be accordingly deteriorated, such as oscillations of the state
response.

The shortcomings of online judgements in the determination
of state-dependent MDT will also exist in the case that the
switching occurs immediately after judging that xkl belongs to the
intersection of Xn

Nn
(or a tighter one for convergence) as described

in the question.
(ii) The second question could be the testability of the explored

criteria, since all the conditions are based on the computability of
either the reachable sets of feasible region or the ECSs of inner sets
of feasible region.
The admissibleMDTdetermined above, either stage or constant,
either non-state-dependent or state-dependent, are theoretically
applicable to switched systems that can be with high state dimen-
sions, non-polytopic constraints on control input and system state.
The testification of such conditions can be prohibitively difficult in
general. However, for those systems for which the explicit MPC can
be employed (explicit affine control laws are offline determined
within their respective critical regions partitioning the feasible re-
gion, cf. Borrelli, Baotic, Pekar, & Stewart, 2010), the testification
can be relatively tractable. The computation of reachable sets or
ECSs in these conditions will involve manipulations on these criti-
cal regions including the intersection and union among them, and
certain sets addition and multiplication.

The theoretical results in Section 2.2, together with the above
discussions, are demonstrated in the following illustrative example
of a population ecological system.

Example 1. Consider an ecological system consisting of two types
of population P1 and P2, and suppose the situated environment be
subject to autonomous switching between two scenarios E1 and
E2. Let the number of individuals in population Pi be denoted by
Ni, i = 1, 2. The basicmathematical principle of growth ofNi is the
logistic equation described by (cf. Vandermeer & Goldberg, 2003)

Ṅi = a(σ )
i Ni(1− Ni/K

(σ )
i ) (24)

where a(σ )
i is the maximum per-capita rate of change of Pi, and

K (σ )
i is the carrying capacity of the population in environment Eσ ,

σ = 1, 2. Namely, the rate of change in the population Pi (i.e., Ṅi)
is equal to growth a(σ )

i Ni that is limited by carrying capacity (1 −
Ni/K

(σ )
i ). Assume K (σ )

i be approximately proportional to Ni within

[M(σ )
i , M

(σ )

i ], the range of Ni in Eσ , i.e., K
(σ )
i = (1/ρ(σ )

i )Ni. Then
include the mutual influence between P1 and P2, and the effect of
immigration and emigration (denoted by Ig,i and Eg,i, respectively)
on Ni (Turchin, 2001), the Eq. (24) is extended here as, ∀i ≠ j

Ṅi = a(σ )
i Ni(1− ρ

(σ )
i )+ b(σ )

ij Nj + c(σ )
i (Ig,i − Eg,i) (25)

where b(σ )
ij is a transfer coefficient modeling the mutual influence

of N1 and N2, and c(σ )
i the effect of immigration and emigration

on Ni in different Eσ . Set the quaternary (a(σ )
i , ρ

(σ )
i , b(σ )

ij , c(σ )
i ) as

(0.2, 2,−1, 0), i = 1, σ = 1, (0.3, 2, 1, 1), i = 2, σ =
1, (0.4, 0.5, 0.5, 0), i = 1, σ = 2, and (0.4, 0.5, 0, 0.5), i =
2, σ = 2, and it is supposed that [M(1)

1 , M
(1)
1 ] = [2000, 6000],

[M(1)
2 , M

(1)
2 ] = [1000, 5000], [M

(2)
1 , M

(2)
1 ] = [2400, 5600] and

[M(2)
2 , M

(2)
2 ] = [1400, 4600]. Let x = [N1 N2]

Tdenote the
system states, and regard the difference between immigration and
emigration of P2 as control input to system, i.e., u = Ig,2− Eg,2, the
discrete-time state-space expression for themodel can be obtained
as (1) with B1 = [0 1]T , B2 = [0 0.5]T and

A1 =


0.8 −1
1 0.7


, A2 =


1.2 0.5
0 1.2


by the first-order Euler approximation with the sampling period
Ts = 1 (time unit). Suppose the control constraint be Um =
u ∈ R1 |−400 ≤ u ≤ 400


, m = 1, 2.

The purpose of the example is to design a switched MPC to
regulate N1 and N2 to the equilibrium (4000, 3000) against the
autonomous variation of Eσ . The demanded minimum admissible
MDTwill be determined aswell. Note that if the practicalMDTs are
less than the ones solved, the feasible region will shrink and the
corresponding derivations and testification will be given in next
subsection.
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(a) F -MDT case. (b) SD F -MDT case. (c) AS-MDT case. (d) SD AS-MDT case.

Fig. 2. Amount of two individuals versus time in the population ecological system with different MDT switching, where the MDT (computed by different criteria) needed
for the switching signals in the subfigures are shown in Table 2.
Table 2
Minimum admissible MDT determined by different criteria.

Criteria F -MDT

Corollary 1 τ
(1)
1 = 4, τ (1)

2 = 9; τ (l)
1 = 3, τ (l)

2 = 8, ∀l ≥ 2

Corollary 2 τ 1 = 4, τ 2 = 9

Criteria AS-MDT

Theorem 3

τ
(1)
1 = 4, τ (1)

2 = 9; τ (2)
1 = 3, τ (2)

2 = 8
τ

(3)
1 = 3, τ (3)

2 = 8; τ (4)
1 = 3, τ (4)

2 = 8
τ

(5)
1 = 2, τ (5)

2 = 7; τ (6)
1 = 3, τ (6)

2 = 6
τ

(7)
1 = 3, τ (7)

2 = 1; τ (l)
1 = 2, τ (l)

2 = 1, ∀l ≥ 8

Corollary 4 τ
(1)
1 = 8, τ (1)

2 = 11; τ (l)
1 = 2, τ (l)

2 = 1, l ≥ 2

For both subsystems, consider the quadratic stage and terminal
cost functions Lm(x, u) , xTQmx + uTRmu, Tm(x) , xTPmx with
weights Qm, Rm and prediction horizon Q1 = 10I, Q2 = 5I, Rm =

1, Nm = 5, m = 1, 2. The terminal weight matrices Pm and
the feedback control laws Km(x) , K LQR

m x, ∀x ∈ Tm are obtained
for each subsystem as described in Rawlings and Mayne (2009,
Chapter 2.5) such that Assumption 2 holds. The terminal set Tm is
considered to be the maximal constraint admissible set for each
subsystem in closed-loop with uk = K LQR

m xk.
Since the admissible MDT satisfying either Theorem 1, Theo-

rem 2, or Corollary 3 needs to be computed for an infinite num-
ber of stages of switching, the verification here only considers the
other four criteria that are more practical. The computation of the
feasible region Xm

Nm
of each subsystem Ωm, reachable or control-

lable sets, and ECSs are based on MPT (Kvasnica, Grieder, & Baotić,
2006).

Table 2 lists the computation data of F -MDT by Corollaries 1
and 2 and AS-MDT by Theorem 3 and Corollary 4. respectively,
where the minimum MDT such that Oλ

∞
exists for system (16)

in Theorem 3 and Corollary 4 can be found as ∆1 = 2 and
∆2 = 1 based on Algorithm A1 for λ = 0.9. The solved
F -MDT or AS-MDT for each subsystem (independent of the
system state, but dependent on the stage of switching) only need
finite times of computation. Further, given initial condition xT0 =
[4000 3700],the state-dependent F -MDT and AS-MDT can be
obtained by (23). By considering the running time equivalent to
dwell time at each stage of switching, the resulting switching
signals and the corresponding state response in different cases
are given in Fig. 2. In Fig. 2(a), the system behaves very well
(comparable to Fig. 2(c)), which actually results from the fact that
all the used F -MDT are no less than the required AS-MDT, see
Table 2. It can be also observed from Table 2 and Fig. 2 that the
state-dependent F -MDT or AS-MDT reduces the conservatism
(make the admissible MDT shorter), but they lead to a greater
oscillation of the state response. In addition, the oscillation in
Fig. 2(b) is more serious than the one in Fig. 2(d), which shows
that the state-dependent F -MDT does not necessarily lead to a
convergence of the system trajectory.

2.4. Determination of AS-FR

In this subsection, for a given constant MDT set τgiv ,

{τ
giv
1 , τ

giv
2 , . . . , τ

giv
M }, the feasible region in which the MPC design

for system (1)–(4) is persistently feasible, i.e., the F -FR is first
determined, then the results are further extended to AS-FR (in
which the underlying system is asymptotically stable for τgiv).

Since for the case τ
giv
m ≥ τ

(1)
m , ∀m ∈ I, where τ

(1)
m can be

obtained from Section 2.2 (e.g., by (8) and (12)), the feasible region
of the switched system can be directly obtained as


m∈I Xm

Nm
.

Therefore, in what follows, attention is only placed on a givenMDT
that satisfies τ

giv
m < τ

(1)
m .

Proposition 1. Consider system (1)–(4) with feasible region of
subsystem Ωm being Xm

Nm
, ∀m ∈ I, and MDT τ

giv
m being given,

∀m ∈ I. Suppose that Assumptions 1–2 hold and there exists a set
of Wm ∈ Z+, m ∈ I such that

Rm
Wm+τ

giv
m

(Xm
Nm

) ⊆

n∈I

Rn
Wn

(Xn
Nn

). (26)

Then the MPC design for system (1)–(4) is persistently feasible
within the feasible region FMDT {τ

giv
} =


m∈I F m

MDT {τ
giv
m } with

F m
MDT {τ

giv
m } = Rm

Wm
(Xm

Nm
).

Proof. Suppose that the current subsystem is Ωm (σ (kl) = m, l ∈
Z+). By Assumption 2, the positive invariance of reachable sets
of Xm

Nm
implies that Rm

Wm
(Xm

Nm
) ⊆ Xm

Nm
for a Wm ∈ Z+. From

(26), ∀n ∈ I, n ≠ m, Rm
Wm+kl+1−kl

(Xm
Nm

) ⊆ Rm
Wm+τ

giv
m

(Xm
Nm

) ⊆

Rn
Wn

(Xn
Nn

) ⊆ Xn
Nn

holds, which means that the switching after
τ
giv
m is admissible for all of the states within the region Rm

Wm
(Xm

Nm
).

Therefore, in terms of persistent feasibility, the whole feasible
region for the switched system (1)–(4) will be FMDT {τ

giv
} =

m∈I Rm
Wm

(Xm
Nm

). �

If the running time is exactly the given τ
giv
m , then the maximal

feasible region FMDT {τ
giv
} based on Proposition 1 can be obtained

by solving the minimization procedure

W ∗m , minWm, forWm ∈ Z+, subject to (26). (27)

As the running time is generally greater than τm, the corresponding
feasible region will contain FMDT {τ

giv
}. Unlike (12), both the left-

hand side and right-hand side in (26) contain the optimizer. An
algorithm is then needed as below to find W ∗m by increasing Wm
by one.
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(a) By Algorithm 1. (b) By Algorithms 1 and 2.

Fig. 3. F -FR for given MDT.
Table 3
Different pairs of (W ∗1 ,W ∗2 ) for given different τ1 and τ2 .

τ2 ≤ 4 τ2 = 5 τ2 = 6 τ2 = 7 τ2 = 8

τ1 = 1 (−,−) (−,−) (5, 4) (4, 3) (4, 2)
τ1 = 2 (−,−) (5, 5) (4, 4) (3, 3) (2, 1)
τ1 = 3 (−,−) (4, 5) (2, 3) (2, 2) (1, 1)

Algorithm 1. Determination of F -FR based on Proposition 1 (Input: τ
giv
m ,

τ
(1)
m , Xm

Nm
, ∀m ∈ I)

(i) Initialization: Compute the minimum admissible MDT τ
(1)
m (can be obtained

by (8) and (12)), and setWm = τ
(1)
m − τ

giv
m for each m.

(ii) Compute Rm
Wm

(Xm
Nm

), Rm
Wm+τ

giv
m

(Xm
Nm

), and permutate the judgement

conditions given by (26) (m conditions).
(iii) Check if (26) holds for each m. If yes, exit and output FMDT {τ

giv
} =

m∈I Rm
Wm

(Xm
Nm

). Otherwise, among the remaining 2m
− 1 cases (mutually

exclusive), pick the matched case out and denote If , {m ∈ I|Rm
Wm+τ

giv
m

(Xm
Nm

) *


n∈I Rn
Wn

(Xn
Nn

)} in the case. SetWm = Wm+1 for eachm ∈ If , and
goto Step (ii).

Example 2. Consider Example 1 for given constant MDT, and with
different constraints on control input as U1 =


u ∈ R1

 − 340 ≤
u ≤ 340


, U2 =


u ∈ R1

 − 600 ≤ u ≤ 600

. Other parameters

used for the switched MPC design are the same as in Example 1.

Based on Corollary 1, the minimum admissible F -MDT can be
solved as τ

(1)
1 = 4, τ (1)

2 = 9, and τ
(l)
1 = 3, τ (l)

2 = 8, l ∈ Z≥2.
Then for given different MDT τ

giv
1 ≤ 3, τ giv

2 ≤ 8, by Algorithm 1,
the different pairs of W ∗1 ,W ∗2 can be obtained by (27) as shown
in Table 3, where ‘‘−’’ indicates that W ∗m does not have a feasible
solution (i.e., the algorithm is not convergent in the cases). Fig. 3(a)
shows the feasible region FMDT {τ

giv
1 = 3, τ giv

2 = 8}.
In Fig. 3(a), since τ

giv
1 = 3 = τ

(2)
1 and τ

giv
2 = 8 = τ

(2)
2 , the whole

n=1,2(X
n
Nn

) should beF -FR. However, it can be seen that some of
n=1,2(X

n
Nn

) does not belong to F -FR computed by Algorithm 1.
The contradictionmeans that it is actually incomplete to determine
F -FR only using Algorithm 1 developed by Proposition 1.

By the definition of Cm
H+(X) in (22), the following theorem

presents a criterion for development of an algorithm capable of
determining a complete F -FR.

Lemma 1. Consider system (1)–(4)with feasible region of subsystem
Ωm being Xm

Nm
, ∀m ∈ I, and the MDT τ

giv
m being given,

∀m ∈ I. Suppose F m
MDT {τ

giv
m } is a F -FR of subsystem Ωm, so is

Cm
(τ

giv
m )+

(


m∈I F m
MDT {τ

giv
m }).

Proof. To show aΨm ⊆ Xm
Nm

is aF -FR for subsystemΩm for given
MDT τ

giv
m , it suffices to show thatRm

t (Ψm) ⊆


m∈I Ψm, ∀t ∈ Z
≥τ

giv
m

(within


m∈I Ψm, the stability is ensured as shown in part (ii) of
the proof for Theorem 1). By definition of Cm

H+(X), it follows that,
∀t ∈ Z

≥τ
giv
m

Rm
t


Cm

(τ
giv
m )+


m∈I

F m
MDT {τ

giv
m }


⊆


m∈I

F m
MDT {τ

giv
m }

⊆


m∈I

Cm
(τ

giv
m )+


m∈I

F m
MDT {τ

giv
m }


(28)

i.e., Cm
(τ

giv
m )+

(


m∈I F m
MDT {τ

giv
m }) is F -FR of system (1)–(4). The 2nd

‘⊆’ of (28) holds due to F m
MDT {τ

giv
m } ⊆ Cm

(τ
giv
m )+

(


m∈I F m
MDT {τ

giv
m }),

which holds because F m
MDT {τ

giv
m } is a F -FR for given τ

giv
m , i.e., ∀t ∈

Z
≥τ

giv
m

, Rm
t (F m

MDT {τ
giv
m }) ⊆


m∈I F m

MDT {τ
giv
m }. �

Then, based on Lemma 1, by iterating the starting F -FR in
Cm

(τ
giv
m )+

(·), the algorithm to determine the complete F -FR is as

follows:

Algorithm 2. Determination of a complete F -FR (Input: τ giv
m , Xm

Nm
, an initial

F -FR Ψm,∀m ∈ I)

(i) Initialization: Set k = 1 and F
m,(k)
MDT {τ

giv
m } = Ψm .

(ii) Set k = k + 1. Update F
m,(k)
MDT {τ

giv
m }, ∀m ∈ I by F

m,(k)
MDT {τ

giv
m } = Cm

(τ
giv
m )+

(


m∈I F
m,(k−1)
MDT {τ

giv
m }).

(iii) If F
m,(k)
MDT {τ

giv
m } ≡ F

m,(k−1)
MDT {τ

giv
m }, exit and output FMDT {τ

giv
m } =


m∈I

F
m,(k)
MDT {τ

giv
}; else goto Step (ii).

Example 3. Consider Example 2 with τgiv
= {3, 8}.

Set the initial F -FR Ψm to be that yielded by Algorithm 1. By
Algorithm 2, the complete F -FR can be obtained as shown in
Fig. 3(b).

Remark 4. Algorithm 2 is convergent as the set sequence {


m∈I

F
m,(k)
MDT {τ

giv
m }, k ∈ Z+} is non-contractive and bounded above from

n∈I Xn
Nn
, but it lies on the existence of the initial F -FR Ψm that

can be determined by Algorithm 1. However, as demonstrated in
Example 2, for some small τ giv

m , Algorithm 1may not be convergent
(e.g., τ giv

1 = τ
giv
2 = 3), due to both iterations of increasing Wm

and Wn by one simultaneously in (26), and accordingly cannot
give an initial F -FR Ψm to Algorithm 2. Note that such a case
cannot yet conclude that the F -FR of system (1)–(4) does not
exist. Specifically, since in Example 2 a [0.9, {τ1 = 2, τ2 = 1}]-
contractive set Oλ

∞
can be found for system (16), then at least the

Oλ
∞

is a F -FR (actually a AS-FR). Therefore, for τ
giv
m ≥ ∆m, the

initial F -FR Ψm can be changed to Oλ
∞

as a start if using quadratic
stage cost and setting Tm(x) = VUC

∞
(Ωm, x) for the system. The

setup can give rise to the determination of AS-FR as proposed
below.
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Proposition 2. Consider system (1)–(4) with the feasible region of
subsystem Ωm being Xm

Nm
, ∀m ∈ I and MDT τ

giv
m being given.

Suppose that Assumptions 1–2 hold, the stage cost is quadratic,
Tm(x) = VUC

∞
(Ωm, x) and the associated controller gain within

Tm is Km. If under a MDT set 1 , {∆1, ∆2, . . . , ∆M} with
τ
giv
m ≥ ∆m, a [λ, 1]-contractive set Oλ

∞
exists for system (16), then

system (1)–(4) is asymptotically stable within a AS-FR that is formed
by FMDT {τ

giv
} outputted from Algorithm 2 in which Ψm = Oλ

∞
.

By referring to Theorem 3, the proof of Proposition 2 is rather
straightforward since FMDT {τ

giv
} contracts to Oλ

∞
under MDT τ

giv
m ,

which is implied by Algorithm 2. In addition, by definition of ECSs
in (22), it can be concluded that FMDT {τ

giv
} will be enlarged if

increasing τ
giv
m . Setting Ψm = Oλ

∞
in Algorithm 2, The verifications

can be readily obtained and omitted here.

3. The case of systems with bounded disturbance

This section aims to establish switched tube-based MPC
methodology. More specifically, when the system is involved with
disturbance, a switched tube (its cross section is of different size for
different subsystem) will be determined, by which the two issues
of determining admissible MDT and admissible feasible region for
given MDT can be coped with. Consider system (1) with additive
disturbance as

(Φσ(k)) : x̃k+1 = Aσ(k)x̃k + Bσ(k)ũk + wk (29)

where wk ∈ W ⊆ Rnx ; W is a compact polyhedral set containing
the origin in its interior. The system state and control constraints in
(2) are rewritten as X̃m and Ũm, respectively. The initial state x̃0 =
x0 is considered. For system (29), the tube-based MPC strategy
(Mayne et al., 2005) is adopted with

ũk = uk + K u
σ(k)(x̃k − xk) (30)

where K u
m is a controller gain such that Ām = Am+BmK u

m, ∀σ(k) =
m ∈ I satisfies ρ(Ām) < 1, and uk is the control input to nominal
system (1). The error system between (1) and (29) satisfies

(Ξσ(k)) : ek+1 = Āσ(k)ek + wk (31)

where ek , x̃k−xk. Suppose a robust positive invariant (RPI) set2 Em
exists for each subsystemΞm, so that uk can be obtained by solving
the regular MPC optimization procedure (3) with the constraints
tightly updated by

Xm = X̃m ⊖ Em, Um = Ũm ⊖ K u
mEm. (32)

The feasible region of system (29)Xm
Nm

will shrink compared to the
nominal one without the disturbance.

In tube-based MPC design for non-switched systems (Mayne
et al., 2005), the Em is adopted as the minimum RPI set as Sm(∞) ,
∞

i=0 Ā
i
mW. Due to the switching dynamics, however, Sm(∞) is

not competent any more since generally Sm(∞) is not the robust
invariant set for subsystem Ξn, ∀n ∈ I, n ≠ m. In this paper,
a generalized RPI set for each Ξm is used, which requires the
concepts of the MDT RPI set and the reachable set for switched
system (31) as below.

Definition 6 (Dehghan&Ong, 2012b).A setΘ(η) ⊂ Rn is said to be
aMDT RPI set for system (31)withMDT set η , {η1, η2, . . . , ηM}, if
e0 ∈ Θ(η) implies ek ∈ Θ(η) for every admissible switching Sη(k)
and for wt ∈ W, t ∈ Z[1,k−1].

2 A set O ⊆ X ⊆ Rnx is said to be a robust positive invariant (RPI) set for
autonomous system xk+1 = f (xk, wk), xk ∈ X, wk ∈ W if xk ∈ O implies xt ∈ O for
any wt ∈ W, t ∈ Z≥k+1 .
Remark 5. An algorithm (Algorithm A2 in the Appendix) to
determine the MDT RPI set Θ(η) for a switched linear system
can be developed by extending Algorithm 1 in Dehghan and Ong
(2012b) to the context of MDT switching (Dehghan & Ong, 2013).
It can be concluded from both (Dehghan & Ong, 2012b, 2013) that
the minimumMDT such that Θ(η) exists for system (31) are those
such that system (31) is asymptotically stable. SuchminimumMDT
can be many, among which this paper considers the minimality in
the sense that the MDT are with both the smallest ∥η∥1 and the
smallest variance of η, similar to Remark 3.

Let one-step reachable set of X along subsystem Ξm, LRm
1 (X)

bedenoted asLRm
1 (X) , {Āmx+w : x ∈ X, w ∈ W} = ĀmX⊕W,

the H-step reachable set LRm
H (X) is defined as LRm

y+1(X) ,

LRm
1


LRm

y (X)

, y ∈ Z[0,H−1], where LRm

0 (X) , X. Thus
LRm

H (X) = ĀH
mX⊕ ĀH−1

m W⊕ · · · ĀmW⊕W.
Since theMDTRPI setΘ(η) is characterizedwithLRm

s (Θ(η)) ⊆
Θ(η),∀s ∈ Z≥ηm (cf. Dehghan and Ong (2012b) for more details),
the generalized RPI set Em used in tube-based MPC for each Ξm is
defined as

Em , co{LRm
ηm−1(Θ(η)), LRm

ηm−2(Θ(η)), . . . , Θ(η)} (33)

from which it holds that, for any ek ∈ Θ(η) ⊆ Em, et ∈ Em, t ∈
Z≥k+1.

Let the distance of vector x to set E, x ∈ Rn, E ⊂ Rn, be denoted
by ∥x∥E , infy∈E ∥x− y∥. The following definition is needed by
extending the origin in Definition 4 to a positive invariant set, cf.,
Rawlings and Mayne (2009).

Definition 7. Consider system (29)–(30), (32)–(33), (3)–(4) with
each the feasible region of subsystem Φm being Xm

Nm
, a RPI set

E ⊂ Rn is said to be asymptotically stable in


m∈I Xm
Nm

, if E is
stable, i.e., ∀k ∈ Z+,

x̃kE ≤ α
x̃0E, where α ∈ K and

attractive, i.e.,
x̃kE → 0 as k→∞, in


m∈I Xm

Nm
.

The objectives of this section include: (i) Determine the
admissible MDT such that the uncertain closed-loop switched
system (29)–(30), (32)–(33), (3)–(4) is asymptotically stable in the
sense of Definition 7. Such MDT are denoted concisely as RAS-
MDT; (ii) Given MDT, find the feasible region such that (4) can be
persistently solved and the underlying uncertain switched system
is asymptotically stable, denoted as RAS-FR.

Also, this subsection first determines the admissible MDT
such that the MPC design for the uncertain switched system is
persistently feasible (denoted as RF -MDT), and the underlying
uncertain system is attractive besides the persistent feasibility
(RF A-MDT). Let η , {η1, η2, . . . , ηM} and E∪ ,


m∈I Em.

Proposition 3. Consider systems (1) and (29). Suppose that Assump-
tions 1–2 hold, a MDT RPI set Θ(η) exists for error system (31).
Then, ∀m ∈ I, if τm ∈ Z+ satisfies (11) in which Xm

Nm
is

determined by (3), (32) and (33), then the MPC design for sys-
tem (29)–(30), (32)–(33), (3)–(4) is persistently feasible with admis-
sible MDT θm , max(τm, ηm).

Proof. ByAssumption 2,within each subsystemΦm, the persistent
feasibility holds due to the fact Xm

Nm
⊕ Em ⊆ X̃m. According to

Corollary 2, θm ≥ τm ensuring (11) is admissible for the switching
of the nominal system. As ηm guarantees the existence ofΘ(η) that
belongs to


n∈I En owing to (33), it is also ensured that for any

ekl−1 ∈ Θ(η) ⊆ Em, ekl ∈ Θ(η) ⊆ En holds, l ∈ Z≥1,∀m × n ∈
I × I, m ≠ n, as long as kl − kl−1 ≥ θm ≥ ηm. Therefore, since
ek0 = x̃0 − x0 = 0 ∈ Θ(η), the persistent feasibility remains at all
kl, l ∈ Z+. �
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Note that the obtained θm is not necessarilyminimal although it
is admissible. An algorithm to determine the minimum RF -MDT
can be developed as follows.

Algorithm 3. Determination of RF -MDT based on Proposition 3 (Input:
ηm, Ām, ∀m ∈ I, W)

(i) Define η(k) := {η
[+(k−1)](η)} with η(k),r := {η1,(k),r , η2,(k),r , . . . , ηM,(k),r }

denoting the r th element of η(k) , and define Uk := Z[1,card{η(k)}] . Set k = 1, r =

1, and η(k),r = η. Compute Θ(η(k),r ) based on Algorithm A2 and E(k)
m,r by

(33),∀m ∈ I.
(ii) Update the constraints Xm = X̃m ⊖ E(k)

m,r and the feasible region Xm
Nm

by solving (3), and compute the τm based on (11) and (12); set θm,(k),r :=

max(τm, ηm,(k),r ),∀m ∈ I.
(iii) If ηm,(k),r = mini∈Z[1,k],v∈Ui θm,(i),v , then exit and output θm =

mini∈Z[1,k],v∈Ui θm,(i),v and ηm = ηm,(i),v |(i, v) = arg(mini∈Z[1,k],v∈Ui θm,(i),v),

∀m ∈ I; else check if r = 1, set k = k + 1, r = card{η(k)}; else set r = r − 1.
Update Θ(η(k),r ) and E(k)

m,r ,∀m ∈ I and goto step (ii).

Though Proposition 3 and Algorithm 3 are proposed not
allowing for the MDT to be a stage one, the obtained MDT can
be considered as θ

(1)
m which is same in all the criteria given in

Section 2.2 (except Corollary 4). Meanwhile, the feasible region
Xm

Nm
is therefore fixed, upon which the stage RF -MDT, RF A-

MDT and RAS-MDT θ
(l)
m , l ∈ Z≥2 can be derived while using

different criteria in Section 2.2. The following proposition presents
a case for RF A-MDT.

Proposition 4. Consider systems (1) and (29). Suppose that Assump-
tions 1–2 hold, the MDT RPI set Θ(η) for error system (31) be deter-
mined by the ηm outputted from Algorithm 3 . If θ

(1)
m is determined

by Algorithm 3 and τ
(l)
m ∈ Z+, l ∈ Z≥2 satisfies (13), in which

Xm
Nm

is determined by (3) and (32)–(33), then set E∪ is attractive in
m∈I Xm

Nm
, for system (29)–(30), (32)–(33), (3)–(4) with admissible

MDT θ
(l)
m , max(τ (l)

m , ηm), l ∈ Z+.

The proof of Proposition 4 can be done by combining the proofs
for Proposition 3 and Theorem 2 (note that

x̃kE∪ , d(x̃k, E∪) =
d(xk + ek, E∪) ≤ d(xk + ek, ek) = ∥xk∥, thus

x̃kE∪ → 0 if
∥xk∥ → 0). Replacing (13) by (9), (10) and (14) can give different
corollaries for determination of RF -MDT or RF A-MDT similar
to the counterpart in Section 2.2. Likewise, the RAS-MDT can be
determined as follows.

Theorem 4. Consider systems (1) and (29). Suppose that Assump-
tions 1–2 hold, the MDT RPI set Θ(η) for error system (31) be de-
termined by the ηm outputted from Algorithm 3 , the stage cost
is quadratic, Tm(x) = VUC

∞
(Ωm, x), the associated controller gain

within Tm be Km, and a [λ, 1]-contractive set Oλ
∞

exists for sys-
tem (16), where 1 , {∆1, ∆2, . . . , ∆M}. If θ

(1)
m is determined by

Algorithm 3 and τ
(l)
m ∈ Z+, l ∈ Z[2,v] satisfies (17) in which

Xm
Nm

is determined by (3) and (32)–(33), then set Ē , E∪ ×
{0} is asymptotically stable in


m∈I Xm

Nm
, for the composite sys-

tem (1), (29)–(30), (32)–(33), (3)–(4) with admissible MDT θ
(l)
m =

max(τ (l)
m , ηm), l ∈ Z[1,v] and θ

(l)
m = max(ηm, ∆m), l ∈ Z≥v+1,

where v satisfies (17).

Proof. Both persistent feasibility and attractivity can be proved
by combining the proofs for Proposition 3, Theorems 2 and 3. The
same line of the proof for Proposition 3.15 in Rawlings and Mayne
(2009) is used here to demonstrate the stability of the compos-
ite switched system. With the requirement on θ

(l)
m , by Theorem 3,

the nominal switched system is stable, i.e., ∥xk∥ ≤ α
xk0,

where α ∈ K . Since x̃k = xk + ek, where ek ∈ E∪ =
m∈I Em, it holds that

x̃kE∪ = d(xk + ek, E∪) ≤ d(xk +
ek, ek) = ∥xk∥ ≤ α
xk0. Denote (x̃k, xk) ,

x̃k +
∥xk∥, it follows that the extended state (x̃k, xk) of the compos-
ite system satisfies

(x̃k, xk)Ē = infỹ∈E∪
(x̃k, xk)− (ỹ, 0)

 =
infỹ∈E∪

(x̃k − ỹ, xk)
 = infỹ∈E∪

x̃k − ỹ
 + ∥xk∥ = x̃kE∪ +

∥xk∥ ≤ 2α
xk0 ≤ 2α

x̃k0E∪ + xk0
= 2α

x̃k0 , xk0Ē, whichmeans that set Ē is stable for the com-
posite system in the sense of Definition 7. �

A similar extension from Theorem 3 to Corollary 4 is also
applicable to Theorem 4 to realize entering Oλ

∞
within one stage,

i.e., Rn
τ
(1)
m

(Xm
Nm

) ⊆ Oλ
∞
; the corresponding corollary is omitted.

Moreover, the state-dependent RF -MDT, RF A-MDT and
RAS-MDT can be further determined as θ

(1)
m (xk0) = τ

(1)
m (xk0)

and θ
(l)
m (xkl−1) = max(τ (l)

m (xkl−1), ηm), l ∈ Z≥2, where τ
(l)
m (xkl−1)

is determined in (23). Note that θ
(1)
m (xk0) can be less than ηm

(outputted from Algorithm 3), since ∀t ∈ Z[1,ηm], et ∈ Sm(ηm) ,ηm
t=1 Ā

t−1
m W ⊆ Θ(η) ⊆ Em due to e0 = 0.

Remark 6. Compared with the existing tube-based MPC method-
ology for non-switched systems, it can be seen that the generalized
RPI set Em can be regarded as a mode-dependent cross section of a
‘‘switched’’ tube within Φm, and the cross section of this switched
tube at switching instants reduces to Θ(η).

Remark 7. In the above results, the feasible region is fixed at the
first stage of switching while minimizing θ

(1)
m by Algorithm 3 such

that θ
(l)
m , l ∈ Z≥2 can be further determined. Note that further

increasing ηm corresponding to the minimum of θ
(1)
m with η[+z]

likely decrease θ
(2)
m and so on, based on the idea of Algorithm 3.

However, such a way may not ensure the persistent feasibility,
i.e., for a ekl−1 ∈ Θ(η) ⊆ Em (derived from η), it is possible that
ekl−1 ∉ Θ(η[+z]) which may give rise to ek ∉ En (derived from
η[+z]), k ∈ [kl−1, kl], l ∈ Z≥1,∀m×n ∈ I×I,m ≠ n, even though
kl − kl−1 ≥ θ

(l)
m ≥ η[+z]m , cause that ekl + xkl ∈ X̃n fails at kl.

Example 4. Consider the system in Example 2 with bounded
additive disturbance. The original model (25) becomes Ṅi =

a(σ )
i Ni(1−ρ

(σ )
i )+b(σ )

ij Nj+c(σ )
i (Ig,i−Eg,i)+w. Suppose ∥w∥∞ = 1.

The purpose of this example is to illustrate the switched
tube-based MPC methodology proposed above via Theorem 4.
Other criteria to determine RAS-MDT and their state-dependent
versions can be shown in a similar vein.

Let K u
m = K LQR

m , based on Algorithm A2, the MDT set such that
Θ(η) exists can be solved as η = {2, 1}. Then by Algorithm 3, the
minimum of θ

(1)
m is obtained as θ

(1)
1 = 4, θ (1)

2 = 8; meanwhile,
three different MDT sets of η corresponding to the minimum of
θ

(1)
m are outputted, {2, 1} , {2, 2} , {2, 3}, respectively. Consider the

minimality of admissible MDT, the set η = {2, 1} is continuously
used to fix the feasible region Xm

Nm
(updated by (3), (32) and (33)),

such that theRAS-MDT θ
(l)
m , l ≥ 2 can be computed by Theorem4.

Note that Oλ
∞

in Theorem 4 is also updated since Tm (the maximal
constraint admissible set for each subsystem in closed-loop with
uk = K LQR

m xk) is updated, and the minimum MDT set 1 such that
Oλ
∞

exists can be found as 1 = {2, 1} by Algorithm A1.
Consider initial condition xT0 = [4400 3500], and the running

time being equivalent to dwell time at each stage of switching,
Fig. 4 shows the state trajectory of the nominal system and tube
evolution from E1 = co{LR1

1(Θ(η)), Θ(η)} at the first stage of
switching to E2 = co{Θ(η)} = Θ(η) at the second stage. The
later evolutions are omitted for clarity of illustration. Generating
disturbance with ∥w∥∞ = 1 randomly until k = 104, Case I
in Fig. 5 shows the position of the practical states at switching
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Fig. 4. State trajectory of the nominal system and tube evolution from E1 to E2
under RAS-MDT.

Fig. 5. Theprojection of state trajectories into a same coordinatewhere the origin is
the center of E1 and E2 , for given random disturbance with different bounds. ‘‘SW1’’
and ‘‘ST1’’ (or ‘‘SW2’’ and ‘‘ST2’’) stand for the state of subsystem 1 (or subsystem 2)
at switching instants and during the stage of switching, respectively.

instants and within the stage of switching, being projected into a
same coordinate where the origin is the center of the two tubes.
Further, consider random disturbance with disturbance bounds
∥w∥∞ = 2, 5 and 10, respectively, the corresponding cases are
also shown in Fig. 5. Clearly, for three cases of ∥w∥∞ = 1, ∥w∥∞ =
2, and ∥w∥∞ = 5, the system states at switching instants can be
kept within Θ(η) and the states during the stage of switching are
inside E1 or E2 as well, showing that the computed RAS-MDT is
admissible and the design of switched tube-based MPC is valid.
Nevertheless, it can be seen fromboth Cases II and III that the states
are also inside the tube even for a larger bound on the disturbance
than the prescribed bound,which indicates the conservatismof the
adopted tube due to switching dynamics.

Finally, the RF -FR can be further obtained by determining the
F -FR for the nominal system for given MDT τ

giv
m . One additional

issue is that Xm
Nm

varies with different Em which is linked to
Θ(η) when η varies. Therefore, to obtain a complete RF -FR, it is
necessary to check if a F -FR exists at each step of decreasing τ

giv
m

with (τgiv)[−1](η) till the minimum MDT such that Θ(η) exists for
system (31). Here, only the case of τ

giv
m ≥ ηm is concerned. Then,

the RF -FR will be the union of all the F -FR, in which each F -
FR is associated with its own MPC law (i.e., uk is different since Em
in (32) used in the MPC optimization is different). In the case that
more than one F -FR with different Em cover a same state xk, then
uMPC (Ωm, xk) can be computed based on any one of them.

The above considerations, together with Algorithms 1 and 2 in
Section 2.4, yield an algorithm to determine RF -FR for system
(29) as below.

Algorithm 4. Determination of RF -FR (Input: τ giv
m , ηm, Ām,∀m ∈ I, W)

(i) Define δ(k) := {(τ
giv)[−(k−1)](η)} with δ(k),r := {δ1,(k),r , δ2,(k),r , . . . , δM,(k),r }

denoting the r th element of δ(k) . Set k = 1, r = 1 and δ(k),r = τ giv . Compute
Θ(δ(k),r ) by Algorithm A2 and E(k)

m,r by (33),∀m ∈ I; set FMDT {τ
giv
} = ∅.

(ii) Update the new constraints Xm = X̃m ⊖ E(k)
m,r and the feasible region Xm

Nm

by solving (3).
(iii) Compute τm based on (11) and (12). Check if τm ≥ δm,(k),r , compute
F m

MDT {δm,(k),r }, ∀m ∈ I, by Algorithm 2 in which Ψm is the feasible region
outputted from Algorithm 1; else F m

MDT {δm,(k),r } = Xm
Nm

,∀m ∈ I.
(iv) SetFMDT {τ

giv
} = (


m∈I F m

MDT {δm,(k),r })∪FMDT {τ
giv
}. If δm,(k),r = ηm,∀m ∈

I, then exit and output FMDT {τ
giv
}; else check if r = 1, set k = k + 1,

r = card{δ(k)}; else set r = r − 1. Update Θ(δ(k),r ) and E(k)
m,r ,∀m ∈ I goto

step (ii).

Further, if Tm(x) = VUC
∞

(Ωm, x) holds, the RAS-FR can
be obtained based on Proposition 2, i.e., modifying Step (iii) in
Algorithm 4 to be ‘‘Compute F m

MDT {δm,(k),r},∀m ∈ I, by Algorithm
2 in which Ψm = Oλ

∞
’’. The verifications on Algorithm 4 to obtain

RF -FR and RAS-FR are similar to Example 3 and omitted here
due to space limit.

4. Conclusions and future work

The switched MPC of a class of discrete-time switched linear
systems was investigated in this paper. The concept of stage MDT
of variable lengths is proposed. By computing the steps over
which all the reachable sets of a starting region are contained
into a targeting region, the minimum admissible MDT ensuring
the persistent feasibility of MPC design was offline determined.
Stronger conditions were also developed to ensure asymptotic
stability (quadratic stage cost and specific terminal cost would be
needed). In addition, based on the proposed concept of ECS and
by determining the ECS of a targeting region that can cover the
states at the switching instants, the state-dependent MDT was
further obtained to reduce the conservatism despite the positions
of the states at the switching instants. For given constant MDT,
the complete feasible region was also determined such that the
switched MPC law can be persistently solved and the resulting
closed-loop system is asymptotically stable via ECS approach.
Based on the findings for nominal systems, the switched tube-
based MPC methodology was further established for the systems
with bounded additive disturbance.

The logic operations in the proposed algorithms (including
Algorithms A1 and A2) are not heavy, hence the computational
complexity of the algorithms behind are essentially dependent on
the computation of reachable sets or controllable sets, for which
certain sets addition, multiplication, intersection and union are
involved (cf. discussions on the question (ii) in Section 2.3). In the
linear MPC context, the computation contained in the proposed
algorithms are relatively tractable, however the complexity will
be dramatically increased in nonlinear setting. Thus one future
research direction will be to extend the obtained results to
nonlinear systems with unknown switching instants. In addition,
the studies on switched MPC for the disturbed systems are
based on the tube with constant cross section (rigid tube);
recent advances in reducing the conservatism that exists for
the rigid tube, such as developed in Raković et al. (2011)
can be utilized for further studies on switched tube-based
MPC. Finally, the work is based on the assumption that the
switching signals are instantly known (detectable within one
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sampling period). If there is a detection delay of length greater
than one sampling period for the switching, the computation
of the fundamental reachable/controllable sets in (6), (20)
will involve mode-unmatched MPC actions and the related
criteria/algorithms should be reestablished. The corresponding
asynchronous switchedMPC theories will be another future study.

Appendix A. Aided Algorithms

Consider system (15) with MDT set 1 , {∆1, ∆2, . . . , ∆M},
where Âm = Am + BmKm. For H ∈ Z+, let the H-step controllable
set, LPm

H (X) be defined as LPm
y+1(X) , LPm

1


LPm

y (X)

, y ∈

Z[0,H−1], where LPm
1 (X) , {x ∈ X : Âmx ⊆ X} and

LPm
0 (X) = X. Let Υ m

∆m
(X) :=


t∈[∆m,2∆m−1] LPm

t (X),
Algorithm A1 to determine a [λ, 1]-contractive set Oλ

∞
can be

obtained as below by combining Algorithm 1 in Dehghan and Ong
(2012a) andAlgorithm1 inDehghan andOng (2013). Also, consider
error system (31) with wk ∈ W, MDT set η , {η1, η2, . . . , ηM}.
Based on the definition of H-step reachable set of system (31),
let Ψ m

ηm
(X) ,


t∈[ηm,2ηm−1]LRm

t (X), Algorithm A2, also shown
below, to determine a MDT RPI set Θ(η) for system (31) with MDT
set η can be obtained by combining Algorithm 1 in Dehghan and
Ong (2013) and Algorithm 1 in Dehghan and Ong (2012b).

Algorithm A1. Computation of [λ, ∆]-contractive set Oλ
∞

(Input: X =
∀m∈I Tm, λ, Âm, ∆m,∀m ∈ I)

(i) Compute Sm := X∩


t=1,2,...,∆m−1 LPm
t (X)


, ∀m ∈ I, and compute

Υ m
∆m

(λSm),∀m ∈ I.
(ii) Set k = 1 and let Oλ

k :=


m∈I Υ m
∆m

(λSm).
(iii) Compute Υ m

∆m
(λOλ

k ),∀m ∈ I and let Oλ
k+1 := Oλ

k ∩


m∈I Υ m
∆m

(λOλ
k )

.

(iv) If Oλ
k+1 ≡ Oλ

k , then exit and output Oλ
∞
= Oλ

k ; else set k = k+ 1, and goto
Step (iii).

Algorithm A2. Computation of MDT RPI set Θ(η) (Input: Ām, ηm,∀m ∈ I,
W)

(i) Set k = 0, Θ(k)(η) = ∅.
(ii) Compute Θ(k+1)(η) , co(


m∈I Ψ m

ηm
(Θ(k)(η))).

(iii) If Θ(k)(η) ≡ Θ(k+1)(η), then exit and output Θ(η) = Θ(k)(η); else set
k = k+ 1, and goto Step (ii).

Appendix B. Relation among criteria

Section 2.2 (AS-MDT)

Thm. 1 (persistent feasibility)⇒ Cor. 1⇒ Cor. 2
↓

Thm. 2 (attractivity)⇒ Cor. 3
↓

Thm. 3 (asymptotic stability)⇒ Cor. 4

Section 2.4 (AS-FR)

Proposition 1→ Algorithm 1 (F -FR)
↓

Proposition 2→ Algorithm 2 (AS-FR)← Lem. 1

Section 3 (RAS-MDT, RAS-FR)

Proposition 3
(RF -MDT) →

Proposition 4
(RF A-MDT) →

Thm. 4
(RAS-MDT)

Proposition 2→ Algorithm 4 (RAS-FR)
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